Shultz, T. R., & Elman, J. L. (1994). Analyzing cross connected networks. In J. D. Cowan, G. Tesauro, & J. Alspector  (Eds.), Advances in Neural Information Processing Systems 6 (pp. 1117-1124). San Francisco, CA: Morgan Kaufmannn.



The non-linear complexities of neural networks make network solutions difficult to understand. Sanger's contribution analysis is here extended to the analysis of networks automatically generated by the cascade-correlation learning algorithm. Because such networks have cross connections that supersede hidden layers, standard analyses of hidden unit activation patterns are insufficient. A contribution is defined as the product of an output weight and the associated activation on the sending unit, whether that sending unit is an input or a hidden unit, multiplied by the sign of the output target for the current input pattern. Intercorrelations among contributions, as gleaned from the matrix of contributions x input patterns, can be subjected to principal components analysis (PCA) to extract the main features of variation in the contributions. Such an analysis is applied to three problems, continuous XOR, arithmetic comparison, and distinguishing between two interlocking spirals. In all three cases, this technique yields useful insights into network solutions that are consistent across several networks.


Copyright notice

Abstracts, papers, chapters, and other documents are posted on this site as an efficient way to distribute reprints. The respective authors and publishers of these works retain all of the copyrights to this material. Anyone copying, downloading, bookmarking, or printing any of these materials agrees to comply with all of the copyright terms. Other than having an electronic or printed copy for fair personal use, none of these works may be reposted, reprinted, or redistributed without the explicit permission of the relevant copyright holders.


To obtain a PDF reprint of this particular article, signal your agreement with these copyright terms by clicking on the statement below.


I agree with all of these copyright terms PDF 62KB