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Abstract 
The non-linear complexities of neural networks make network solutions difficult to 
understand. Sanger's contribution analysis is here extended to the analysis of networks 
automatically generated by the cascade-correlation learning algorithm. Because such 
networks have cross connections that supersede hidden layers, standard analyses of 
hidden unit activation patterns are insufficient. A contribution is defined as the product of 
an output weight and the associated activation on the sending unit, whether that sending 
unit is an input or a hidden unit, multiplied by the sign of the output target for the current 
input pattern. Intercorrelations among contributions, as gleaned from the matrix of 
contributions x input patterns, can be subjected to principal components analysis (PCA) 
to extract the main features of variation in the contributions. Such an analysis is applied 
to three problems, continuous XOR, arithmetic comparison, and distinguishing between 
two interlocking spirals. In all three cases, this technique yields useful insights into 
network solutions that are consistent across several networks.  

 
1   INTRODUCTION 
Although neural network researchers are typically impressed with the performance achieved by their 
learning networks, it often remains a challenge to explain or even characterize such performance. The latter 
difficulties stem principally from the complex non-linear properties of neural nets and from the fact that 
information is encoded in a form that is distributed across many weights and units. The problem is 
exacerbated by the fact that multiple nets generate unique solutions depending on variation in both starting 
states and training patterns.  

Two techniques for network analysis have been applied with some degree of success, focusing respectively 
on either a network's weights or its hidden unit activations. Hinton (e.g., Hinton & Sejnowski, 1986) 
pioneered a diagrammatic analysis that involves plotting a network's learned weights. Occasionally, such 
diagrams yield interesting insights but often, because of the highly distributed nature of network 
representations, the most notable features of such analyses are the comp lexity of the pattern of weights and 
its variability across multiple networks learning the same problem. 

Statistical analysis of the activation patterns on the hidden units of three layered feed-forward nets has also 
proven somewhat effective in understanding network performance. The relations among hidden unit 
activations, computed from a matrix of hidden units x input patterns, can be subjected to either cluster 
analysis (Elman, 1990) or PCA (Elman, 1989) to determine the way in which the hidden layer represents 
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the various inputs. However, it is not clear how this technique should be extended to multi-layer networks 
or to networks with cross connections.  

Cross connections are direct connections that bypass intervening hidden layers. Cross connections typically 
speed up learning when used in static back-propagation networks (Lang & Witbrock, 1988) and are an 
obligatory and ubiquitous feature of some generative learning algorithms, such as cascade-correlation 
(Fahlman & Lebiere, 1990). Generative algorithms  construct their own network topologies as they learn. In 
cascade-correlation, this is accomplished by recruiting new hidden units into the network, as needed, 
installing each on a separate layer. In addition to layer-to-layer connections, each unit in a cascade-
correlation network is fully cross connected to all non-adjacent layers downstream. Because such cross 
connections carry so much of the work load, any analysis restricted to hidden unit activations provides a 
partial picture of the network solution at best. 

Generative networks seem to provide a number of advantages over static networks, including more 
principled network design, leaner networks, faster learning, and more realistic simulations of human 
cognitive development (Fahlman & Lebiere, 1990; Shultz, Schmidt, Buckingham, & Mareschal, in press). 
Thus, it is important to understand how these networks function, even if they seem impervious to standard 
analytical tools.  

 
2   CONTRIBUTION ANALYSIS 
One analytical technique that might be adapted for mu lti-layer, cross connected nets is contribution 
analysis (Sanger, 1989). Sanger defined a contribution as the triple product of an output weight, the 
activation of a sending unit, and the sign of the output target for that input. He argued that contributions are 
potentially more informative than either weights alone or hidden unit activations alone. A large weight may 
not contribute much if it is connected to a sending unit with a small activation. Likewise, a large sending 
activation may not contribute much if it is connected via a small weight. In contrast, considering a full 
contribution, using both weight and sending activation, would more likely yield valid comparisons.  

Sanger (1989) applied contribution analysis to a small version of NETtalk, a net that learns to convert 
written English into spoken English (Sejnowski & Rosenberg, 1987). Sanger's analysis began with the 
construction of an output unit x hidden unit x input pattern array of contributions. Various two-dimensional 
slices were taken from this three-dimensional array, each representing a particular output unit or a 
particular hidden unit. Each two-dimensional slice was then subjected to PCA, yielding information about 
either distributed or local hidden unit responsibilities, depending on whether the focus was on an individual 
output unit or individual hidden unit, respectively.  

 
3   CONTRIBUTION ANALYSIS FOR MULTI-LAYER, CROSS CONNECTED 
NETS 
We adapted contribution analysis for use with multi-layered, cross connected cascade-correlation nets. 
Assume a cascade-correlation network with j units (input units + hidden units) and k  output units, being 
trained with i input patterns. There are j x k  output weights in such a network, where an output weight is 
defined as any weight connected to an output unit. A contribution c for a particular ijk  combination is 
defined as 

 cijk  = wjk aij 2tk i (1) 

where wjk is the weight connecting sending unit j with output unit k , aij is the activation of sending unit j 
given input pattern i, and tki is the target for output unit k  given input pattern i. The term 2tki adjusts  the 
sign of the contribution so that it provides a measure of correctness. That is, positive contributions push the 
output activation towards the target, whereas negative contributions push the output activation away from 
the target. In cascade-correlation, sigmoid output units have targets of either -0.5 or +0.5. Hence, 
multiplying a target by 2 yields a positive sign for positive targets and a negative sign for negative targets. 
Our term 2tki is analogous to Sanger's (1989) term 2tik  - 1, which is appropriate for targets of 0 and 1, 
commonly used in back-propagation learning.  
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In contrast to Sanger's (1989) three-dimensional array of contributions (output unit x hidden unit x input 
pattern), we begin with a two-dimensional output weight (k  * j) x input pattern (i) array of contributions. 
This is because we want to include all of the contributions coming into the output units, including the cross 
connections from more than one layer away. Since we begin with a two-dimensional array, we do not need 
to employ the somewhat cumbersome slicing technique used by Sanger to isolate particular output or 
hidden units. Nonetheless, as will be seen, our technique does allow the identification of the roles of 
specific contributions.  

 
4   PRINCIPAL COMPONENTS ANALYSIS 
Correlations among the various contributions across input patterns are subjected to PCA. PCA is a 
statistical technique that identifies significant dimensions of variation in a multi-dimensional space (Flury, 
1988). A component is a line of closest fit to a set of points in multi-dimensional space. The goal of PCA is 
to summarize a multivariate data set using as few components as possible. It does this by taking advantage 
of possible correlations among the variables (contributions, in our case).  

We apply PCA to contributions, as defined in Equation 1, taken from networks learning three different 
problems: continuous XOR, arithmetic comparisons, and distinguishing between interlocking spirals. The 
contribution matrix for each net, as described in section 3, is subjected to PCA using 1.0 as the minimum 
eigenvalue for retention. Varimax rotation is applied to improve the interpretability of the solution. Then 
the scree test is applied to eliminate components that fail to account for much of the variance (Cattell, 
1966). In cases where components are eliminated, the analysis is repeated with the correct number of 
components, again with a varimax rotation. Component scores for the retained components are plotted to 
provide an indication of the function of the components. Finally, component loadings for the various 
contributions are examined to determine the roles of the contributions from hidden units that had been 
recruited into the networks.  

 
5   APPLICATION TO THE CONTINUOUS XOR PROBLEM 
The simplicity of binary XOR and the small number of training patterns (four) renders application of 
contribution analysis superfluous. However, it is possible to construct a continuous version of the XOR 
problem that is more suitable for contribution analysis. We do this by dividing the input space into four 
quadrants. Input values are incremented in steps of 0.1 starting from 0.0 up to 1.0, yielding 100 x, y input 
pairs. Values of x up to 0.5 combined with values of y above 0.5 produce a positive output target (0.5), as 
do values of x above 0.5 combined with values of y below 0.5. Input pairs in the other two quadrants yield a 
negative output target (-0.5).  

Three cascade-correlation nets are trained on this problem. Each of the three nets generates a unique 
solution to the continuous XOR problem, with some variation in number of hidden units recruited. PCA of 
contributions yields different component loadings across the three nets and different descriptions of 
components. Yet with all of that variation in detail, it is apparent that all three nets make the same three 
distinctions that are afforded by the training patterns. The largest distinction is that which the nets are 
explicitly trained to make, between positive and negative outputs. Two components are sufficient to 
describe the representations. Plots of rotated component scores for the 100 training patterns cluster into 
four groups of 25 points, each cluster corresponding to one of the four quadrants described earlier.  
Component loadings for the various contributions on the two components indicate that the hidden units 
play an interactive and distributed role in separating the input patterns into their respective quadrants.      

 
6   APPLICATION TO COMPARATIVE ARITHMETIC 
A less well understood problem than XOR in neural net research is that of arithmetic operations, such as 
addition and multiplication. What has a net learned when it learns to add, or to multiply, or to do both 
operations? The non-linear nature of multiplication makes it particularly interesting as a network analysis 
problem. The fact that several psychological simulations using neural nets involve problems of linear and 
non-linear arithmetic operations enhances interest in this sort of problem (McClelland, 1989; Shultz et al., 
in press). 



1120 

We designed arithmetic comparison tasks that provided interesting similarities to some of the psychological 
simulations. In particular, instead of simply adding or multiplying, the nets learn to compare sums or 
products to some value and then output whether the sum or product is greater than, less than, or equal to 
that comparative value.  

The addition and multiplication tasks each involve three linear input units. The first two input units each 
code a randomly selected integer in the range from 0 to 9, inclusive. The third input unit codes a randomly 
selected comparison integer. For addition problems, the comparison values are in the range of 0 to 19, 
inclusive; for multiplication the range is 0 to 82, inclusive. Two output units code the results of the 
comparison. Target outputs of 0.5 and -0.5 represent that the results of the arithmetic operation are greater 
than the comparison value, targets of -0.5 and 0.5 represent less than, and targets of 0.5 and 0.5 represent 
equal to. For problems involving both addition and multiplication, a fourth input unit codes the type of 
arithmetic operation to be performed: 0 for addition, 1 for multiplication.  

Nets trained on either addition or multiplication have 100 randomly selected training patterns, with the 
restriction that 45 of them have correct answers of greater than, 45 have correct answers of less than, and 
10 have correct answers of equal to. The latter constraints are designed to reduce the natural skew of 
comparative values in the high direction on multiplication problems. Nets trained on both addition and 
multiplication have 100 randomly selected addition problems and 100 randomly selected multiplication 
problems, subject to the constraints just described. We trained three nets on addition, three on 
multiplication, and three on both addition and multiplication.   

 
6.1   RESULTS FOR ADDITION  

PCA of contributions in all three addition nets yield two significant components. In each of the three nets, 
the component scores form three clusters, representing the three correct answers. In all three nets, the first 
component distinguishes greater than from less than answers and places equal to answers in the middle; 
the second component distinguishes equal to from unequal to answers. The primary role of the hidden unit 
in these nets is to distinguish equality from inequality. The hidden unit is not required to perform addition 
per se in these nets, which have additive activation functions.  

 
6.2   RESULTS FOR MULTIPLICATION 

PCA applied to the contributions in the three multiplication nets yields from 3 to 4 significant components. 
Plots of rotated component scores show that the first component separates greater than from less than 
outputs, placing equal to outputs in the middle. Other components further differentiate the problems in 
these categories into several smaller groups that are related to the particular values being multiplied. 
Rotated component loadings indicate that component 1 is associated not only with contributions coming 
from the bias unit and the input units, but also with contributions from some hidden units. This underscores 
the need for hidden units to capture the non-linearities inherent to multiplication.   

 
6.3   RESULTS FOR BOTH ADDITION AND MULTIPLICATION 

PCA of contributions yields three components in each of the three nets taught to do both addition and 
multiplication. In addition to the familiar distinctions between greater than, less than, and equal to outputs 
found in nets doing either addition or multiplication, it is of interest to determine whether nets doing both 
operations distinguish between adding and multiplying.  

Figure 1 shows the rotated component scores for net 1. Components 1 and 2 (accounting for 30.2% and 
21.9% of the variance, respectively) together distinguish greater than answers from the rest. Component 3, 
accounting for 20.2% of the variance, separates equal to answers from less than answers and multiplication 
from addition for greater than answers. Together, components 2 and 3 separate multiplication from 
addition for less than answers. Results for the other two nets learning both multiplication and addition 
comparisons are essentially similar to those for net 1.  
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Figure 1. Rotated component scores for a net doing both addition and multiplication.  

 
6.4   DISCUSSION OF COMPARATIVE ARITHMETIC 

As with continuous XOR, there is considerable variation among networks learning comparative arithmetic 
problems. Varying numbers of hidden units are recruited by the networks and different types of 
components emerge from PCA of network contributions. In some cases, clear roles can be assigned to 
particular components, but in other cases, separation of input patterns relies on interactions among the 
various components.  

Yet with all of this variation, it is apparent that the nets learn to separate arithmetic problems according to 
features afforded by the training set. Nets learning either addition or multiplication differentiate the 
problems according to answer types: greater than, less than, and equal to. Nets learning both arithmetic 
operations supplement these answer distinctions with the operational distinction between adding and 
multiplying.  

 
7   APPLICATION TO THE TWO-SPIRALS PROBLEM 
We next apply contribution analysis to a particularly difficult discrimination problem requiring a relatively 
large number of hidden units. The two-spirals problem requires the net to distinguish between two 
interlocking spirals that wrap around their origin three times. The standard version of this problem has two 
sets of 97 continuous-valued x, y pairs, each set representing one of the spirals. The difficulty of the two-
spirals problem is underscored by the finding that standard back-propagation nets are unable to learn it 
(Wieland, unpublished, cited in Fahlman & Lebiere, 1990). The best success to date on the two-spirals 
problem was reported with cascade-correlation nets, which learned in an average of 1700 epochs while 
recruiting from 12 to 19 hidden units (Fahlman & Lebiere, 1990). The relative difficulty of the two-spirals 
problem is undoubtedly due to its high degree of non-linearity. It suited our need for a relatively difficult, 
but fairly well understood problem on which to apply contribution analysis. We ran three nets using the 194 
continuous x, y pairs as inputs and a single sigmoid output unit, signaling -0.5 for spiral 1 and 0.5 for spiral 
2.  

Because of the relative difficulty of interpreting plots of component scores for this problem, we focus 
primarily on the extreme component scores, defined as less than -1 or greater than 1. Those x, y input pairs 
with extreme component scores on the first two components for net 1 are plotted in Figure 2 as filled points 
on the two spirals. There are separate plots for the positive and negative ends of each of the two 
components. The filled points in each quadrant of Figure 2 define a shape resembling a tilted hourglass 
covering approximately one-half of the spirals. The positive end of component 1 can be seen to focus on 
the northeast sector of spiral 1 and the southwest sector of spiral 2. The negative end of component 1 has an 
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opposite focus on the northeast sector of spiral 2 and the southwest sector of spiral 1. Component 2 does 
precisely the opposite of component 1: its positive end deals with the southeast sector of spiral 1 and the 
northwest sector of spiral 2 and its negative end deals with the southeast sector of spiral 2 and the northwest 
sector of spiral 1. Comparable plots for the other two nets show this same hourglass shape, but in a 
different orientation.   

The networks appear to be exploiting the symmetries of the two spirals in reaching a solution. Examination 
of Figure 2 reveals the essential symmetries of the problem. For each x, y pair, there exists a corresponding 
-x, -y pair 180 degrees opposite and lying on the other spiral. Networks learn to treat these mirror image 
points similarly, as revealed by the fact that the plots of extreme component scores in Figures 2 are 
perfectly symmetrical across the two spirals. If a point on one spiral is plotted, then so is the corresponding 
point on the other spiral, 180 degrees opposite and at the same distance out from the center of the spirals. If 
a trained network learns that a given x, y pair is on spiral 1, then it also seems to know that the -x, -y pair is 
on spiral 2. Thus, it make good sense for the network to represent these opposing pairs similarly.  

Recall that contributions are scaled by the sign of their targets, so that all of the products of sending 
activations and output weights for spiral 1 are multiplied by -1. This is to ensure that contributions bring 
output unit activations close to their targets in proportion to the size of the contribution. Ignoring this 
scaling by target, the networks possess sufficient information to separate the two spirals even though they 
represent points of the two spirals in similar fashion. The plot of the extreme component scores in Figure 2 
suggests that the critical information for separating the two spirals derives mainly from the signs of the 
input activations.  

Because scaling contributions by the sign of the output target appears to obscure a full picture of network 
solutions to the two-spirals problem, there may be some value in using unscaled contributions in network 
analysis. Use of unscaled contributions also could be justified on the grounds that the net has no knowledge 
of targets as it represents a particular problem; target information is only used in the error correction 
process. A disadvantage of using unscaled contributions is that one cannot distinguish contributions that 
facilitate vs. contributions that inhibit reaching a relatively error free solution.  

The symmetry of these network representations suggests a level of systematicity that is, on some accounts, 
not supposed to be possible in neural nets (Fodor & Pylyshyn, 1988). Whether this representational 
symmetry reflects systematicity in performance is another matter. One empirical prediction would be that 
as a net learns that x, y is on one spiral, it also learns at about the same t ime that -x, -y is on the other spiral. 
If confirmed, this would demonstrate a clear case of systematic cognition in neural nets.   

 
8   GENERAL DISCUSSION 
Performing PCA on network contributions is here shown to be a useful technique for understanding the 
performance of networks constructed by the cascade-correlation learning algorithm. Because cascade-
correlation nets typically possess multiple hidden layers and are fully cross connected, they are difficult to 
analyze with more standard methods emphasizing activation patterns on the hidden units alone. 
Examination of their weight patterns is also problematic, particularly in larger networks, because of the 
highly distributed nature of the net's representations.  

Analyzing contributions, in contrast to either hidden unit activations or weights, is a naturally appealing 
solution. Contributions capture the influence coming into output units both from adjacent hidden units and 
from distant, cross connected hidden and input units. Moreover, because contributions include both sending 
activations and connecting weights, they are not unduly sensitive to one at the expense of the other.  

In the three domains examined in the present paper, PCA of the network contributions both confirm some 
expected results and provide new insights into network performance. In all cases examined, the nets 
succeed in drawing all of the important distinctions in their representations that are afforded by the training 
patterns, whether these distinctions concern the type of output or the operation being performed on the 
input. In combination with further experimentation and analysis of network weights and activation patterns, 
this technique could help to provide an account of how networks accomplish whatever it is they learn to 
accomplish.  

It might be of interest to apply the present technique at various points in the learning process to obtain a 
developmental trace of network performance. Would all networks learning under the same constraints 
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progress through the same stages of development, in terms of the problem distinctions they are able to 
make? This would be of particular interest to network simulations of human cognitive development, which 
has been claimed to be stage-like in its progressions.  

The present technique could also be useful in predicting the results of lesioning experiments on neural nets. 
If the role of a hidden unit can be identified by its association with a particular principal component, then it 
could be predicted that lesioning this unit would impair the function served by the component. 
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Figure 2. Extreme rotated component scores for a net on the two-spirals problem. 


