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Abstract
The importance of discrimination shifts to learning and
developmental psychology is highlighted.  Basic tasks used
in continuous and total change paradigms are presented, and
major theoretical accounts are briefly reviewed.  The lack of a
general and comprehensive interpretation of human shift
learning is identified, and a recent model based on neural
network research is described.  This model suggests that
human adult performance in discrimination shifts differs from
preschool performance because of a process called
spontaneous overtraining.  This hypothesis has been
previously used in neural network simulations to successfully
capture developmental regularities in continuous
discrimination shifts (e.g., reversal and nonreversal shifts).
In the present paper, new simulations using this model are
applied to total change discrimination shifts (e.g.,
intradimensional and extradimensional shifts).  Several
developmental regularities are successfully captured by the
networks.  The contribution of the spontaneous overtraining
hypothesis is discussed.

Introduction
Discrimination learning involves learning to make different
responses to particular stimulus conditions.  Specifically,
participants must learn to reliably identify among
competing stimuli the one that exhibits a single, several, or
combinations of attributes.  The vast psychological
literature on discrimination learning offers a substantial
database of empirical regularities about learning and
development (e.g., Esposito, 1975; Wolff, 1967).  These
findings on both child and adult learning are of significant
importance for theories of human learning, cognition, and
cognitive development.  A rigorous way to develop and test
such theories is through computational modeling.  Because
many neural networks use learning algorithms and have
been favored for modeling a variety of perceptual,
cognitive, and learning phenomena, discrimination learning
tasks provide a useful benchmark for the adequacy of neural
networks as models of human cognition.

Surprisingly, there are few studies that report
connectionist modeling of discrimination shift learning.  Of
these, only one model successfully captures the human
ontogeny of reversal shift and nonreversal shift performance
(Sirois & Shultz, submitted).

In the present paper, we extend the application of this
model to intradimensional and extradimensional shifts.  The
first section presents the discrimination shift tasks that this

research addresses, as well as the psychological regularities
associated with them.  In the second section, we review
previous theoretical interpretations of discrimination
learning.  The third section presents our cascade-correlation
model of discrimination learning and new simulations that
model intradimensional and extradimensional shifts.  The
discussion focuses on the implications of our model for a
general theory of discrimination learning.

Discrimination Shifts
The discrimination shift tasks we consider involve the
pairwise presentation of stimuli with varying attributes on
three binary dimensions (e.g., shape, color, and position).
In each pair, the stimuli are constrained such that they
exhibit mutually exclusive combinations of the attributes on
all three dimensions. Figure 1 presents four stimulus pairs
that exhaust such a combination of shape, color, and
position.

Participants in these tasks are required to consistently
identify in each pair the stimulus that exhibits the attribute
targeted by the experimenter (e.g., square).  They are
repeatedly presented with the pairs of stimuli, and they are
provided with reinforcement feedback on each trial.
Learning continues until the participant reliably identifies
the target stimulus, typically on eight out of ten consecutive

Figure 1:  Pairs of stimuli that exhaust the mutually
exclusive combinations of shape, color, and position.  R

denotes red, and G denotes green (from Sirois and Shultz,
submitted).



trials.  When this initial criterion is reached, shifts in reward
contingencies may be introduced. Performance on such
shifts often reveals important features of the leaning.   For
example, shift performance might reveal whether the learner
is using concepts or attentional responses to mediate the
associations between stimuli and responses.  We elaborate
this later in a presentation of different theoretical
interpretations of shift learning.  Participants are not usually
told explicitly about the introduction of a shift.

In a reversal shift (RS), the stimuli that exhibit the other
attribute of the initial dimension are now associated with
reward (e.g., circle instead of square).  Participants must
consequently change their responses on all pairs.  This is
shown in the first row of Figure 2.

A nonreversal shift (NS) involves a shift to an attribute of
a previously irrelevant dimension (e.g., red instead of
square).  In this task, only half of the responses must be
changed.  In our example, half of the square stimuli are also
red.  The second row of Figure 2 presents a NS task.

Because RS and NS use the same attributes in both
learning phases, they are referred to as continuous paradigm
tasks.  Two other discrimination shift tasks also involve a
complete or a partial shift in reinforcement contingencies.
These are the intradimensional (IDS) and extradimensional
(EDS) shifts.  They are known as total change tasks,
because new attributes of the initial dimensions are
introduced at the onset of the shift (Esposito, 1975).

In an IDS, stimuli that exhibit a specific novel attribute of
the previously relevant dimension are associated with
reinforcement (e.g., from square to diamond).  On the other
hand, an EDS involves a shift to a novel attribute of a
previously irrelevant dimension (e.g., from square to
yellow).  Both tasks are shown in the bottom rows of Figure
2.

Figure 2:  Examples of RS, NS, IDS and EDS.  Plus signs

identify reinforcement.  R, G, B, and Y denote red, green,
blue, and yellow, respectively.

Continuous and total change paradigms are highly
similar.  RS and IDS tasks involve a shift within the initially
relevant dimension, and NS and EDS tasks involve a shift to
a previously irrelevant dimension.  The important
distinction is that total change paradigms introduce new
stimuli at the onset of the shift, which makes the shift more
obvious to participants.

Decades of research have identified robust psychological
regularities within the continuous and total change
paradigms.  Of importance, the ease of executing a shift, as
measured by the number of trials to criterion, has been
shown to vary between tasks and age groups.  Children
above the age of 10 years and adults reach the shift criterion
in a RS quicker than in a NS, and reach the shift criterion
quicker for IDS than for EDS (Esposito, 1975; Wolff,
1967).  Preschool children also execute an IDS faster than
an EDS, but they execute a NS as quickly as a RS (Esposito,
1975; Wolff, 1967).1   Between the ages of 4 and 10 years,
RS becomes easier than NS (Esposito, 1975).  Although
some studies report comparisons between continuous and
total change paradigms (Esposito, 1975), we have failed to
find well replicated, unequivocal regularities in such
comparisons.

A final psychological regularity is that when trained
several trials beyond the usual success criterion in the initial
learning phase, most preschoolers then execute a RS faster
than an NS, as do adults.  This is called the overtraining
effect, and is significant for the design of our neural
network model.

Theoretical Interpretations
Three major accounts of discrimination learning have been
presented over the years to account for a variety of findings
(Sirois & Shultz, submitted).  These are the Kendlers' two-
stage theory (Kendler & Kendler, 1975; Kendler, 1983),
Zeaman and House's attentional theory (Zeaman & House,
1963), and the Tighes' perceptual differentiation theory
(Tighe & Tighe, 1966).

The Kendlers worked primarily within the continuous
paradigm, and their model fairs poorly when applied to total
change data (Sirois & Shultz, submitted).  They argue that
older children and adults use covert categorical responses to
mediate between the stimuli and overt behavior (Kendler &
Kendler, 1975; Kendler, 1983).  These responses represent
the specific attributes of the stimuli.  Participants thus learn
to respond to the relevant attribute and use this covert
response to produce overt behavior.  For the Kendlers, a RS
is easier than a NS because only the link between the covert
and overt responses needs to be changed.  In a NS, the
previous covert response has to be extinguished, and a new
covert response must be learned, as well as the appropriate
    ____________

1  This last finding is in contradiction with a pervasive belief that
preschoolers execute a NS faster than a RS (Kendler, 1983).  An
extended discussion of this controversy,  in our paper on continu-
ous shift paradigms (Sirois & Shultz, submitted), shows that the
confusion stems from misinterpretations of results that are con-
founded with certain methodological variations.



response to the categorical response.  This implies more
learning than required for a NS.  Because the covert
responses represent the discrete attributes of the stimuli,
though, their mediational model does not account for the
regularities observed in total change tasks (Sirois & Shultz,
submitted; Wolff, 1967).

The Kendlers suggested that preschoolers, unlike older
children and adults, behaved according to an associative
model (Kendler, 1983).  Mere associations between
stimulus and response are involved in their shift
performance.  This model predicts that a NS is easier than a
RS, because more responses must be changed in the latter.
The prediction has little support in the literature (Sirois &
Shultz, submitted).

Zeaman and House, on the other hand, developed a model
within the total change paradigm (Zeaman & House, 1963).
They suggested that the stimuli were associated with an
attentional response, which in turn was associated with an
overt response.  The attentional responses involve the
different dimensions of variation, and not the discrete
values of these dimensions.  Following the same logic as
that found in the Kendlers' model, this model predicts that
an IDS will be easier than an EDS.  Indeed, only the link
between the attentional response and overt behavior needs
to be changed in an IDS.  In an EDS, both a new attentional
response and the appropriate association with overt
behavior must be learned.  It also predicts that a RS will be
faster than a NS, for the same reasons.

What is novel in Zeaman and House's model is that
mediation is also involved in preschoolers, and different
learning parameter values would explain their distinct
behavior.  Unfortunately, it also predicts easier RS over NS
in preschoolers, which is not supported by the literature.

Finally, Tighe and Tighe's perceptual differentiation
model does not imply mediation of stimuli into covert
responses (Tighe & Tighe, 1966).  Rather, the compound
stimuli are differentiated in specific overt responses as a
function of reinforcement.  Older children and adults,
compared to preschoolers, perform differently due to their
larger amount of perceptual experience.  This enables them
to better focus on the relevant dimension and ignore the
irrelevant one.  The model predicts that RS and IDS are
easier than NS and EDS, respectively, because participants
are attending to the dimension that remains relevant.

Preschoolers, on the other hand, poorly differentiate the
stimuli into relevant dimensions and instead respond to the
compound properties of the stimuli (Tighe & Tighe, 1966,
1978).  They associate the appropriate response with the
poorly differentiated stimulus pair.  As such, they cannot
use information about the relevant dimension as an
advantage in shifts within this dimension using the same
stimuli (i.e., RS).  And because a RS requires more
relearning than a NS, this model also wrongly predicts
faster NS.  In total change paradigms, though, the model
suggests a faster IDS than EDS (Tighe & Tighe, 1978).
This is because the new stimuli prevent an interference of
the previous associations, which were bound to the initial
stimuli.  The minimal differentiation acquired during
preshift learning then becomes helpful for a shift within the
same dimension (i.e., IDS).

All three theories have their own limitations, which
prevented the formulation of a general and comprehensive
account of discrimination learning (Esposito, 1975; Sirois &
Shultz, submitted).  This in spite of the fact that work in
discrimination learning began over sixty years ago
(Kendler, 1983).  Because of the important issues of
learning and development raised by this literature, the
formulation of a comprehensive theoretical account of shift
learning is still relevant today.

A Cascade-correlation Model
We have recently applied the cascade-correlation neural
network algorithm to continuous paradigm tasks (Sirois &
Shultz, submitted).  The algorithm successfully captured the
psychological regularities in preschool and adult behavior.
Networks parameterized as adults executed a RS faster than
a NS, whereas networks parameterized as preschoolers
executed both shifts equally quickly.  The networks also
captured other developmental regularities associated with
the continuous paradigm that are not discussed here (i.e.,
trial-by-trial behavior in shift learning and optional shifts).
But the success of the model is of limited interest if it
cannot capture the regularities in total change paradigms as
well.

Central to our model is the suggestion that older children
and adults, compared to preschoolers, submit themselves to
extended processing of stimuli and reinforcement through a
process similar to rehearsal (Sirois & Shultz, submitted).
This had already been suggested in the discrimination
learning literature by Levine (1975).  By using a lower
score threshold, neural networks are submitted to additional
training trials.  This is because, in cascade-correlation,
training continues until all output activations are within
score threshold of their targets.2   We used a score threshold
of 0.01 to model adult performance, and the default value of
0.4 to model preschool performance.  Using a lower score
threshold allows networks to learn a problem to greater
depth and precision.  All other parameters in the algorithm
were set to the default values of cascade-correlation
(Fahlman & Lebiere, 1990).

This adjustment of the score threshold parameter resulted
in capturing the developmental effects in continuous
paradigms with networks that lack hidden (i.e., mediational)
units, because cascade-correlation will not install any for
such linear problems.  It is consistent with developmental
changes in spontaneous rehearsal, as well as with the
overtraining effect (Sirois & Shultz, submitted).  Adult-like
performance in continuous discrimination shifts can be
achieved through extended training with a low score-
threshold.  We now report the application of this model to
total change tasks.

Simulation of Continuous and Total Change Tasks
In these simulations, we used networks with eight input
units.  The first two units coded shape of the left stimulus,
the next two units color of the left stimulus, the following

    ____________
2  The same thing could be accomplished in backpropation net-

works by lowering the error criterion.



two units the shape of the right stimulus, and the final two
units color of the right stimulus.  These units were
connected to two output units, with initially random
connection values.  Target output was [0.5, -0.5] when the
correct stimulus was on the left, and [-0.5, 0.5] when it was
on the right.

We used two input units for each attribute in each
stimulus because we needed to represent four attributes in
the total change paradigms (two initial attributes, and two
new attributes at the onset of the shift).  The four possible
attributes of each dimension were represented by a
combination of -1 and 1 values.  For example, four possible
shapes were coded as [-1, -1], [-1, 1], [1, -1], and [1, 1].
Because each attribute is a combination of values of the
same magnitude (all 1s), pre- and post-shift attributes have
equivalent salience.

Networks parameterized as adults are expected to
replicate our previous finding that a RS is performed faster
than a NS.  They should also execute an IDS quicker than
an EDS.  Networks parameterized as preschoolers should
also perform the IDS quicker than the EDS.  As we have
previously observed, though, RS and NS should be learned
at equivalent rates.

Method  Two hundred and eighty adult networks were used
in this simulation, with a score threshold of 0.01.  One
hundred and forty were initially trained on one attribute of
color, and one hundred and forty on another attribute of
color.  When performance reached threshold on all
problems of the initial discrimination, training was shifted
to another attribute.  In each subset of one hundred and
forty networks, training was shifted to the other attribute of
color for twenty networks (RS).  For forty networks, it was
shifted to an attribute of the previously irrelevant dimension
(NS, n = 20 per attribute).  For the remaining eighty
networks, new dimensional attributes were introduced.
Forty networks were trained on a new attribute from the
previously relevant dimension (IDS, n = 20 per attribute),
and the remaining forty were trained on a new attribute
from the previously irrelevant dimension (EDS, n = 20 per
attribute).  Learning continued until criterion was reached in
the shift training phase (i.e., output activations were within
threshold of the target values for both output units on all
problems).  Two hundred and eighty networks
parameterized as preschoolers were used under the same
conditions, with the score-threshold set at 0.4.

To assess how quickly networks perform each task, we
recorded the number of epochs required to reach criterion in
shift learning.  An epoch is, in this case, a block of four
trials, one with each stimulus pair.  For control purposes, we
also recorded epochs to criterion for the initial learning
phase.

Results  There were no significant differences between any
of the groups in the preshift phase, for networks
parameterized as adults (F(3,276) = 2.56, n.s.).  There were
no significant differences either in the initial phase for
networks parameterized as preschoolers (F(3,276) = 1.06,
n.s.).  Table 1 presents the mean number of epochs required
to learn each type of shift, for both types of networks.

For adult networks, the result of a One-Way analysis of
variance show a significant difference between the groups
(F(3,276) = 136.09, p < .001).  We performed Scheffé post-
hoc comparisons on the data.  Table 2 presents the
significant differences between the groups (significant test
values are between 21.08 and 114.26).

In child networks, the results of a One-Way analysis of
variance also show a significant difference between the
groups (F(3,276) = 52.189, p < .001).  We report significant
Scheffé post-hoc comparisons in Table 2 as well (significant
test values range between 6.98 and 43.44).

Discussion  The simulation results reported in the first two
rows of Table 2 are consistent with the psychological
regularities reported for both adults and preschoolers.
Networks parameterized as adults execute a RS faster than a
NS, and an IDS quicker than an EDS, as normal adults do.
And networks parameterized as preschoolers execute an
IDS quicker than an EDS, even though they perform
equally fast on RS and NS, like preschoolers do.

Network analyses in our previous simulations suggested
that extensive training in adult networks yields finely tuned
discriminations that focus on the relevant dimension and
ignore the irrelevant one, which enable faster RS over NS
(Sirois & Shultz, submitted).  The adult networks in these
new simulations also executed the RS faster than the NS.
Because such discriminations remain relevant in IDS (the
shift is within the initial dimension), this also enables the
networks to execute an IDS faster than the EDS.

For networks parameterized as preschool children,
though, we have argued that their behavior was a function
of the compound properties of the pair of stimuli (Sirois &
Shultz, submitted).  That is, the minimal amount of

Table 1:  Mean number of epochs to criterion for shift
training.

Network Parameterization
Task Adult Preschool
RS 6.48 4.25
NS 10.08 4.28
IDS 8.43 2.93
EDS 9.69 3.59

Table 2:  Post-hoc comparisons between groups.  Signifi-
cant differences are represented by < (the group on the left
took less time than the one on the right) or > (the group on

the left took more time than the one on the right).  The
equal (=) sign indicates no significant difference between

the two groups.

Network Parameterization
Comparison Adult Preschool
RS vs. NS < =
IDS vs. EDS < <
RS vs. IDS < >
RS vs. EDS < >
IDS vs. NS < <
NS vs. EDS = >



processing they perform does not allow fine discriminations
between the dimensions to be made.  This prevents an
advantage of RS over NS.  But in the case of total change
tasks, the introduction of new attributes may remove the
influence of the initial stimuli and allow the minimal
abstraction achieved in the initial phase to favor an IDS
over an EDS.  These generalizations would otherwise be
masked by the influence of the initial attributes in
continuous tasks, as Tighe and Tighe (1978) have argued.
Further network analyses are required before general
conclusions are drawn.

The results reported in rows 3-6 in Table 2 can be taken
as predictions made by the model.  As we have noted
previously, these comparisons have either not been
performed, or have led to equivocal findings.  Our
simulation results should be evaluated in light of any new
evidence from such psychological comparisons.

Finally, the reader may notice that preschool networks
take fewer epochs to learn the tasks than adult networks do.
This is in contradiction with human data (e.g., Wolff, 1967).
Our assumption, though, is that older children and adults
spontaneously submit themselves to extended training.  The
number of epochs we report is an index of the amount of
processing needed to learn the tasks, and should not be
equated with the actual number of trials in humans.  In
particular, at least some of the epochs taken by networks
parameterized as adults represent rehearsal of the patterns
rather than discrete trials.  Consequently, valid main effect
comparison of epochs to learn between child adult networks
cannot be made.

General Discussion
Our previous simulations of discrimination learning were
based on the assumption that older children and adults
spontaneously train themselves to a greater extent than
preschoolers do (Sirois & Shultz, submitted).  This
hypothesis was derived from the overtraining literature, and
is consistent with the development of active rehearsal in
children.  Indeed, changes in discrimination learning and
spontaneous rehearsal overlap between the ages of 4 and 10
(Sirois & Shultz, submitted).  More training results in better
discrimination of the relevant dimension, which in turn
allows shifts within the same dimension to be performed
more quickly than shifts to previously ignored dimensions.
In networks parameterized as preschoolers, nonselective
encoding of the input prevents an advantage of shifts within
the previously relevant dimension.

The new simulations reported here provide further
support for the adequacy of this model.  Continuous
paradigm tasks like RS and NS may mask a minimal
amount of abstraction by networks with preschool
parameters.  The introduction of new stimuli at the onset of
the shift removes the influence of the initial stimuli and
allows faster shifts within the same dimension.  This had
previously been suggested by Tighe and Tighe (1978).
They argued that the distinct nature of continuous and total
change paradigms stress different processes, and that the
latter is more sensitive to dimensional discrimination than
the former (i.e., it better detects generalization).  This is
because total change tasks assess generalizations acquired in

preshift learning, without the influence of the specific
material used to acquire the discrimination.  Previous
responses to the specific stimuli may exert too large an
influence on shift learning to yield generalization effects in
continuous paradigms.

Our model does not implement mediation, which in
neural networks would require hidden units (Sirois &
Shultz, submitted).  As such, our model is more consistent
with Tighe and Tighe's (1966) perceptual differentiation
model than with the Kendlers' and Zeaman and House's
mediational models.  Unlike all three other models, though,
ours has been able thus far to capture all regularities it was
applied to in continuous and total change paradigms.  It has
not shown the limitations identified in the other models,
including Tighe and Tighe's (Sirois & Shultz, submitted).

Our spontaneous overtraining hypothesis of
discrimination learning requires further research before
general theoretical claims can be made.  One important step
will be to evaluate the discrimination shift performance of
older children and adults in conditions that would prevent
processing of the stimulus pair beyond its presentation (e.g.,
by using a distracter task simultaneously).  Our model
would predict equal ease of RS and NS in conditions that
prevent rehearsal, yet IDS should still be faster than EDS.
Their performance is expected to be like that of
preschoolers in such conditions, because only the amount of
processing distinguishes both groups in standard tasks under
the spontaneous overtraining hypothesis.

There are also a variety of related tasks on which our
model should be tested.  These include dimensionless shifts
(e.g., Goulet & Williams, 1970) and compound
categorization (e.g., Kruschke, 1996), which would provide
a good test of the generality of our model (Sirois & Shultz,
submitted).  Hopefully, further work will represent positive
steps towards a comprehensive account of human shift
learning.
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