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This paper presents neural network simulations of developmental phenomena in dis-
crimination shifts. The discrimination shift literature is reviewed in order to identify the
empirical regularities. Leading theoretical accounts of the development of shift learning
are reviewed, and the lack of a thorough account is highlighted. Recent unsuccessful
neural network simulations of shift learning are also reviewed. New simulations, using the
cascade-correlation algorithm, show that networks can capture the regularities of the
discrimination shift literature better than existing psychological theories. Manipulation of
the amount of training that networks receive, which affects depth of learning, simulates
developmental phenomena. It is suggested that human developmental differences in shift
learning arise from spontaneous overtraining by older participants, an interpretation
consistent with the overtraining literature. © 1998 Academic Press

Concept-shift tasks represent a useful benchmark for the developmental psy-
chologist building computational models of human cognition. There are a sub-
stantial number of empirical data against which a model may be evaluated, as
decades of research have identified robust phenomena (Kruschke, 1996). More-
over, such tasks involve both learning and cognitive development. For example,
early research on concept-shift tasks and development has shown a relationship
between shift performance and mental ability (Wolff, 1967). There are also
qualitative distinctions between the performance of preschool children and that
of older children and adults. The ability of artificial neural networks to capture
the empirical regularities in this area of research may prove an important test of
their adequacy as models of human cognition and its development.
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The validity of neural networks as models of human cognition was recently
questioned from a developmental perspective (Raijmakers, 1996; Raijmakers,
van Koten, & Molenaar, 1996). The authors carried out simulations of the
balance scale and discrimination shifts (a subset of concept shift tasks) to
highlight the inadequacies of feedforward neural networks as models of human
learning. Because neural network models can be useful tools for the study of
human learning and development (Elman, Bates, Johnson, Karmiloff-Smith,
Parisi, & Plunkett, 1996), we feel that the important issues raised by Raijmakers
et al. with respect to concept-shift tasks deserve a response.

Our work focuses on three topics. The first is the hypothesis of age differences
in shift learning. We review the psychological literature in order to identify the
principal regularities and age differences in discrimination learning. The second
topic concerns the traditional theoretical interpretations of age effects in discrim-
ination learning and the lack of a comprehensive theoretical account. Finally, we
evaluate the ability of artificial neural networks to simulate age effects in shift
learning and the consequent implications to our understanding of human devel-
opment.

DISCRIMINATION SHIFTS

Discrimination shift tasks represent an elementary form of concept-shift tasks
(Wolff, 1967). Concept-shift tasks involve the categorization of stimuli accord-
ing to attributes they exhibit on one or several dimensions. During the task,
participants learn to identify which stimuli fall into which category based on
these attributes. The target attributes are typically changed after an initial success
criterion is reached. Stimuli may be presented individually (categorization) or
simultaneously (discrimination). Typical responses in these tasks are sorting and
verbal or motor identification. In discrimination shifts, the stimuli are presented
in pairs and exhibit mutually exclusive attributes on all dimensions, and the
criteria for correct responses change at some point during learning.

The motivation for restricting our focus to discrimination shifts is threefold.
First, discrimination shifts are associated with a rich literature in which robust
findings about human learning can be used as benchmarks by modelers (Krus-
chke, 1996). Second, the three leading theoretical accounts of concept-shift tasks,
discussed later, originate from these discrimination tasks. Third, one purpose of
this paper is to challenge the results obtained by Raijmakers et al. (1996), which
were also restricted to discrimination shifts.

The discrimination shift paradigms we consider involve the pairwise discrim-
ination of stimuli that exhibit attributes varying on three binary dimensions (e.g.,
shape, color, and position). In each pair of stimuli, members exhibit mutually
exclusive attributes on all three dimensions. Figure 1 shows as an example the
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FIG. 1. An example of four stimulus pairs in a discrimination shift task. R and G denote red and
green, respectively.

four pairs that exhaust the mutually exclusive combinations of shape, color, and
position attributes.

In such tasks, participants learn to identify the stimulus in each pair that
exhibits the attribute targeted by the experimenter (e.g., the attribute square on
the shape dimension). The irrelevant dimension may vary within all trials or may
be held constant on a given trial but vary between trials. For example, if the
irrelevant dimension is color, a red stimulus is always paired with a green
stimulus in variable-within-trial paradigms, with shape varying as well. On the
other hand, the red stimuli would be presented together and the green stimuli
would also be presented together in variable-between-trials paradigms and only
the relevant dimension (e.g., shape) would vary within a trial. Such a variant of
discrimination shifts does not require mutual exclusivity of all attributes in a
given pair.

Initial learning takes place by reward or lack thereof over repeated presenta-
tions of all pairs (see Fig. 2, second column). When participants reliably identify
the target (typically, 8 out of 10 consecutive trials), they are considered to have
successfully learned the initial discrimination. After criterion is achieved in this
initial phase, several shifts of reward contingencies may be introduced.

One such shift is the reversal shift. In this condition, learning is shifted from
the initial attribute to the other attribute of the same dimension (e.g., from square
to round). Participants are therefore required to change their responses on all
pairs. This is shown in Fig. 2 (second row).

Another possible shift is the nonreversal shift, shown in the third row of Fig.
2. In this condition, learning is shifted from the initial attribute to one from
another, previously irrelevant, dimension (e.g., from square to red). With this
shift, responses must be changed on only half of the pairs. Notice that half of the

! There is some confusion in the literature over whether these tasks involve 2° stimuli organized
in 4 pairs that meet the mutual exclusivity constraint on attributes or rather 22 stimuli in two pairs,
balanced for position. Gholson and Schuepfer (1979) suggested that some authors, neglecting
position as a valid attribute of the stimuli, overlooked similarities in the behavior of young children
and adults. For example, position bias in children has been mistakenly qualified as win-shift behavior
because position was not included in analyses. We consider position as one dimension of variation
in discrimination shifts, as did Tighe and Tighe (1972, 1978).
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FIG. 2. Examples of four learning paradigms in discrimination shift: reversal (RS), nonreversal
(NS), intradimensional (IDS), and extradimensional (EDS) shifts. Plus signs identify reward. For all
four paradigms, initial training is with “square” as target, the irrelevant dimension (color) varying
within trials. Columns 3 and 4 show changed reward contingencies for variable-within-trials (VWT)
and variable-between-trials (VBT) shift conditions. R, G, B, Y denote red, green, blue, and yellow,
respectively.

stimuli exhibiting the square attribute also exhibit the red attribute; responses to
these pairs do not have to be changed.

There are two other paradigms that are similar to the reversal and nonreversal
tasks just presented and can be labeled “total change” paradigms (Esposito,
1975). These tasks involve the introduction of new attributes of the dimensions
at the onset of shift training. For example, red and green can be replaced by blue
and yellow, square and round by triangle and diamond. An intradimensional shift
involves a shift within the same dimension that was relevant during initial
training (e.g., from square to diamond), a task similar to reversal shifts. This is
presented in the fourth row of Fig. 2. An extradimensional shift, as the name
implies, involves a shift to a previously irrelevant dimension (e.g., from square
to yellow) and is thus similar to the nonreversal task (Fig. 2, bottom row).

The distinction between variable-within-trial and variable-between-trials par-
adigms is also shown in the third and fourth columns of Fig. 2. As can be seen,
the irrelevant dimension varies within each pair for variable-within tasks,
whereas it is held constant within a pair in variable-between tasks.



NEURAL NETWORK MODELING OF DISCRIMINATION SHIFTS 239

Pre-shift Shift Test phase
N ®OF| Ho |He ®O

N® 0| o8 |08 ~®

FIG. 3. An example of the optional shift task: initial learning (left), shift learning (middle), and
test phase (right).

The final paradigm we focus on is the optional shift (Kendler, 1979, 1983;
Kendler & Kendler, 1975; Wolff, 1967). This task has two learning phases
(initial and shift) and one test phase. When criterion is reached in the initial
phase, only half of the stimulus pairs are presented in the shift phase. These
stimuli have shifted reward contingencies that are congruent with both a reversal
and a nonreversal shift (Fig. 3, center). That is, whether the shift is within the
original dimension (e.g., square to round) or to another dimension (e.g., square
to green) cannot be assessed with only these pairs. After reaching criterion in the
shift phase, participants are presented with all pairs in the test phase. For the
stimulus pairs used in the shift phase, reward contingencies do not further
change. But for the pairs previously used only in the initial phase, both stimuli
are rewarded if selected (Fig. 3, extreme right). The purpose of this task is to
evaluate whether or not the behavior of participants on the test pairs follows the
pattern of a reversal shift with respect to initial training (e.g., in Fig. 3, extreme
right, choosing the “red and round” stimuli and not the “green and square” ones).
If a participant does so consistently (usually, 8 or more times out of 10), he or she
is labeled “reverser.” Otherwise, he or she is labeled “nonreverser.”

PSYCHOLOGICAL REGULARITIES

Most normal human adults, and children above the age of 10, execute a
reversal shift faster than a nonreversal shift (Esposito, 1975; Kendler, 1983,
1995; Kendler & Kendler, 1975; Kruschke, 1996; Wolff, 1967). When they are
presented with a nonreversal shift, their performance on the unchanged pairs,
initially correct, nevertheless drops substantially before it improves for the
criterion run (Tighe & Tighe, 1978). Finally, about 87% of adults and older
children exhibit reversal behavior on the test pairs of the optional shift and are
labeled “reversers” (Kendler, 1983).

These findings contrast with those observed in preschoolers. Namely, about
80% of preschool children do not show reversal behavior on the test problems of
the optional shift and are labeled “nonreversers” (Kendler, 1983, 1995). When
they perform a nonreversal shift, their performance on the unchanged pairs
remains high throughout (Tighe & Tighe, 1978). Finally, the literature does not
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suggest an advantage for either type of shift in comparisons of reversal and
nonreversal shifts in children. Some studies report reversal superiority, some
report no difference, and some others report nonreversal superiority (Esposito,
1975; Wolff, 1967). The stimuli used may play a large role in this, as children -
prefer some dimensions or attributes over others, and thus learn differently
depending on whether their preferred dimension or attribute is the target or not
(Esposito, 1975). Given the scholarly journals’ emphasis on significant results
(Lips, 1993), the safest conclusion is that there is no overall difference in
preschoolers’ performance on reversal and nonreversal tasks and that those
reported are experiment specific (Esposito, 1975; Wolff, 1967). This is related to
the controversy over whether there are regularities in younger children’s shift
behavior (Esposito, 1975). Variability of ease of reversal versus nonreversal
shifts within ages as well as variability within individual children seems to be the
rule (Cole, 1973, 1976). Even with this variability, reversal shifts become easier
than nonreversal shifts between the ages of 4 and 10 (Esposito, 1975; Wolff,
1967). It is worth noting that when preschoolers are trained for several trials
beyond the usual success criterion (ranging from 10 to 100 additional trials), they
perform a reversal shift faster than a nonreversal shift as older children and adults
do (Wolft, 1967). This is known as the overtraining effect.

The suggestion that there is no difference between reversal and nonreversal
shifts in younger children is in contradiction with the pervasive assumption that
preschool children perform a nonreversal shift faster than a reversal shift (Ken-
dler, 1979, 1983; Kendler & Kendler, 1975; Raijmakers et al., 1996). However,
for reversal and nonreversal shift tasks in which the same stimulus pairs are used
in all learning phases and participants are not explicitly advised about the
introduction of the shift, the literature does not support nonreversal superiority
over reversal in kindergarten children.

The initial finding of nonreversal superiority by the Kendlers (Kendler &
Kendler, 1959; Kendler, Kendler, & Wells, 1960; Wolff, 1967) was obtained
with a task in which the stimuli were paired, at the onset of the nonreversal shift,
according to their attribute on the originally relevant dimension, a variable-
between-trials paradigm (e.g., both “large” figures together, both “small” figures
together). This situation not only makes the onset of the shift obvious to
participants, but also gives a reliable clue about the dimension that is now
relevant. The reversal shift task, on the other hand, used a variable-within-trial
paradigm (i.e., relevant and irrelevant dimensions varied within trials). Such
confounds do not warrant equitable comparison of reversal versus nonreversal
shifts. In another experiment, they introduced new stimuli in the nonreversal
condition that kept the previously relevant dimension constant and introduced a
new dimension as relevant (Kendler et al., 1960). Again, younger children found
the nonreversal shift easier than the reversal shift.” But this experiment has the

2 With such a task, college students also find the nonreversal shift easier than the reversal shift
(Wolff, 1967).
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same two limitations as the first one. The Kendlers were unable to obtain
nonreversal superiority over reversal with the standard task and thus concentrated
their developmental research on the optional shift task (Kendler & Kendler,
1975). In optional shifts, reversers perform consistently with a reversal shift in
the test phase whereas nonreversers do not. Data from optional shift tasks have
been used to support the assumption of nonreversal superiority in young children,
essentially because two limitations have been overlooked. What this task really
evaluates is whether participants generalize a shift to test items. When they do
generalize, the shift is consistent with a reversal shift. Beyond this information,
optional shifts warrant no conclusion about the ease of reversal shifts over
nonreversal shifts.*> Another limitation is that different criteria are used to classify
reversers and nonreversers. Although reversers must exhibit behavior consistent
with a reversal shift (=80% of the test trials), nonreversers are simply not
reversers. They are not required to consistently show nonreversal-compatible
behavior. This should further caution researchers about the relevance of optional
shift data for reversal and nonreversal shift comparisons.

THEORETICAL INTERPRETATIONS

The three major theoretical accounts of human shift learning are those of the
Kendlers (Kendler, 1979, 1983; Kendler & Kendler, 1962, 1969, 1975), Tighe
and Tighe (1966a, 1966b, 1972, 1978), and Zeaman and House (1963, 1974,
1984). Both the Kendlers and Zeaman and House stressed that mediated pro-
cessing underlies adult performance. Whereas Zeaman and House (1974) sug-
gested that mediated processing is also involved in preschool children, the
Kendlers argued that young children form simple associations between stimuli
and overt behavior (Kendler, 1983; Kendler & Kendler, 1975). Tighe and Tighe
(1966a), on the other hand, offered a perceptual interpretation without mediation.

The Kendlers suggested that preschoolers, like other animals, learn discrimi-
nations by means of associative processes (Kendler, 1983, 1995; Kendler &
Kendler, 1969, 1975). They argued that young children do not specifically
encode the relevant attributes of the stimuli, but rather associate the compound
properties of the stimuli with a response. But as children grow older, develop-
mental changes allow them to use categorical responses to mediate the process-
ing of stimuli into overt responses. These categories represent the relevant
dimensions involved in the problem. By reinforcing the responses related to the
appropriate category, adults find the reversal shift easier because only the link
between the category and an overt response needs to change. In a nonreversal
shift, the responses from the initial category need to be extinguished and
responses to another category have to be trained. This would require more
training than in the reversal task. These mediating categories facilitate rapid

? An integrated account of discrimination shifts, though, should obviously account for optional
shifts in a manner consistent with its account of reversal and nonreversal shifts.
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reversal shifts and also explain the reversal behavior of adults in the optional shift
task.

Zeaman and House (1974, 1984) argued, on the other hand, that the media-
tional processes between stimuli presentation and overt behavior are of an
attentional nature. When learning a discrimination, participants attend to one
dimension and act upon it. Following a reward, links between stimuli and
attentional responses, as well as those between attentional responses and overt
responses, are strengthened. Different parameters modulate these two types of
learning. When participants reach criterion, they have learned to attend to the
relevant dimension, as well as to make the appropriate response within that
dimension. Following the same logic as that found in the Kendlers’ account,
shifts within the same dimension are easier than those to a previously irrelevant
dimension. What is novel in this account is that preschoolers are also believed to
perform according to this dual-level processing (Zeaman & House, 1963, 1974).
This implies that kindergarten children would also find a shift within the initial
dimension easier than a shift to another dimension.

This discrepancy between the two interpretations stems from the fact that
Zeaman and House introduce new stimuli at the onset of the shift (Tighe &
Tighe, 1978; Wolff, 1967; Zeaman and House, 1963). An intradimensional shift
is similar to a reversal shift, because training is shifted to an attribute within the
same initial dimension; and an extradimensional shift involves a shift to a
previously irrelevant dimension, as is the case for the nonreversal shift (Fig. 2).
Young children learn something about the initially relevant dimension that can be
transferred to new stimuli. Specifically, younger children execute an intradimen-
sional shift faster than an extradimensional shift, a fact that the Kendlers’ theory
cannot account for (Esposito, 1975). The categories in the Kendlers’ account
represent the discrete attributes used in the experiment (e.g., “large”), whereas
Zeaman and House argue that participants attend to the perceptual dimensions
(e.g., “size”) rather than their values. On the other hand, the Zeaman and House
model suggests that young children perform a reversal shift faster than a nonre-
versal shift, a fact that is not supported. Tighe and Tighe (1978) argued that the
two theories arose from experiments that stressed different processes. Rather than
being contradictory, they should be considered complementary. However, these
two theories have yet to be integrated.

Tighe and Tighe (1966a, 1978) offered a third account of discrimination shift,
in response to the limitations of mediation theories, based on differentiation
theory (Gibson & Gibson, 1955). Rather than emphasizing internal representa-
tions as the core feature of mature performance, Tighe and Tighe suggested that
Gibsonian perceptual differentiation would better account for human shift learn-
ing because of the emphasis on stimulus properties (Tighe & Tighe, 1966a).
Discrimination learning thus involved the identification of invariants in a se-
quence of stimuli, consistent with the reward contingencies. Adults perform the
reversal and intradimensional shifts easier than nonreversal and extradimensional
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shifts, respectively, because of learned differentiated associations to the relevant
and irrelevant dimensions. Poor differentiation in preschoolers, though, would
account for ease of nonreversal shifts over reversal shifts. The relevant dimension
would not be isolated from the irrelevant one. Such compound encoding of
stimuli makes the nonreversal shift easier, because only half of the responses
need to be changed. Development would involve a change from object to
dimensional control. Children would still perform the intradimensional shift
easier than the extradimensional shift, because the poorly isolated invariants
would not be confounded with the initial stimuli at the onset of the intradimen-
sional shift. In total change paradigms, initial compound responses to stimuli
cannot be used in the shift phase of the experiment, and thus interference is
removed from a minimal differentiation that was acquired during initial training.

Tighe and Tighe’s (1966a) theory marks a departure from the other two. While
it attempted to answer the distinct findings highlighted by the mediational
approaches, it also removed mediation from the process.* Overt behavior is a
direct function of differentiation. That is, association of stimuli and responses is
based on perceptual properties, without mediating responses. Yet there are two
important limitations to this theory. The first is that, as noted earlier, reversal and
nonreversal shifts should be as easy (or as difficult) for preschoolers. There is no
empirical support for Tighe and Tighe’s (1966a) suggestion of nonreversal
superiority in younger children. A second limitation, which poses a problem for
mediational accounts as well, is its incapacity to account for dimensionless shift
learning.

Dimensionless shift experiments represent another key element in the lack of
a unified theory of discriminative learning. Adult research initiated by Bogartz
(1965), as well as developmental studies by Goulet and Williams (1970), has
shown that the presence of categories or dimensions in the stimuli was not
necessary for reversal behavior in adults, nor its development in children. When
learning the meaningless categorization of stimuli into two arbitrary categories
(e.g., pictures of unrelated objects) or leaming to discriminate meaningless
stimuli (e.g., nonsense syllables or shapes), adults execute a full reversal easier
than a half reversal (Bogartz, 1965). That is, changing all categorical responses,
as in a reversal shift, is easier than changing half of the responses, as in a
nonreversal shift. The development toward easier reversal over nonreversal was
also observed in school-age children using meaningless stimuli or categories and
full versus half reversal tasks (Goulet & Williams, 1970). Because the stimuli

* Tighe and Tighe’s (1966a) model involves a transformation of the stimuli into the overt response,
which in a way can be construed as a form of generic mediation (as one reviewer observed). The
stimuli properties are combined and transformed into a response, a process we can refer to as “simple
mediation.” In this paper though, the term mediation is used in the usual sense found in the
discriminative learning literature: a transformation of the stimuli into a different representational
format, which is then transformed into an overt response. Mediation is meant to involve an
intermediate response. In the remainder of this paper, mediation thus implies two levels of transfor-
mations and an intermediate response, which is not found in Tighe and Tighe (1966a).
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FIG.4. An example of connected units in a network. Units 1 and 2 send their activations to unit
3 through their weighted connection w;.

cannot be categorized on the basis of perceptually differentiable features, Tighe
and Tighe’s theory cannot account for these data. Neither can the two media-
tional theories, because the categories are not based on conceptual dimensions.
Because of this general shortcoming, as well as each theory’s own limitations,
the fact remains that there is no successful general account of shift learning to this
day.

CONNECTIONIST MODELING OF DISCRIMINATION SHIFTS

Artificial neural networks consist of simple processing units that transmit their
activation to the other units in the network through weighted connections. Figure
4 presents two such units that are connected to a third unit. The activation of a
unit is modified by the net input that it receives from other units. Activations of
sending units are multiplied by the corresponding connection weights and these
products are summed. The net input to the receiving unit, at a given time, is
computed by

net, = EW,»jaj,
j

where i is the index of the sending unit, a is the activation of the sending unit,
and w is the connection value between the sending and receiving units. The net
input of a unit can be understood as the total amount of stimulation or inhibition,
summed across all sending units, that the unit receives at a given time. The output
value of this receiving unit can be equal to the net input in the case of linear
activation units (an identity function). More often, the net input is squashed
through a nonlinear activation function. This is typically the asigmoid function,
such as

1

a; = 1 + e—netai

which has an S shape, as presented in Fig. 5. Such nonlinear functions are
typically used for hidden and output units in feedforward networks.
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FIG. 5. Plot of y as an asigmoid function of x.

Feedforward networks are a special class of neural networks for which
activation flows in only one direction. A layer of input units receives activation
from the environment. In the simplest case, these activations are directly prop-
agated to the output units (Fig. 6, left). Such networks are called perceptrons (i.e.,
Rosenblatt, 1958), and they can learn functions that are linear combinations of
the input values (i.e., linearly separable problems). Perceptrons cannot learn
nonlinear functions, but multilayer feedforward networks can. Multilayer net-
works have at least one layer of hidden units (Fig. 6, center). These units are
labeled hidden because they do not receive direct activation from the environ-
ment nor produce external output. Activations from these hidden units are sent
either to another layer of hidden units or to the output units. Finally, multilayer
feedforward networks can include direct connections between input and output
units as well as hidden layers (Fig. 6, right).

Neural network simulations of discrimination shift learning that would utilize
mediation would presumably employ hidden units. The activation patterns on
hidden units would mediate the relation between the input units (stimuli) and the
output units (responses).

Feedforward networks (perceptron and multilayered) can learn to reproduce
desired output for specific input patterns by changing the connection weight
values between units. Typically, the learning rule performs error reduction,
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FIG. 6. Three different types of feedforward architectures: a perceptron (a), a multilayered
network (b), and a multilayered network with cross-connections (c).

where error is the discrepancy between the desired output and the actual output
produced by the network.

Because feedforward connectionist networks can learn, discrimination shifts
provide a good benchmark for their adequacy as models of human cognition. A
worthy neural network model of these tasks could be useful in formulating a
general account of human shift learning. Surprisingly, there are few published
neural network studies of shift learning, and within these there is no successful
account of discrimination shifts. Kruschke (1996), for example, modeled com-
pound categorization shifts with a connectionist model that qualitatively fits the
psychological data. These tasks are different from discrimination shifts, though.
Stimuli are presented individually, and categories involve relationships between
stimulus attributes.

Raijmakers et al. (1996), on the other hand, suggested that feedforward neural
networks cannot capture adult behavior on discrimination shifts and are therefore
inadequate models of human learning. Because feedforward networks are bot-
tom-up associative systems, the conjecture that the networks cannot capture the
top-down conceptual behavior hypothesized in human adult discrimination is a
legitimate working hypothesis. Raijmakers et al. were concerned with whether
neural networks would behave like human adults or like preschoolers in a
learning task. To assess this, they submitted neural networks to reversal, nonre-
versal, and optional shift tasks.

Their feedforward networks used the backpropagation error correction algo-
rithm and consisted of three layers. For all networks, there were eight input units.
The first two coded color of the left stimulus, the next two shape of the left
stimulus, the following two color of the right stimulus, and the last two shape of
the right stimulus. These units received binary input. The hidden layer consisted
of either two (8 —2-2 networks) or four hidden units (8—4-2 networks). Some
networks had connections to hidden units from all input units (unconstrained
networks), whereas the remaining networks had dimension-specific connections
from input to hidden (constrained networks). These constrained hidden units
received input from only one dimension. For all topologies, hidden units were
connected to two output units. Learning involved turning on the appropriate
output unit for each input pattern.

Most of their networks (8 -4 -2 constrained, 8 —4 -2 unconstrained, and 8 -2-2
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unconstrained) learned a nonreversal shift faster than a reversal shift. There was
no difference between reversal and nonreversal shifts for the 8—2-2 constrained
networks, but a trial-by-trial analysis showed that they performed like preschool
children during shift learning (i.e., high performance on unchanged nonreversal
pairs, and equally low performance on reversal and changed nonreversal pairs).
In the optional shift task, all types of networks responded in a nonreversal
manner, following the preschool data. Overtraining did not help the networks
perform as adults. Raijmakers et al. (1996) concluded from these experiments
that “the learning behaviour of feedforward PDP networks with error backpropa-
gation in all tested configurations appears to be better described as making direct
connections between stimulus and response rather than making connections by
way of mediating concepts” (p. 128).

The first question we raise is whether their network topologies were justified.
Although the authors did not explain why they chose three-layer networks (we
assume that it was to model mediated processing), it can be argued that their use
of hidden units was unnecessary. In their simulations, the desired output is a
linear function of the input (i.e., the problems were linearly separable). A
two-layer perceptron that includes only input and output units can therefore solve
their tasks. Forcing a network with nonlinear hidden units between input and
output to learn linear functions makes learning more difficult than it ought to be.’
This is because net inputs to hidden units are submitted to unnecessary nonlinear
transformations and because the error signal is diffused through a more complex
structure. It is at best awkward, and at worst impossible, for nonlinear transfor-
mations to implement linear functions. The topology they elected to use thus had
an impact on their results.

A second concern is that their networks learned the nonreversal shift faster
than the reversal shift. Although some researchers believe this to be true of young
children, the psychological literature does not support this, as noted earlier. Even
though their networks did not behave like human adults, we believe that they did
not behave like preschoolers either, because as noted preschoolers learn the two
shifts equally fast.

We suggest that these limitations do not permit the conclusion that artificial
neural networks are inadequate models of human learning. But there is still the
challenge to successfully model human performance in discrimination shifts and
provide a general theoretical account of performance on these tasks. The next
section presents our simulations of discrimination shifts.

A CASCADE-CORRELATION MODEL

Cascade-correlation (Fahlman & Lebierre, 1990) is a feedforward algorithm
that alters the topology of the network as it learns. At the onset of training,

> The question of what topology to use is problematic for static networks. To model human
performance, the topology is often selected by trial and error. In this case, perhaps it was assumed
that mediational accounts were correct; thus only networks with hidden layers were tried.
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cascade-correlation networks have a minimal perceptron-like architecture (i.e.,
there are no hidden units). As the networks learn, they recruit the hidden units
required to solve the problem. Networks learn by changing their weight values
(or connection strengths) in order to minimize the discrepancy between their
current output and a desired output (i.e., feedback about their performance on a
given trial). When learning stagnates, because the networks lack the sufficient
computational power, the algorithm installs hidden units that are trained to track
residual error. For a discussion of the generative aspects of cascade-correlation,
as well as for the mathematics of the learning rule, the reader is referred to
Mareschal and Shultz (1996).

From a developmental perspective, the structural plasticity of cascade-corre-
lation networks offers some advantages over static architectures (Mareschal &
Shultz, 1996). Networks can adapt to the specific problems they attempt to learn.
Cascade-correlation has been used to successfully model a wide range of devel-
opmental phenomena (Mareschal & Shultz, 1996), including seriation (Mare-
schal & Shultz, 1993), the acquisition of velocity, time, and distance concepts
(Buckingham & Shultz, 1994), conservation (Shultz, 1998), the acquisition of
personal pronouns (Shultz, Buckingham, & Oshima-Takane, 1994), and the
balance-scale (Shultz et al., 1994). '

This is the first developmental extension of this algorithm to a learning task
(i.e., where learning is assessed during the experiment and not over develop-
ment). Although we could have used static backpropagation networks for these
simulations, the plasticity of cascade-correlation and its previous successes at
modeling developmental phenomena make it a candidate model for a yet to be
formulated theory of cognitive development (Mareschal & Shultz, 1996; Shultz
& Mareschal, 1997). Moreover, the generative property of cascade-correlation
gives researchers the advantage of not having to explore or design topologies by
hand as Raijmakers and her colleagues had to do.

Because discrimination shifts are linearly separable problems from a modeling
perspective, the architectures of adult cascade-correlation networks are identical
to those of child networks. Namely, both contain only input and output layers of
units because cascade-correlation does not install hidden units that are not
required. We thus need to identify parameters that could distinguish adult from
preschool networks.

Psychological literature has highlighted differences between kindergarten chil-
dren and older children in the quality of their learning (Case, 1978; Siegler,
1978). Specifically, older children learn more accurately than younger children
with equivalent training and show better generalization (Case, Kurland, &
Goldberg, 1982). In general, older children and adults are considered to make
finely tuned distinctions that younger children do not.

One mechanism that is believed to be involved in such change is rehearsal
(Craik & Lockhart, 1972; Hagen, Jongeward, & Kail, 1979; Siegler, 1998).
Between the ages of 5 and 10, there is substantial improvement in memory task
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performance related to increased spontaneous rehearsal (Flavell, Beach, & Chin-
sky, 1966). Under certain conditions, experimentally induced rehearsal in pre-
school children improves their performance (Brainerd, Olney, & Reyna, 1993;
Hagen, Hargrove, & Ross, 1973; Hagen et al., 1979). And learning ability,
assessed by tasks that tap short-term memory resources, shows an important
improvement between the ages of 4 and 11, after which there is no further
significant gain (Inglis, Ankus, & Sykes, 1968).

Ornstein and his colleagues identified conditions under which induced re-
hearsal may impair recall; namely, younger children rehearse individual items in
isolation (passive rehearsal), which reduces recall for lists of unrelated items
(Naus, Ornstein, & Aivano, 1977; Naus, Omstein, & Kreshtool, 1977; Omstein,
Naus, & Liberty, 1975; Ornstein, Naus, & Miller, 1977). On the other hand,
simultaneous rehearsal of several items (active rehearsal), as observed with older
children, is associated with better recall, especially if the items are semantically
grouped in the rehearsal set (Ornstein et al., 1975, 1977). These data suggest that
rehearsal content, rather than frequency, is associated with better recall (Omstein
et al,, 1975). Yet frequency or amount of rehearsal increases with age. We thus
suggest that rehearsal may be related to the ontogeny of shift learning. Rehearsal
would effectively result in more trials.

There is a parallel to induced rehearsal in the discrimination shift literature
called overtraining (Kendler, 1983; Raijmakers, 1996; Wolff, 1967). This tech-
nique involves extra training trials beyond the usual success criterion. In young
children, this additional training has little effect on their nonreversal shift
performance but it facilitates the learning of a reversal shift (Wolff, 1967).
Overtraining also increases the likelihood of reversal behavior in children per-
forming an optional shift (Kendler, 1983; Tighe & Tighe, 1966b; Wolff, 1967).

Both overtraining and induced rehearsal are external constraints that result in
more processing for participants. The outcomes are similar: in both cases,
performance is affected through extended exposure to materials. A possibility,
then, is that older children and adults learning discrimination shifts spontane-
ously submit themselves to overtraining through a form of iterative processing.
What would be processed iteratively is the relationship between stimulus prop-
erties, responses, and feedback.

This idea has already received support in Levine’s hypothesis-testing theory
(Levine, 1966, 1975). He used a four-dimensional discriminative learning task
with several blank trials (i.e., no feedback). Levine analyzed the responses of
participants during the blank trials that followed feedback trials. The pattern of
data he obtained with adult participants showed a systematic reduction of
possible choices based on previous outcomes. He suggested that participants
work with a limited set of hypotheses constrained by the task and that they
systematically reduce this set following feedback trials. Levine argued that such
systemacity requires rehearsal, which was supported by data from related exper-
iments and postmortems with participants (Levine, 1975). This systemacity and
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efficiency was not observed with younger children (Gholson, Levine, & Phillips,
1972).

Later research has disconfirmed hypothesis-testing theory. Kellogg, Robbins,
and Bourne (1978) used a modified version of Levine’s task in which they used
memory probes about the immediately preceding trial. These probes asked about
features of the previous stimuli, response given, feedback received, and stated
hypothesis. Recognition was high for response and feedback, but low for features
and hypothesis. This is a crucial blow to Levine’s interpretation of his data.
Kellogg et al.’s (1978) results, though, are consistent with the rehearsal hypoth-
esis. Recognition for hypotheses was high following positive feedback, which is
when a hypothesis could be rehearsed and thus subject to extensive processing.
Moreover, induced rehearsal did not improve recognition performance, consis-
tent with Levine’s suggestion that participants were spontaneously submitting
themselves to rehearsal.

Overtraining through extensive processing can be implemented in cascade-
correlation networks by lowering the score threshold (i.e., the allowable discrep-
ancy between desired and actual output). With a low score-threshold, networks
are trained to make finer discriminations between patterns by working more on
the material. For example, the output units we typically use with cascade-
correlation have a range between —0.5 and 0.5. With the default score-threshold
of 0.4, output values between 0.1 and 0.5 are acceptable for target values of 0.5,
and output values between —0.1 and —0.5 are accepted for target values of —0.5.
With a score-threshold of 0.1, however, only output values between 0.4 and 0.5
are accepted for target values of 0.5, and only output values between —0.4 and
—0.5 are acceptable for target values of —0.5. All other things equal, networks
need more training trials to achieve the level of performance of a lower score-
threshold. The score-threshold parameter thus affects the amount of training the
networks get. In turn, amount of training increases depth of learning. The longer
a network learns, the more precise its approximation to the target function
defined by the training patterns.

We modeled adult behavior with a score threshold of 0.01. We used the default
threshold of 0.4 to model preschool performance.® Spontaneous overtraining
through extensive processing is thus our explanation of age differences in shift

6 Alternatively, short of implementing a rehearsal-like module, we could specify the number of
training trials, rather than a lower score-threshold, to implement overtraining. We have tested this
alternative for the preshift phase, and it replicates the findings we report for postshift learning. The
downside of this approach is that it fails to take into account variability between networks due to the
initially random connections (i.e., some networks learn to criterion faster than others, like humans),
and it prevents statistical analysis of preshift learning because variability of trials to criterion is 0. We
thus preferred the score-threshold alternative. It mimics the expected effect of extensive processing
by providing extra training. Adult networks will require more trials than child networks to reach
criterion, but this includes extensive covert processing. It is therefore compatible with the observation
that human adults require less observable trials. More epochs in adult networks, in our view, equate
with extensive internal processing of external events and allow adults to solve the task quicker by
external standards, even though they work harder covertly.
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TABLE 1
Empirical Data

Task Adults Younger children
Reversal and nonreversal Reversal easier Reversal = nonreversal
Trial-by-trial evaluation Impaired performance on High performance on
unchanged nonreversal unchanged nonreversal
pairs pairs
Optional shift Greater proportion of Greater proportion of
reversers nonreversers

learning, and our simulations test this hypothesis. We make no claim about the
specific nature of spontaneous overtraining, e.g., whether it results from a basic
and implicit process or a deliberately applied strategy. The model, though,
evaluates how the spontaneous overtraining hypothesis may capture the devel-
opmental effects in discrimination shifts.

In all our simulations, we used networks of four input units. The first input unit
coded shape of the left stimulus, the second color of the left stimulus, the third
shape of the right stimulus, and the fourth color of the right stimulus.” The binary
attributes of the stimuli were coded as —1 or 1. These input units were connected
to two output units. Every network had initially random connection values
between input and output units. This results in variability for both number of
training trials to criterion and final weight configurations. Because no two
networks are identical at the onset of the task, we can use samples of networks
in the different experimental conditions, as we would with humans. Desired
output was [0.5, —0.5] when the target was at the left, and [—0.5, 0.5] when it
was at the right. None of the networks recruited hidden units to solve the tasks,
confirming that these tasks are linearly separable.

We modeled three discrimination shift tasks using cascade-correlation net-
works. Simulation 1 concerns reversal and nonreversal shift tasks. Trial-by-trial
data for these shifts are reported in simulation 2. Finally, simulation 3 reports
data from the optional shift task. The psychological data to be captured are
summarized in Table 1.

Simulation 1: Reversal and Nonreversal Shifts

In this simulation, we submitted our networks to the reversal and nonreversal
shift tasks. Networks representing adults, with a low score-threshold, were
expected to perform reversal shifts faster than nonreversal shifts. Networks
representing preschoolers, with a higher score-threshold, were expected to learn
both shifts equally easily. We also analyzed the networks’ knowledge represen-

7 We use labels such as “shape” and “color” only for clarity. Networks did not see “red circle”
figures and such. The networks were only presented with vectors of numbers that were consistent with
the tasks we modeled. We assume that these vectors represent preprocessed stimuli.
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tations in order to better understand their behavior. Specifically, we examined
plots of error over epochs, weight diagrams, principal components analyses of
network contributions, and plots of output activations.

Method. One hundred twenty adult networks were used in this simulation, with
the score-threshold set to 0.01. Sixty were initially trained on one attribute of
color, and 60 on the other attribute of color. The irrelevant dimension was
variable within trials. When performance reached threshold on all problems of
the initial discrimination, training was shifted to a new attribute. In each subset
of 60 networks, one-third of the networks had to learn to respond to the other
attribute of the color dimension (reversal shift, z = 20), while the remaining
networks were required to learn one of the two attributes of the shape dimension
(nonreversal shift, » = 20 per attribute), for a total of six groups. Learning
continued until criterion was reached (i.e., output activations were within thresh-
old of the desired values for both output units on all problems). One hundred
twenty child networks were used under the same conditions, with the score-
threshold set at 0.4.

To assess whether networks perform faster on reversal or nonreversal shifts,
we recorded the number of epochs required to reach criterion in shift learning. An
epoch is, in this case, a block of four trials, one with each stimulus pair. For
control purposes, we also recorded epochs to criterion for the initial learning
phase. Output errors (i.e., the discrepancy between target and actual output
activations) were recorded during initial and shift learning.

Weight diagrams can be useful graphical representations of connection
weights in networks. These representations can inform us about how the different
properties of the input contribute to the overt behavior of the networks. We
recorded weight values in both types of networks (adult and child) for both types
of shift (reversal and nonreversal) at the end of each training phase in order to
plot such diagrams. Raw weight values were saved in a file during the computer
simulations.

Another useful technique for probing into the behavior of neural networks is
contribution analysis. Contributions are the products of sending unit activations
and connection weights going into output units. A contribution is therefore the
activity measured on one output weight on a given trial. When we record these
contributions for all input patterns after training, we have a pattern by contribu-
tion matrix with which we can perform a Principal Components Analysis (PCA).
A PCA, which is highly similar to a Factor Analysis, identifies the major
dimensions of variation in an array of data. The factor loadings from the PCA,
after standardization, are used to identify the major dimensions of the network’s
representation of the task.

Finally, plots of output activation can be informative when inquiring about the
responses of networks to a range of input values. We recorded, at the end of
initial training, output activations as a function of a range of values on both of the
input units of the same side (e.g., the two input units coding attributes of the left
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TABLE 2
Epochs to Criterion for Initial and Shift Phases: Adult Networks

Dimension attribute Phase
Initial Shift Type Initial Shift
Red Green Reversal 10.3 82
Red Square Nonreversal 10.4 11.7
Red Circle Nonreversal 10.5 12.1
Green Red Reversal 10.5 8.4
Green Square Nonreversal 10.5 12.0
Green Circle Nonreversal 10.3 11.8

stimulus for activations of the left output unit). The input values we used ranged
between —1 and 1 (the two values used for training), with increments of 0.1.
Activation of the remaining input units was set to zero.

We analyzed the adult and child networks separately because we were only
concerned with the learning pattern in each group. The use of a different
score-threshold and the assumption of extensive processing in adult networks
prevent combining both groups in analyses of epochs to criterion. Networks learn
to a higher score-threshold quicker than to a lower score-threshold. But with
respect to human learning, we assume that a portion of training in adult networks
corresponds to covert extensive processing. Thus comparing learning speed
between adult and child networks would not be appropriate. Only for contribu-
tion analysis will differences between both types of networks be statistically
evaluated, because this is a measure of the networks’ representations of the
problem and as such is a meaningful comparison. Comparisons of output acti-
vations and weight configurations should also be meaningful, for the same
reason. -

Results. The fourth column of Table 2 presents the number of epochs required
by aduit networks to learn the initial discrimination in each of the six groups. The
results of a one-way analysis of variance show that there were no significant
differences between any of the groups, F(5,114) = .791, n.s. The average number
of epochs required to learn the initial discriminations was 10.4 (SD = 0.53).

Presented in the last column of Table 2 are the numbers of epochs required by
adult networks to learn the shifted discrimination. The one-way analysis of
variance shows that there was a significant difference between the groups,
F(5,114) = 22.99, p < .001. The only significant differences found using Scheffé
post-hoc comparisons were all those between reversal and nonreversal groups
(absolute mean differences between 3.35 and 3.9). The average number of epochs
to learn a reversal shift was 8.28 (SD = 1.79), whereas it was 11.89 for an
nonreversal shift (SD = 1.68).

The numbers of epochs required by child networks to learn the initial discrim-
ination are presented in the fourth column of Table 3. The results of a one-way
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TABLE 3
Epochs to Criterion for Initial and Shift Phases: Child Networks

Dimension attribute Phase
Initial Shift Type Initial Shift
Red Green Reversal 4.85 4.35
Red Square Nonreversal 4.80 435
Red Circle Nonreversal 4.65 4.25
Green Red Reversal 4.65 4.20
Green Square Nonreversal 4.75 4.50

Green Circle Nonreversal 4.80 4.30

analysis of variance show that there were no significant differences between any
of the groups, F(5,114) = .463, n.s. The average number of epochs required to
learn the initial discriminations was 4.73 (SD = 0.53).

Presented in the last column of Table 3 are the numbers of epochs required by
the child networks to learn the shifts. The one-way analysis of variance shows
that there was no significant difference between the groups, F(5,114) = .737, n.s.
The average number of epochs to learn a reversal shift was 4.23 (SD = 0.42), and
it was 4.38 for a nonreversal shift (SD = 0.58). Note that child networks require
less training trials than adult networks. This is expected, as mentioned in footnote
6, because the assumption is that adults perform extensive processing. We
elaborate on this in the discussion.

Figure 7 shows the error curves for reversal and nonreversal shift tasks over
epochs in adult networks. Error is the squared discrepancy between target and

—0— Nonreversal
—O—Reversal

Error

1 2 3 4 5 6 7 8 9 10 11 12 13
Epoch

FIG. 7. Average error over epochs in shift learning: adult networks.
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FIG. 8. Average error over epochs in shift learning: child networks.

actual output, summed over all pairs. Error for reversal shifts is initially larger
and exhibits faster resolution than in the nonreversal condition. The average error
at the onset of the shift training phase for adult networks is 7.90 for a reversal
shift and 3.95 for a nonreversal shift. In Fig. 8, error curves for child networks
are plotted. The larger initial error on reversal shifts allows for a steeper slope
over epochs for this condition, but it is not sufficient to give reversal shift
networks a speed advantage over their nonreversal counterparts. For child net-
works, average initial error is 5.97 for reversal shifts and 3.16 for nonreversal
shifts.

Weight diagrams of four representative networks are presented in Fig. 9
through 12. The gray strips, labeled 5 and 6, represent the left and right output
units, respectively. Within these, incoming weights are represented by squares
labeled O (bias unit), 1 and 2 (left stimulus), and 3 and 4 (right stimulus). The size
of these squares is an index of the absolute size of the standardized values of the
weights. Negative (inhibitory) and positive (excitatory) weights are black and
white, respectively.

For adult networks performing a reversal (Fig. 9) or a nonreversal shift (Fig.
10), we can see specific encoding of the relevant dimension. In both examples,
initial training involved a target value coded on input units 2 and 4. Weights from
these units have the largest values, while weights from the remaining units have
the smallest values. For the network learning a reversal, shift training involves a
target coded on the same units. As can be seen, the sign of each relevant weight
has been reversed (bottom of Fig. 9). The nonreversal shift network, on the other
hand, learned to ignore the previously relevant dimension after the shift (bottom
of Fig. 10). The newly relevant dimension, coded on input units 1 and 3, is
associated with the largest weights.

In child networks, for both the reversal and the nonreversal shift conditions
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Pre-shift

Post-shift

FIG.9. Connection weights in an adult network at the end of pre- and postshift phases: reversal
shift.

(Figs. 11 and 12, respectively), the relationship between weight configuration and
relevant dimension is not as obvious as in adult networks. The weights suggest
compound encoding of the stimuli rather than specific encoding of the target
dimension. That is, all attributes, irrespective of their relevance to correct
responses, contribute to the behavior of the networks.

Tables 4 through 7 present the standardized loadings from contribution anal-

Pre-shift

FIG. 10. Connection weights in an adult network at the end of pre- and postshift phases:
nonreversal shift.
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Pre-shift

FIG. 11. Connection weights in a child network at the end of pre- and postshift phases: reversal
shift.

ysis of four representative networks. Tables 4 and 5 present loadings for two
adult networks performing a reversal and a nonreversal shift, respectively, while
Tables 6 and 7 present the same data for child networks. We removed loadings
with zero values from these tables. The weights are indexed by their sending
input unit (I1 through 14) and by their receiving output unit (O1 or O2). For the
networks reported in Tables 4 through 7, initial training involved discriminating
values coded on input units 2 and 4. Although this remained true for reversal shift

0 1 2 3 4

FIG. 12. Connection weights in a child network at the end of pre- and postshift phases:
nonreversal shift.
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TABLE 4
Standardized Loadings from Contribution Analysis: Adult Reversal Shift

Preshift Postshift
Weight C1 C2 Cl1 C2
1101 1.00 1.00
1201 1.00 -.99
1301 —-.99 —-.99
1401 99 —1.00
1102 -1.00 —.99
1202 —1.00 1.00
1302 .99 1.00
1402 —1.00 1.00

networks during shift training, the shift was to input units 1 and 3 for a
nonreversal shift.

The analyses revealed a two-component solution for each network. In all child
and adult networks we examined, all nonzero loadings for the first component
were associated with the relevant input units; all nonzero loadings for the second
component were associated with the irrelevant input units. This can be seen in
Tables 4 through 7. We can refer to the first component as the “Relevant
Information” component and to the second as the “Irrelevant Information”
component. We observed this for both initial and shift tasks. After a RS, only the
signs of the loadings are changed, whereas after a NS, loadings are switched
between components such that weights previously associated with one compo-
nent are now associated with the other. For a sample of 20 adult networks, the
average percentage of variance explained by the first component was 96.83

TABLE 5
Standardized Loadings from Contribution Analysis: Adult Nonreversal Shift

Preshift Postshift
Weight Cl1 C2 C1 C2
1101 —1.00 -.99
1201 -.99 —1.00
1301 1.00 —-1.00
1401 -1.00 —-1.00
1102 -1.00 1.00
1202 99 —-1.00
1302 1.00 1.00

1402 .99 .99
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TABLE 6
Standardized Loadings from Contribution Analysis: Child Reversal Shift

Preshift Postshift
Weight Cl C2 Cl C2
1101 99 1.00
1201 —-1.00 —-1.00
1301 -1.00 -.99
1401 —-.99 -.99
1102 1.00 1.00
1202 .99 1.00
1302 —-1.00 -.99
1402 .99 1.00

(8D = 1.68). The remaining variance was accounted for by the second compo-
nent (M = 3.17, SD = 1.68). For an equivalent sample of 20 child networks, the
first component accounted for an average of 85.31% of the variance (SD =
11.43). The second component accounted for the remaining variance (M =
14.69, SD = 11.43).

Because the PCAs reveal a two-component solution that captures all variance,
which was expected considering there are only two dimensions of variation in the
input, any variance not accounted for by the first component is accounted for by
the second component. As such, the second component is linearly determined by
the first in both adult and child networks. This is seen in the standard deviations,
which are identical for both components within a group of networks. The extent
to which a network attends to the relevant information determines what is left for
irrelevant information.

TABLE 7
Standardized Loadings from Contribution Analysis: Child Nonreversal Shift

Preshift Postshift
Weight C1 C2 C1 C2
1101 -.99 1.00
1201 1.00 .99
1301 .99 .99
1401 1.00 .99
1102 -1.00 —1.00
1202 —1.00 .99
1302 1.00 -.99

1402 —1.00 —1.00
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Output activation
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FIG. 13. Activation of the left output unit in an adult network after initial training as a function
of relevant and irrelevant inputs.

We tested the difference between the amounts of variance accounted for in
both types of networks in order to evaluate if the relationship between their use
of relevant and irrelevant information differs. More variance is accounted for in
adult networks than in child networks by the first component (#(38) = 4.462, p <
.001), while the reverse is true for the second component (#(38) = —4.466, p <
.001). In child networks, then, irrelevant information contributes to a larger
extent to overt behavior than it does in adult networks.

Finally, Fig. 13 presents a plot of output activation as a function of input from
two dimensions in a representative adult network after initial training. In this
example, activation is from the output unit representing left, and both input units
represent the left stimulus. The network was trained to turn this unit on when the
value on the relevant dimension of the left stimulus was 1.0, and turn it off when
it was —1.0, irrespective of input on the other dimension. The shape of the
sigmoid activation function can be seen along the axis of the input unit coding the
relevant dimension. Further, the different values along the irrelevant dimension

have no observable effect on the function. In Fig. 14, the same types of data are
plotted for a representative child network. The sigmoid function is difficult to
identify along the relevant dimension, and the output is slightly affected by input
from the irrelevant dimension. Figure 15 presents a plot for another representa-

tive child network. In this case, the output unit is responding more to the
irrelevant input unit than to the relevant one.
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Output activation
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FIG. 14. Activation of the left output unit in a child network after initial training as a function
of relevant and irrelevant inputs.

Discussion. Our adult networks, like human adults, performed a reversal shift
faster than a nonreversal shift. This was accomplished by two-layer networks
lacking any mediating units and marks a departure from both mediational
accounts. Child networks, on the other hand, learned both shifts equally easily,
which is consistent with the empirical data from younger children. This is thus
also a departure from Tighe and Tighe’s (1966a) perceptual differentiation
account.

Child networks required fewer epochs to learn the initial and shift discrimi-
nations than adult networks, which was expected given the scoresthresholds used.
This is not the case for humans, as adults require fewer learning trials than
younger children on these tasks (e.g., Wolff, 1967). But our assumption is that
adults submit themselves to a form of overtraining through extensive processing.
Consequently, the number of epochs to criterion cannot be equated with training
trials in human experiments, which assess only the number of stimulus presen-
tations, not the amount of processing. In our simulations, the number of epochs
is an index of the amount of processing, which we use to assess the ease of the
different shifts within each group of networks (child and adult).

All three network analysis techniques show that knowledge representations in
adult networks at the end of the preshift phase were more precisely focused on
the relevant dimension than were those of the child networks. This precise
preshift discrimination enabled faster learning of a reversal shift than of a
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FIG. 15. Activation of the left output unit in another child network after initial training as a
function of relevant and irrelevant inputs.

nonreversal shift in adult networks. In contrast, the use of irrelevant information
to solve the preshift task in child networks enabled faster learning of a nonre-
versal shift to the point that it was as easy to learn as a reversal shift. The greater
focus on the relevant dimension in adult networks can be traced to their greater
amount of learning.

These distinct knowledge representations between preschool and adult
networks are consistent with the verbatim-to-gist ontogeny observed in
memory research (Brainerd & Reyna, 1993). Within the same age range that
is associated with shift learning development (i.e., 4 to 10 years of age),
children change from heavily relying on verbatim representations of inputs in
problem solving to using the gist (or meaning) of the inputs as they grow
older. Adult networks extract the gist of the information by ignoring irrele-
vant information, whereas child networks rely more on the verbatim, or
compound, properties of the stimuli.

We further suggest that the compound encoding of stimulus attributes in
children is not only at the level of the individual stimulus (e.g., Kendler, 1983),
but that both stimuli in a pair contribute to a given response. This is exemplified
in Fig. 15, where input from the right-hand stimulus would be required to
produce a “left side” answer when the target attribute is associated with the left
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stimulus.® If children do indeed encode properties of the pair rather than only
those of the individual stimuli, our model predicts that children will perform
poorly or at chance level when asked to classify the individual stimuli as “target”
or “nontarget” at the end of pairwise training. This prediction is also consistent
with the verbatim-to-gist ontogeny (Brainerd & Reyna, 1993), because it as-
sumes that younger children did not extract the relevant information from the
compound (or verbatim) array of stimuli.

Before addressing other theoretical implications of these findings, we turn to
the trial-by-trial performance of both types of networks on the different stimulus
pairs during shift training.

Simulation 2: Trial-by-Trial Analyses

In a nonreversal shift, correct responses do not change for half of the problems
after initial training. Preschoolers exhibit high performance on these unchanged
pairs throughout shift learning. Yet for most older children and adults, there is a
drop in performance for those unchanged pairs. This simulation tested the ability
of child and adult networks to exhibit these distinct behaviors.

Method. Sixty adult networks were used in this simulation, with the training
score-threshold set at 0.01. All were trained with the same initial attribute of color
as target. The irrelevant dimension was variable within trials. When criterion was
reached, 20 networks were trained on a reversal shift, and the remaining net-
works were trained on a nonreversal shift (n = 20 per each of two attributes of
shape). Throughout the shift learning phase, we recorded the proportion of pairs
for which networks responded correctly. A network was correct when activations
on both output units were within 0.4 of the target values. We used a testing
criterion of 0.4 because this is the default score-threshold, which we use to train
child networks. We therefore could not use a lower value to appropriately
evaluate child networks, and we wanted the assessment of performance for both
types of network to be identical. Sixty child networks were also used in this
simulation, under the same conditions, with the training score-threshold set at 0.4.

Results. Figure 16 shows the proportion of pairs to which adult networks
respond correctly over epochs. Performance on reversal and changed nonreversal
pairs increases over epochs. Performance on unchanged nonreversal pairs is
initially high, but drops to zero when performance increases on the changed
pairs. When performance on unchanged pairs improves, there is a drop in
performance on changed pairs. Performance on changed pairs increases again
and results on both types of pairs remain high until criterion.

For child networks, performance on the unchanged pairs remains high
throughout shift learning (Fig. 17), while performances on reversal and changed

8 It should be mentioned that both stimuli also contribute to both output activations in adult
networks. But if one is removed, the output is little affected, as can be seen in Fig. 11. That is, an adult
network correctly identifies a stimulus as target or nontarget even when the other pair member is not
presented.
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FIG. 16. Proportion of correct responses during shift training: adult networks.

nonreversal patterns increase at similar rates. In Fig. 18, we present child data
from Tighe and Tighe (1978) on the same tasks.

Discussion. Our adult networks exhibit behavior that mirrors human adult
data. Although the reward contingencies do not change for half of the stimulus
pairs in a nonreversal shift, human adult performance on these pairs drops and
then increases before criterion is reached (Kendler, 1979; Tighe & Tighe, 1978).
We observe this same pattern for unchanged nonreversal pairs in our adult
networks.

g
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FIG. 17. Proportion of correct responses during shift training: child networks.
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FIG. 18. Proportion of correct responses over trials during nonreversal shift training in human
preschoolers (reprinted, with permission, from Tighe & Tighe, 1978).

It should be noted again that this pattern of behavior is not the result of
intermediate processes. Previous nonreversal shift interpretations suggested that
mediating participants initially shift their overt responses to the original dimen-
sion response, which impairs performance on the unchanged pairs (Kendler,
1979; Kendler & Kendler, 1969). Learning a nonreversal shift thus involved the
extinction of the mediated response to the initial dimension and retraining on the
newly relevant one.

In our adult networks, a nonreversal has the same initial deleterious effect on
the performance of the unchanged patterns. This is because the finely tuned
discriminations learned during the preshift phase must be focused onto another
dimension. However, our networks generate this effect without any mediating
hidden units. This result is consistent with Tighe and Tighe’s (1966a) perceptual
differentiation model.

The importance of fine tuning is emphasized by the behavior of our preschool
networks, for which performance on unchanged pairs remains high throughout
shift training, as it does with human preschoolers. Although these networks are
presented with the same task as the adult ones, we do not observe the same initial
deleterious effect of the nonreversal shift on the unchanged patterns. For these
networks, not ignoring the irrelevant dimension during initial training allows
them to maintain adequate performance on the unchanged patterns during shift
training. At the onset of the nonreversal shift, the child networks are responding
to a greater extent than adult networks to input from the newly relevant dimen-
sion, preventing deterioration of performance for unchanged patterns. This is also
consistent with Tighe and Tighe’s (1966a) interpretation. They suggested that
adults differentiate the perceptual properties of the stimuli more finely than
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children and explained the developmental differences on nonreversal shift pairs
as we do here (Tighe & Tighe, 1978).

We next report our simulation of the optional shift task, which has been used
extensively to differentiate associative and concept-mediated behavior (Kendler,
1983, 1995).

Simulation 3: Optional Shifts

In almost all older children and adults, performance on the test pairs of the
optional shift is consistent with a reversal shift. Our adult networks are thus
expected to be reversers. Younger children, though, do not exhibit reversal
behavior. We expect our child networks to be nonreversers.

Method. Sixty adult networks were used in this simulation, with the score-
threshold set at 0.01. Initial training was on one attribute of color for 30 networks
and on the other attribute of color for the remaining 30 networks. The irrelevant
dimension was variable within trials. When criterion was reached, the networks
were trained to shift their responses on two of the four stimulus pairs. This shift
was congruent with both a reversal and a nonreversal shift. When training was
completed in this second phase, we recorded the networks’ behavior on the
remaining two pairs. Sixty child networks were trained and tested in the same
conditions, with the score-threshold set at 0.4.

As in the psychological literature, an individual network was labeled reverser
only if its performance on both test pairs was consistent with a reversal shift;
otherwise, it was labeled nonreverser. Response to a specific pair can be “left,”
“right,” or “guess” (if both output units are on or both are off, we assume that
choosing only one of the two stimuli, a requirement of the task, is equivalent to
a random process). In the case of a guess response, we assign a .5 probability of
a reversal for that pair. That is, a random choice of either of the two stimuli,
where only one is consistent with a reversal shift, results in a 50% chance of
choosing it.

A network that chose the reversal stimuli in both pairs was assigned a
probability of 1 to be labeled reverser. When a network chose the reversal
stimulus in one pair but guessed for the other, it was assigned a probability of .5
to be labeled a reverser. And if a network guessed on both test pairs, there was
a probability of .25 of being labeled reverser. Choosing the stimulus associated
with a nonreversal in any of the two test pairs resulted in a probability of O to be
labeled reverser. For adult and child networks, we tabulated these probabilities in
order to evaluate how many networks could be expected to perform as reversers.
The remaining networks are labeled nonreversers. These numbers are compared
to the empirical distribution of reversers and nonreversers in humans.

Results. Fifty-seven adult networks were labeled as reversers, whereas the
behaviors of the remaining three were consistent with a nonreversal shift on both
pairs. No network produced a guess answer for any pair. Table 8 presents the
percentage of reverser and nonreverser adult networks, as well as human data
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TABLE 8
Percentage of Reversers and Nonreversers in Adult Networks and Human Adults

Reversers (%) Nonreversers (%)
Networks 95 5
Humans?® 87 13

“ Human data from Kendler (1983).

reported in Kendler (1983). A x* goodness-of-fit test indicates no significant
difference between our network results and those for adults (x*(1, N = 60) =
3.39, n.s.).

Thirty-six of sixty child networks showed behavior consistent with a nonre-
versal shift on both test pairs (nonreversers). Five guessed on one pattern but
produced nonreversal behavior on the other (nonreversers as well). One network
produced reversal behavior on both pairs, four guessed on one pair but produced
reversal behavior on the other (.5 X 4: probability of 2 reversers), and 14
networks had to guess on both pairs (.25 X 14: probability of 3.5 reversers), for
an overall probability of 6.5 reversers in our 60 child networks. Table 9 presents
the percentages of reverser and nonreverser child networks, as well as human
data reported in Kendler (1983). A x* goodness-of-fit test indicates no significant
difference between our network results and those for children (x*(1, N = 60) =
3.15, n.s.).

Discussion. Most of our adult networks, like human adults, shifted their initial
responses on the test pairs. That is, their behavior was consistent with a reversal
shift. In the case of our child networks, most exhibited behavior not consistent
with a reversal shift. :

The finely tuned discriminations learned by adult networks, but not child
networks, in the initial discrimination explain these differences. For adult net-
works, focusing on the initially relevant dimension makes the error signal
associated with input units from that dimension stronger than the error associated
with the other input units. Because learning in cascade-correlation networks
involves reducing the largest source of error, weight changes after the shift

TABLE 9
Percentage of Reversers and Nonreversers in Child Networks and Human Preschoolers

Reversers (%) Nonreversers (%)
Networks 10.83 89.17
Humans® 20 80

“ Human Data from Kendler (1983).
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concentrate on the initial dimension, thus making the initial responses to the test
pairs consistent with a reversal shift.

In child networks, initial training does not involve ignoring the irrelevant
dimension. When the shift phase begins, changes in weights are made for both
dimensions to accommodate the new contingencies for the shift pairs. For a large
proportion of child networks, these changes do not significantly alter the com-
pound responses previously learned for what are now the test pairs, as was the
case for the unchanged pairs of the nonreversal shift for which performance
remained high. Indeed, the test pairs in an optional shift are the same as the
unchanged pairs of an nonreversal shift would be (e.g., in Fig. 3, a nonreversal
shift from square to green after initial training would involve no change for the
pairs that have the “green square” stimulus, which are the test pairs in that
optional shift example).

GENERAL DISCUSSION

Our simulations of reversal, nonreversal, and optional shifts were designed
according to the assumption that older children and adults, compared to kinder-
garten children, learn finer tuned discriminations from a process similar to
rehearsal in memory tasks, a suggestion made over 30 years ago by Levine
(1966, 1975). We did not build in mediating mechanisms to model adult behavior
(Raijmakers et al., 1996). Our model captures the empirical data and suggests a
new explanation of human shift learning.

In the introduction, we emphasized that developmental differences in discrim-
ination shift learning between younger and older children are observed. Contrary
to the pervasive belief that nonreversal shifts are easier than reversal shifts for
younger children, though, we suggested that equal ease of reversal and nonre-
versal shifts is a more accurate reflection of the evidence. We also presented the
limitations of the previous theoretical accounts of shift learning and the conse-
quent lack of a general and thorough account of the empirical data. What, then,
is the contribution of the work we have presented in this paper?

Unlike the classic explanations that mature performance on these tasks re-
quires mediated processing (Kendler, 1983; Kendler & Kendler, 1962, 1969;
Zeaman & House, 1974), our networks do not have intermediate units to
represent concepts or attentional responses to modulate overt behavior. Concep-
tual or attentional mediation would be implemented by hidden units, which are
not required by neural networks for these linearly separable problems. Our neural
network model is closer to the perceptual model of Tighe and Tighe (1966a,
1978). Adult networks do indeed differentiate between relevant and irrelevant
information better than child networks. But our model accounts for the equal ease
of nonreversal and reversal shifts in preschoolers, whereas Tighe and Tighe’s
predicts easier nonreversal shifts. Table 10 summarizes the ability of all three
theories and of the spontaneous overtraining model to account for shift learning
regularities to which they all apply in continuous tasks. The spontaneous over-
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TABLE 10
Psychological Regularities Captured by the Different Models in Continuous Paradigms

Model
Conceptual Attentional Perceptual Spontaneous
Regularity mediation mediation differentiation overtraining

Adult reversal <

nonreversal Yes Yes Yes Yes
Adult impaired

performance

on unchanged

pairs Yes Yes Yes Yes
Adult optional

shift reversal Yes Yes Yes Yes
Child reversal =

nonreversal No No No Yes
Child unimpaired

performance

on unchanged

pairs Yes No Yes Yes
Child optional

shift

nonreversal Yes No Yes Yes

training model clearly provides the best coverage of the psychological regular-
ities at this point in time.

Raijmakers et al. (1996) concluded that neural network learning should be
described as merely associative. Although their networks used hidden units, our
networks instead use direct connections between input and output. Yet our
networks still capture learning phenomena that are believed to be rule-governed,
rather than merely associative. The initial goal of this project was to take on the
challenge posed by Raijmakers and her colleagues (1996). We feel that we have
presented a model that meets that challenge. Neural network models can capture
the apparent rule-governed nature of human learning in a principled way that
suggests novel theoretical interpretations and empirical predictions. From these
simulations, we predict poor classification performance in younger children after
pairwise discrimination training. This prediction stems from the observation that
the behavior of child networks is essentially a function of the compound prop-
erties of the pair of stimuli, and not of the individual stimuli.

Kruschke (1996) modeled a categorization task with a connectionist architec-
ture called AMBRY. He obtained promising results in simulating compound
categorization shifts that qualitatively capture human data. The target categories
in compound categorization are logical relationships between the different di-
mensions (e.g., “large” or “white” but not both, a form of exclusive-or), and the
stimuli are presented individually. Two key elements of the AMBRY model are



270 SIROIS AND SHULTZ

the attentional units, which learn to target the relevant dimensions and in turn
affect learning of the appropriate responses, and the mediating internal catego-
ries. The model learns what to attend to and how to act upon elicited categories.
This is similar to the theoretical model advocated by Zeaman and House (1963,
1974), where learning is also mediated by attentional responses. Our model
differs in that attention is implicit to learning. Cascade-correlation networks learn
by giving greater attention to what is relevant by increasing connection weights
from relevant inputs. Which model can be better at providing a general account
of concept-shift tasks will be resolved only through further research.’

In conclusion, the model presented in this paper offers a promising alternative
to previous theoretical interpretations. Rather than attributing developmental
differences in discrimination shift learning to conceptual (e.g., Kendler, 1983) or
attentional mediation (e.g., Zeaman & House, 1963) or to perceptual experience
(e.g., Tighe & Tighe, 1966a), our account emphasizes the extensive learning
afforded by spontaneous overtraining. This is consistent with the overtraining
literature, which is not the case for the mediational theories. Developmental
improvements in the amount of spontaneous processing, through the ages of 4 to
10, affect performance on discrimination shifts by ensuring focused learning.

We make this suggestion by applying a domain-general model to a specific
task. For example, the absence of hidden units in our model is not a design
decision based on assumptions with respect to the task. It is a consequence of
applying the general-purpose cascade-correlation algorithm to discrimination
shifts. Generative algorithms are believed to be appropriate to simulate cognitive
development (Mareschal & Shultz, 1996; Quartz, 1993; Shultz & Mareschal,
1997). In the case of concept-shift tasks, we show the potential of generative
algorithms for modeling learning phenomena as well. Our model is not a theory
of human learning, but rather a tool that highlights how shift learning tasks might
be solved. The heuristic value of the model is to suggest a theoretical alternative
that can be further investigated psychologically.

The modeling reported in this paper does not rule out mediation through
intermediate representations in adults and older children. It could turn out that the
model is inadequate, incomplete, or incorrect. At the moment though, the model
seems worth considering because it offers the best current coverage of the
phenomena in the literature. The model suggests that cognitive change in
discrimination learning could be a function of age-related change in the amount

° The task used by Kruschke (1996) is, from a modeling perspective, linearly inseparable. We thus
expect cascade-correlation networks, when trained on it, to recruit hidden units that may act like
mediating categories. Because the weights coming into these hidden units are frozen after their
recruitment, we expect the networks to exhibit the dimensional perseveration that Kruschke observed
at the onset of a shift (making a reversal easier than other shifts). On the other hand, mediation is an
explicit architectural property of the AMBRY model (as it was in Raijmakers’ networks). How
AMBRY would perform on the linearly separable tasks we have presented might be a crucial test of
mediational theory, as we have shown that mediation is not required in order to capture adult behavior
in discrimination shifts. '
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of processing on discrete trials. Because the model ignores how spontaneous
overtraining may be achieved in humans, its worth remains an empirical ques-
tion. However, it is consistent with the literature and suggests a novel alternative
to account for the shift learning ontogeny.

The simulations reported here represent an initial attempt to provide a theo-
retical account of human shift learning with the use of neural network tools. More
work is still required. For example, we need to determine if our results can be
replicated with other learning algorithms. Also, simulations of other concept-
shift tasks would be useful to evaluate the generality of our model. Of special
_ interest would be to capture Zeaman and House’s (1974) finding that young
children execute an intradimensional shift faster than an extradimensional shift
when new stimuli are introduced at the onset of the shift. We trained adult and
preschool networks on these tasks. Our results show intradimensional superiority
over extradimensional for both child and adult networks (Sirois & Shultz, 1998).

Variability of the ease of reversal and nonreversal shifts within age levels and
within individual networks should also be further examined. Cole’s (1973, 1976)
observation that young children will, on probe trials or at the onset of a shift,
alternatively exhibit behavior consistent with a reversal or a nonreversal shift (or
consistent with concept or instance responding, respectively) is not an unreason-
able expectation for our child networks. Given that their connection weights are
responding to both dimensions, it is possible that for some training pairs reversal
shifts will be easier than nonreversal shifts, whereas the reverse would be
observed for other training pairs. Performance on probe stimuli could be con-
sistent with concept learning in one training phase (e.g., initial learning) and
consistent with instance (or compound) learning in another phase (e.g., shift
learning). Some of our child networks did perform the reversal shift faster than
others performed the nonreversal shift. Our present results are at least consistent
with Cole’s. Further work should focus on this issue.

There is also the issue of dimensionless experiments (e.g., Bogartz, 1965;
Goulet & Williams, 1970). Because any stimulus in such an experiment has a
distinguishing feature with respect to the other stimuli, we expect adult networks
to find a full reversal easier than a half reversal simply because they will focus
on these features, given a strict score-threshold, as they did in the simulations
reported here. Alternatively, child networks are expected to find both shifts as
equally easy because in our simulations child networks did not appear to respond
exclusively to the relevant dimension. This suggestion will obviously require
subsequent inquiry. Finally, we need to further investigate our suggestion that
child networks and children themselves would perform poorly in a classification
task of the individual stimuli following the pairwise learning task.

The greater purpose of these simulations is to help formulate, by means of
neural network tools, a psychological interpretation of discrimination learning.
What we have outlined in this paper is, we hope, a contribution to this legitimate
and much needed formulation.
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