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ANALYSIS OF KNOWLEDGE REPRESENTATIONS
IN CASCADE CORRELATION NETWORKS

Yoshio Takane*, Yuriko Oshima-Takane* and Thomas R. Shultz*

Feed-forward neural network models approximate nonlinear functions connecting
inputs to outputs. The cascade correlation (CC) learning algorithm allows networks to
grow dynamically starting from the simplest network topology to solve increasingly
more difficult problems. It has been demonstrated that the CC network can solve a wide
range of problems including those for which other kinds of networks (e.g., back-propaga-
tion networks) have been found to fail. In this paper we show the mechanism and
characteristics of nonlinear function learning and representations in CC networks, their
generalization capabilities, the effects of environmental bias, etc., using a variety of
knowledge representation analysis tools.

1. Introduction

Feed-forward neural network (NN) models approximate functions that connect
input to output variables. It is essential that a network is of the right size to
achieve good performance; the network should be able to approximate the required
functions sufficiently well while preserving good generalization performance
(Geman, Bienenstock & Doursat, 1992). Too small a network is not flexible enough
to represent the required functions, whereas too large a network is too sensitive to
local features of the functions (over-fitting), resulting in poor generalization perfor-
mance. However, the complexity of the functions to be approximated is usually
not known in advance.

There are at least two representative strategies to deal with the unknown
complexity of the required functions. One approach is to start with a very large
network that is flexible enough to approximate a wide range of functions, and after
the training is done, prune unnecessary units and/or connections to enhance net-
work’s generalization performance. This class of algorithm is called “pruning”.
Various pruning and regularization techniques have been developed for this purpose
(Reed, 1993). The second approach proceeds in the opposite direction. It starts
with a small network, to which hidden units are added and trained to reduce error
until a satisfactory degree of performance is reached. This class of algorithm is
called “constructive”. Since the constructive methods are incremental, training
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often proceeds much more quickly, leading to more efficient learning (Prechelt,
1996). There is also some evidence suggesting that the constructive approach is
more in line with the nature of human learning and development (Shultz &
Mareschal, 1997).

Cascade correlation (CC) learning (Fahlman & Lebiere, 1990) is a versatile NN
construction technique, which allows the network to grow dynamically according to
the complexity of the task to be solved, starting from a network consisting of only
the input and output units. Each input unit is directly connected to the output units
by adjustable weights. Initial weights are selected randomly, and are adjusted
based on target activations given in the training patterns. When performance
cannot be improved any further by weight adjustments, a hidden unit with sigmoid
activation functions is recruited, producting nonlinear and interaction effects in the
mapping of inputs to outputs. Incoming weights to this new unit are determined by
maximizing the “correlation” between the unit’s activation and network’s current
error, and are fixed throughout the remainder of the training period. Thus error is
not propagated back across different levels of the network, resulting in quicker,
more stable convergence. After the hidden unit has been recruited, output weights
are readjusted to optimize performance. This cycle of error reduction is repeated
until an acceptable range is reached.

No network topology has to be prescribed in CC networks except input and
output. An “optimal” network configuration is automatically determined, tailored
to the level of difficulty of the task. In CC networks, units are connected in a
cascaded manner; the input units and all previously recruited hidden units are
connected to more recently recruited hidden units as well as to the output units.
This helps capture higher order nonliearities and interaction effects among the
input variables with a minimal network configuration. The input units are directly
connected to the output units (cross connections). The cross connections capture
linear effects of the input variables, which often account for major portions of the
variability in the function to be approximated. They can also prevent the network
from fitting unnecessary nonlinear functions when only linear relationships exist
between the input and output variables.

The CC algorithm has proven to be a powerful nonlinear function approx-
imator. It has been demonstrated that it can solve a wide range of problems
including those for which other kinds of networks have been found to fail. For
example, CC networks could discriminate between the two interlocking spirals that
no previous back-propagation networks could solve (Fahlman & Lebiere, 1990).
They could also handle personal pronoun acquisition quite easily (Oshima-Takne,
Takane, & Shultz, 1995), a problem with which nonlinear regression and di-
scriminant analysis procedures such as MARS (Multivariate Adaptive Regression
Splines ; Friedman, 1991) have been found to have considerable difficulties. The
CC algorithm has been used to implement a wide variety of other psychological
models, particularly in congitive and language development (Shultz, Schmidt,
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Buckingham & Mareschal, 1994). Many empirical phenomena such as the balance
scale problem (Shultz, Mareschal & Schmidt, 1994), seriation (Mareschal & Shultz,
in press), conservation (Shultz, 1998), learning of personal pronouns (Oshima
-Takane, Takane & Shultz, 1995; Oshima-Takane, Takane & Takane, 1998 ;
Shultz, Buckingham & Oshima-Takane, 1994), development of velocity, time, and
distance concepts (Buckingham & Shultz, 1994), and discrimination shifts (Sirois &
Shultz, in press) have been successfully simulated with CC.

Despite these clear demonstrations of its successes, the CC algorithm has not
been widely used. Part of the reason is a lack of understanding of how the CC
networks function. In this paper we systematically investigate the mechanism and
characteristics of nonlinear function learning and approximations in CC networks,
their generalization capabilities, the effects of environmenal bias, etc., using a
variety of tools for the analysis of network knowledge representations (Takane,
Oshima-Takane & Shultz, 1994).

2, The CC Network algorithm

Let X denote an N by p matrix of input patterns. Its rows represent N input
patterns, and its columns p input variables describing the input patterns. Let Y
denote the corresponding matrix (N by K) of output patterns, Y=[y,, ---, ¥«],
where K indicates the number of output variables. For simplicity, all output
variables are assumed to be binary (either —.5 or .5) in the following exposition.

Three kinds of units are distinguished in multi-layered feed-forward networks:
input, output, and hidden units. The input units only send out contributions to
other units, while the output units only receive contributions from other units. . The
hidden units both receive and send contributions. The contributions of a unit are
defined as the products of the unit’s activations and the weights representing the
strengths of sending connections it has with other units. The activations at the
input units are the input patterns themselves. Activations at other units are
derived from the contributions they receive. The contributions received by a unit
are summed and transformed by a sigmoid transformation to obtain activations at
the unit. Activations at the output units are called the network’s output predic-
tions. The learning algorithm attempts to make the network’s output predictions
as close as possible to the target output patterns.

As has been noted, the CC network starts from a minimal network
configuration consisting of only the input and the output units. The CC network
initially attempts to predict Y based on X alone. Let Z® denote the matrix of
activations at the input units. That is, Z"=X. Let Y represent the matrix of
output predictions at this stage. This is obtained by

YO = g(ZOWD), (1)

where W® is the p by K matrix of weights (called output weights) associated with
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the connections from the input units to the output units, and ¢ is the sigmoidal
transformation, i.e., o(¢)=1/{1+exp(—#)} —.5. (The .5 is subtracted from the usual
sigmoidal function to make the range of the output values between —.5 and .5.) It
should also be understood that when the sigmoidal function takes a matrix (vector)
argument, the transformation is applied to each element of the matrix (vector)
argument. The weight matrix W is determined in such a way that

JOW)=SS(Y = ) =tr(Y — TO)(Y - T) @

is minimized. (Note that at this stage the CC network is essentially the same as the
linear logistic discrimination method.) i

If the value of min¢g® is not sufficiently small according to a prescribed
criterion, the network recruits a hidden unit whose activations capture as much of
the residual variation as possible of the output units left unaccounted for by ?“’, le.,
eV=y,—y¥ for k=1, -, K. Let z" denote the vector of activations at this hidden
unit. This is obtained by

20 = g(ZOv), 3)

where v is a vector of weights (called input weights), determined so as to
maximize

K
¢2(v(1)):,§, | eg)/Jzu) |’ (4)

where e is as defined above, and J is the centering matrix, i.e, J=Iy—1x1x/N
where I is the identity matrix of order N, and 1y is the N -element vector ones.
The activations at the first hidden unit recruited (%) are ones that “correlate” most
highly with the residuals from the previous step. In defining ¢® above, the
absolute values of the “correlations” between z and the residuals are taken before
they are added across K output units. - This is because z could be positively
“correlated” with the residuals from some output units, but negatively with those
from other output units. The sign of activations is essentially arbitrary; large
negative “correlations” are as good as positive “correlations”.

Now the output weights are modified in the light of the new hidden unit
introduced. The matrix of activations is redefined by appending z, the vector of
activations at 4, to Z%, the matrix of activations in the previous stage, i.e., Z®=
[Z®, 2], The matrix of new output predictions is then obtained by

?(2)= (ZPW®), (5)
where W@ is the matrix of new output weights, determined in such a way that
¢O(WP)=SS(Y —¥?) (6)

is minimized. If min ¢® is still unsatisfactory, this process is repeated as many
times as necessary until the error becomes smaller than the prescribed level. This
generates a sequence of Z’s and ¥’s updated alternately, as in Z®, YO, 22 ¥, ..,

™
=
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and so on.

Each cycle of optimization defines a distinct stage consisting of two phases:
The input training phase in which a hidden unit is recruited and its activation
function derived, and the output training phase in which adjustments are made on
output weights. At stage g, in general, the vector of input weights v¢-? in

z(g-—l):o-(z(g—l)v(g—l)) (7)

is updated so as to maximize
K
(D g—D) — g1V Jgt9-b
(V)= 20 | eV JZ 0|, (8)

The matrix of activations at stage g is then defined by Z@=[Z“?, z(¢-D]. When
g=1,Z" is set to X without going through any optimization step. The matrix of
output weights W@

f’(y)z o(ZOW®) (9)
is then updated in such a way as to minimize
$O(W@)=SS(Y —Y®) (10)

In the CC algorithm (Fahlman & Lebiere, 1990) optimizations involved in input
and output training are performed by an iterative procedure called Quickprop
(Fahlman, 1989). This is a kind of quasi-Newton method in which the matrix of the
second order derivatives (the Hessian matrix) is approximated by a numerically
estimated diagonal matrix. The optimization in the input training is apparently
very difficult ; it is prone to convergence to suboptimal solutions. In an attempt to
alleviate this problem, several candidate hidden units (eight by default) with
different random initial weights are trained concurrently (Fahlman and Lebiere,
1990). The candidate that achieves the largest value of ¢© is subsequently incor-
porated into the network. Quickprop uses a host of other heuristics, which we will
not discuss in this paper. See Fahlman (1989) for details.

3. Learning and Representations by CC networks

We now illustrate the CC algorithm by turning to graphic representations of the
knowledge learned by CC networks. The knowledge learned by the network is
stored in the estimates of connection weights used to approximate the function
governing input-output relations. We demonstrate the mechanism of function
approximation by showing how the input data and the connection weights are
combined into output predictions that approximate functions.

For illustration we use the continuous xor problem. This problem is simple,
yet complicated enough to require a network solution. It is simple because the
target function is known and can be depicted graphically (see Figurel). It is
complicated because the solution requires an interaction effect among input vari-
ables. Capturing the interaction effects among the input variables without explicit
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instructions to do so is one of the major advantages of NN models. It is interesting
to see how the network “perceives” the necessity of interaction effects, and how it
actually creates them based exclusively on the examples of input-output relations.

The continuous xo7 problem has two input variables, x, and x,, each ranging
from .1 to 1, and one binary output variable, y. The problem is to discriminate
between two groups of input patterns. When both x, and x, are larger than or both
smaller than .55, ¥ takes the value of —.5; when only one of the two input variables
is larger (but the other smaller) than .55, y takes the value of .5. The target
function for this problem is given by

y=f{—c(x1—.55)(x2—.55)} —.5, (1

where f is a sigmoid function, and c—co. This target function is depicted in Figure
1. A CC network learns to approximate this function from a set of training
patterns. It is obvious that this function has an interaction term between x; and .
The center figure in the bottom row of Figure 8 depicts an approximation of this
function by a CC network. The approximation is excellent; it is virtually indistin-
guishable from the original target function displayed in Figure 1.

The CC algorithm constructs a network and estimates connection weights
based on a sample of training patterns. For the continuous xo» problem 100 triplets
of the form, (x;, x,, ¥), were used, both x, and x, ranging from .1 to 1.0 with a step
of .1, and y=—.5 or .5. The CC algorithm constructed a network with two hidden
units for the solution presented in Figure 8, starting from a network with only a bias
unit (the constant term), two input units and one output unit. The final network is
presented in Figure2. A CC network with only two hidden units solving the
continuous xor problem is somewhat atypical, however. The CC algorithm typi-
cally requires four to seven hidden units to solve the problem. The derived
network is the result of our effort to get a network with as minimal a configuration
as possible. (This was done by running the simulation many times, and choosing
the “best” solution among those obtained. In these simulations it seems important
to set the number of candidate units in input training equal to one to avoid
convergence to a same suboptimal solution all the time.) This simplifies our
presentation because network analyses are much easier wth a smaller number of
hidden units. It should be emphasized, however, that essentially the same knowl-
edge representation analysis techniques can apply with a larger number of hidden
units.

Fig.1 The target function for the continuous x0» problem
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Fig.2 A CC network configuration dervied for the continuous xo7 problem

The initial network consisted of only connections 1, 2, and 3. To capture part
of the interaction effect needed to solve the problem, the hidden unit (h) with
connections 10, 11, and 12 from the input units and connection 4 to the output unit
was added. Weights associated with the input connections define the activation
function at this unit. One hidden unit was found insufficient to approximate the
target function. To improve network’s performance further, a second hidden unit
(k) was recruited with connections 6,7, 8, and 9 from the input units and the first
hidden unit, and connection 5 to the output unit. Weights associated with the input
connections are used to derive activations at this hidden unit, which, in turn, in used
to approximate the target function. .

We illustrate the above process in more detail. The activation functions at the
input units are input data themselves, i.e., ZV=X, where X is the 100 by 3 matrix of
(1, xi1, x:2) in the ;% row. The three activation functions at the input units are
depicted in Figure 3. The bias function is constant (=1) irrespective of the values
of x and x,. The x, function is linearly increasing in x, but is constant over X;.
The x, function, on the other hand, is linearly increasing in x,, but constant with
respect to x;.

Now a linear combination of Z" is formed and sigmoid-transformed to obtain
output predictions at this stage. Let w® denote the weight vector in this linear
combination. (Since there is only one output unit in the continuous xo7 problem,
the output weights are always vectors.) The w® is determined in such a way that
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Fig.3 The activation functions at the input units

bias->y (1) x1 ->y (2) | x2 ->y (3)

sum

1

0.5 0.5

oo 05 00

Fig.4 The contribution functions, the summed contribution function, and the outpdt prediction
function at Stage 1. (Numbers in parentheses refer to the connection numbers in Figure
2)

¢V in (2) is minimized. Let w®=(w{, w{®, w§"y. The product of each element of
w® wth the corresponding activation function defines a set of contributions. Three
sets of contributions, biags- wé®, xiw", and x,ws?, can be defined. The three contri-
bution functions are depicted in the upper panel of Figure4. (The numbers in
parentheses in the labels correspond with connection numbers in Figure 2.) All of
them are nearly constant at zero. In the continuous xor problem the crucial
variable in the solution is the interaction effect, and consequently the weights for
the linear effects of the input variables are all nearly zero, as expected, which
explains why the three contributiton functions are all nearly constrant at zero.
These contribution functions are added and sigmoid-transformed to obtain the
output prediction function. The summed contribution and the output prediction
functions are depicted in the lower panel of Figure4. These functions are also
constant near zero, indicating the inability of the linear network to solve the
continuous xo7 problem. The SS discrepancy between the target and approximat-
ed functions at this stage is nearly 25, indicating that the prediction is no better than
at a chance level.

The prediction in the previous stage is not at all satisfactory. So a hidden unit,
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bias->h1 (10) x1 ~>h1 (11) x2 ->h1 (12)
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Fig.5 The contribution functions, the summed contribution function, and the activation func-
tion at &,. (Nunmers in parentheses refer to the connection numbers in Figure 2.)

hy, is recruited and trained. The activation function at this unit is derived by (3),
where v, is determined in such a way that ¢® in (4) is maximized. The terms in
the linear combination to obtain the activation function, z"=¢(Z®v®), are the
contribution functions from the input units, which are depicted in the upper panel of
Figure5. Again the parenthesized numbers in the labels indicate connection
numbers in Figure 2. These contribution functions are summed and sigmoid-trans-
formed to define the activation function at 4. This activation function, once
derived, remains intact throughout the remainder of the learning process. The
summed contribution and the 4, activation functions are depicted in the lower panel
of Figure 5. At a first glance this activation function does not seem to be of much
use in predicting the output variable. However, it turns out that it helps create an
important activation function at the next hidden unit, which plays a crucial role in
the final solution.

The matrix of previous activation functions is appended by the new activation
function to form a new matrix of activation functions, Z®=[Z®, z®"]. Output
weights are trained and a new set of predictions are derived by (5). The contribu-
tions of the bias, the two input units and /4, are depicted in the upper and the middle
rows of Figure6. Numbers in parentheses in the labels indicate the connection
numbers in Figure 2. These contributions are summed and sigmoid-transformed to
obtain the output predictions at this stage. The summed contributions and the
output predictions are displayed in the bottom row of Figure 6. It may be seen that
the derived output prediction function has improved substantially. It captures,
albeit imperfectly, the rapid rises in the function value toward both ends of the
domain of the target function. The SS discrepancy between the target and the
approximated functions was reduced from 25 to 11.30.

The predictions are still less than satisfactory, and so another hidden unit (4,)
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bias->y (1) x1 ->y (2) x2 —>y (3)

Fig.6 The contribution functions, the summed contribution function, and the output prediction
function at Stage 2. (Numbers in parentheses refer to the connection numbers in Figure

2)
bias->h2 (6) x1 ->h2 (7) x2 ->h2 (8)
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Fig.7 The contribution functions, the summed contribution function, and the activation func-
tion at #,. (Numbers in parentheses refer to the connection numbers in Figure 2.)

was recruited. The activation function at %, is derived by z® = g(Z®v?®), where the
weight vector v is determined in such a way that ¢® is maximized. The terms
in Z®v® (the contribution functions) are depicted in the upper panel of Figue?7.
The numbers in parentheses refer to connection numbers in Figure 2. These func-
tions are added together, then sigmoid-transformed to obtain the activation func-
tion at this unit. The summed contribution and the actvation function at %, are
displayed in the lower panel of Figure 7. It is remarkable to see the %, activation
function capture one of the cliffs in the target function.

All the necessary ingredients are now ready, and the final output predictions
can be derived. First, the matrix of activation functions is redefined, Z®=[Z®,
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Fig.8 The contribution functions, the summed contribution function, and the final output
prediction function. (Numbers in parentheses refer to the connection numbers in Figure
" 2)

z?], and the output prediction function is obtained by §® = ¢(Z®w®), where w® is
determined so as to minimize ¢®. The contribution functions at this stage are
depicted in the first two rows of Figure 8. (The numbers in parentheses indicate
connection numbers in Figure 2.) As before, they are summed and sigmoid-trans-
formed to obtain the output predictions. The summed contribution and the output
prediction functions are displayed in the first two panels of the bottom row of
Figure 8. The graph of the summed contribution function is somewhat misleading.
There should be a dip in the function value toward the far end of the function
domain, but this may be difficult to see. This is due to the inadequacy of the
MATLAB routine used to draw this three-dimensional perspective graph. To
show there is indeed a dip toward the far end, the figure was rotated 180°. . The
rotated graph is presented in the last panel of the bottom row of Figure 8. The far
end in the original summed contribution function comes to the front of the graph.
It can be clearly seen that there is indeed a dip in the function value. This dip is
turned into a deep cliff by the sigmoid transformation. The output prediction
function displayed in the center of the bottom row of Figure 8 is very similar to the
targét function. The SS discrepancy between the target and the approximated
functions is now near zero. It is remarkable that the target function with such
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sharp edges can be approximated so'well by adding only two new activation
functions obtained through sigmoid transformations of linear combinations of the
input activations.

4. Generalizations

The nonlinear function approximation by the CC network was rather impres-
sive in the example presented above. The output prediction function depicted in
Figure 8 was, however, evaluated only for the training patterns. What about the
function approximated at patterns not included in the training sample? This is
called a generalization problem.- There are two aspects to the generalization
problem; one is interpolation and the other is extrapolation. The former refers to
predictions for untrained patterns within the domain of the function defined by the
training sample, and the latter for those outside the domain. In the present case
both x and x, extend from .1 to 1 in the step of .1, so that predicting a function value,
say, at x,=.38 and x,=.73 is an instance of interpolation, while predicting the same
atx=—.1and »=1.2, x,=.20 and x,= —.3, or x; =1.3 and x, = .65 involves extrapola-
tion. :

Figure 9(a) shows the CC network’s interpolation performance for the continu-
ous xor problem. The function approximated by the CC network was evaluated at
all combinations of the value of x, and #, in the same range as in the training sample
(i.e,, between .1 and 1 inclusive), but with a step of one half in size. Thus, every
other grid point in the graph represents the prediction at an untrained pattern. The
graph indicates that CC network’s interpolation performance is excellent; correct
output predictions were made for all untrained patterns (as well as for all the
training patterns) within the range of x, and %, given in the training sample. Minor
irregularities are observed on the boundaries of the two output classes. However,
this is due to the fact that input patterns with ¥, =.55 and/or x,=.55 are right on the
boundaries. It is natural that the network does not know what to do in these cases.

. o .
2 00  y " x2 205 -059 4

Fig.9 Generalization performance by the CC network for the continuous xor problem: (a)
Interpolation. (b) Extrapolation.
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Figure 9(b), on the other hand, shows CC network’s extrapolation performance
for the continuous xo7 problem. - The x, and x, were both varied from —.4 to 1.5
with a step of .1. In contrast to the interpolation performance, network’s extrapo-
lation performance in rather poor; incorrect predictions are made for some un-
trained patterns outside the range of the training sample. It can be observed that
the value of output predictions becomes .5 as soon as x; and/or x, get smaller than
1. The output predictions remain relatively stable in other parts of the outside
domain. However, it is impossible to predict where the extrapolation succeeds and
where it fails. : ,

Extrapolation seems difficult not only with the CC network but also with other
kinds of NN models. NN models offer flexible nonlinear function approximation
capabilities. However, the very flexibility of the NN models could work adversely
in extrapolation. This suggests that a certain kind of knowledge transfer, the kind
that involves extrapolation as in analogical reasoning, is difficult in CC networks.
Work is in progress, however, to develop a CC network procedure that can accom-
modate networks representing prior knowledge as part of a new CC network being
constructed for solving new tasks.

5. The effects of environmental bias

Typically the approximated function obtained by a CC network varies with the
training sample. If a random sample of possible training patterns is used, we may
be able to obtain a less biased function approximation. If, on the other hand, a
special subset of possible training patterns is used, the resultant function could be
quite disparate from the one desiréd. The effects of the training sample on the
approximated function are generally called the problem of environmental bias.

Small numerical experiments were conducted to investigate the effects of
environmental bias in the continuous xor problem. The specific question we ask is:
What happens to the approximated function if all the training patterns used are far
away from, or all close to the boundaries of the classes to be discriminated? Two
training samples were created. In one case the training sample consisted of only
those patterns far away from the boundaries. Specifically, both x, and x, were
varied from .1 to .3 and from .8 to 1 in the step of .05. The values of x, were
factorially combined with the same set of values of X, creating 100 training
patterns. In the second case the training sample consisted of patterns near the
boundaries of the two classes. Specifically, one of the two input variables was
flxed at either .5 or .6, while the other varied from .1 to 1 in the step of .05. That
is, when x,=.5 or .6, x, was systematically varied from. 1 to 1 in the step of .05, and
when x,=.5 or .6, x; was varied in the same way x, was varied befofe, giving rise to
68 training patterns in total. _

Figure 10(a) shows the function approximated by the CC network in the first
case where the training patterns are all far away from the boudaries. The network
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discriminates the training patterns very well. However, the approximated func-
tion is distinctly different from the target function (see Figure 1). It takes a single
value (of —.5) in the entire central region of the function domain, where no training
~ patterns existed, resulting in incorrect output predictions for about half of the
patterns in thisregion. To remedy this situation, the training sample was augment-
ed by four additional training patterns: (.6, .6, —.5), (.5, .5, —.5), (.6, .5, .5) and (.5, .6,
.5), where the first number in parentheses indicates the value of x, the second that
of x,, and the third that of y, near the center of the function domain. The approx-
imated function obtained from the augmented sample is presented in Figure 10(b).
(The training with the augmented training sample started from scratch rather than
retraining the previous network with the augmented sample.) A fair amount of
improvement can be observed in the approximation. However, it still falls short of
capturing primary features of the target function.

Figure 10(c) displays the approximated function in the second case where the
training patterns are all near the boundaries. The approximation is fairly good,
although an unexpected rise in the function value can be clearly seen toward the
front end of the function domain, where no training patterns existed. Four training
patterns were added to the training sample: (1,1, —.5), (.1,.1, —5), (1, .1, .5) and (.1,
1,.5). They are all located at the far ends of the function domain. Again the

(a) (b)

Fig. 10 Environmental bias: (a) and (b) The training patterns far away from the boundaries.
(c) and (d) The training patterns near the boundaries.
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training with the augmented training sample started from scratch rather than
retraining the network derived from the unaugmented data. Figure 10(d) indicates
the approximated function with the augmented training sample. The approxima-
tion is quite good; no rise in the function values can be observed any longer toward
the ends of the function domain. The four added patterns played an important role
in defining the extent of the regions in the x —x, plane associated with the two
distinct classes of the output variable. Training patterns bearing crucial informa-
tion on boundaries are far more important than others which are “buried” in the
middle range of the regions. This observation may have an important implication
in education. Examples used in teaching a new concept must define clear bound-
aries of the concept, and the boudaries covered should be far from as well as near
to important distinctions. » :

Investigating the effects of environmental bias is important in a broader
perspective, where we may ask more general questions such as: What is the
optimal design of the training sample? Or what are the psychological implications
of the effects of environmental bias? It has been a long standing problem in
statistics to find an optimal set of training patterns for a particular task. In the
context of NN models, this problem has been investigated by Cohn and his collabo-
rators (Cohn, 1994 ; Cohn, Ghahramani & Jordan, 1995). In psychology, changes in
environment are considered to be a major influence on learning. Dramatic effects
of environmental bias were found in acquisition of personal pronouns (Oshima-
Takane, 1988, 1992 ; Oshima-Takane & Benaroya, 1989 ; Oshima-Takane, Takane
& Shultz, 1995 ; Oshima-Takane, Takane & Takane, 1998 ; Shultz, Buckingham &
Oshima-Takane, 1994 ; Takane, Oshima-Takane & Shultz, 1994) as well as in a
number of other learning situations (e.g., Tetewsky, Shultz & Takane, 1995).

We illustrate the case of personal pronoun acquisition in a little more detail.
Learning of first and second person pronouns presents a psychologically interesting
problem (Oshima-Takane, 1988, 1992; Oshima-Takane, Goodz & Derevensky,
1996). When the mother talks to her child, me refets to the mother, and you refers
to the child. However, when the child talks to the mother, me refers to the child,
and you refers to the mother. Learning of the shifting reference of these pronouns
can be viewed as a special kind of nonlinear function learning, where the function
to be learned stipulates me if the speaker and the referent agree, and you if the
addressee and the referent agree. The effects of environmental bias were inves-
tigated under two conditions: an addressee condition in which the addressee is
always the child, and a nonaddressee condition in which the child is neither the
speaker nor the addressee but an observer of a conversation between others
(Oshima-Takane, Takane & Shultz, 1995; Oshima-Takane, Takane & Takane,
1998 ; Shultz, Buckingham & Takane, 1994 ; Takane, Oshima-Takane & Shultz,
1995). It was found that exposures to nonaddressee patterns were essential for
network’s learning of the target function underlying the correct use of the pronouns.
It was also found that a large variety of nonaddressee patterns facilitated the
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learning of the correct use of the pronouns.

6. Lesioning of connections

It may appear that the effect of a unit on another unit can simply be assessed
by the contributions associated with the connection between the two units. The
contributions of the twelve connections in the derived network have been presented
in Figures 4 through 8. The output connections may be characterized by more than
one set of contributions, because the weights associated with these connections are
updated every time a new hidden unit is recruited, and their contributions change as
the training proceeds. We may focus our attention on a particular output connec-
tion and look at the change in the contributions associated with it over time. For
example, by connecting the leftmost graphs in the top panel of Figures 4, 6, and 8 in
a sequence we can trace the history of contributions of the bias to the output unit.
The same can be done for other units (%, % & #) as well. It looks like that the
contributions of these units increase uniformly as the training proceeds. (Note the
difference in scale on the vertical axis across these figures.)

These unit contributions, however, represent only linear effects. They are
subsequently added and transformed nonlinearly to derive activations of a unit
receiving the contributions. We may define another kind of contributions, which
might be called nonlinear contributions, by the change in the activations produced
by the elimination of a connection or connections. Connections can, in effect, be
“eliminated” by setting the weights associated with them equal to zero. Investigat-
ing the behavior of the network under lesioning of connections is analogous to
observing the behavior of human subjects with brain damage (e.g., Hinton &
Shallice, 1991).

- Figure 11 depicts function approximations obtained by eliminating one of the
twelve connections, in turn, described in Figure 2. Numbers in parentheses give the
SS discrepancies between the full approximation using all the twelve connections
(the middle graph in the bottom row of Figure 8) and the degraded approximations
(Figure 11). They indicate the amount of deterioration in function approximations
due to the elimination of a connection. The consequence of the elimination is
drastic in all cases; even the least damaging one (due to the elimination of Connec-
tion 8) results in a sizable jump (0 to 18) in the value of SS discrepancy. Elimina-
tion of any one of the other connections makes the network performance worse than
a chance level. (The chance level here refers to the SS discrepancy value of 25
obtained when all the predictions are 0.) :

Figure 12 depicts the nonlinear contributions of the twelve connections. They
are obtained by subtracting the deteriorated function approximations (due to a
removal of a connection) in Figure 11 from the full approximation. The nonlinear
contribution functions look quite different from their linear counterparts; the
nonlinear effects of Connections 3(x.—y), 4(h—y), 10(bias— k), and 11(x;— h,) are
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(a)Cut1(50) (b) Cut 2 (36.78) (c) Cut 3 (50)

(e) Cut 5 (39.89)

0.5

0o 05

(h) Cut 8 (18)

1

Fig.11 The reduced function approximations obtained by cutting each one of the twelve
connections. (Numbers in parentheses refer to increase in SS.)

similar, despite significant differences in the corresponding linear effects of these
connections (compare the rightmost graph in the top row and the leftmost graph in
the middle row of Figure 8, and the first two graphs in the top row of Figure 5). A
surface that remains constant at zero indicates no nonlinear contributions of the
unit associated with it. The surface that comes closest to this description is that
of Connection 8. This corresponds with our earlier observation that the effect of
eliminating this connection is least damaging in the approximation of the target
function.

Although this discussion is only concerned with changes in the activations at
the output unit (i.e., changes in output predictions), similar analyses can also be
performed on changes in activation functions at the hidden units.

In this analysis only one connection was eliminated at a time. We may
eliminate more than one connection to study their joint effects. The number of
possible combinations of connections that might be eliminated simultaneously can
be enormous even in a small network like the one depicted in Figure 2. There are
2" different ways of eliminating connections in the network with 12 connections.
Obviously, it is impossible to examine all of them. However, there are subsets of
connections whose joint effects are worth examining. Elimination of a set of
connections may entail the total effect of a unit, only the direct effect of the unit or
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(a) Effect of 1 (b) Effect of 2 (c) Effect of 3

Fig.12 The nonlinear contribution functions of the twelve connections in the network.

the indirect effects of the unit. For example, the joint effect of Connections 1, 6 and
10 represent the total effect of the bias on the output, of which Connection 1 pertains
to the direct effect, while the latter two pertain to the indirect effects of the bias.
Figure 13 shows the total and the indirect effects of the bias, x;, and x,, and the total
effect of ;. The direct effect of the bias (the effect of Connection 1), and the two
partial indirect effects of the bias (separate effects of Connections 6 and 10) were
already given in Figure 12. Similarly, the direct effects (thé effect of Connection 2
for x, and that of Connection 3 for %) as well as their partial indirect effects (the
separate effects of Connections 7 and 11 for x;, and those of Connections 8 and 12 for
x,) were given in Figure 12. The direct and the indirect effects of %, (the effects of
Connections 4 and 9, respectively) were also given in Figure 12. The 4, unit has
only the direct effect (the effect of Connection 5) on the output unit, which was also
presented in Figure 12. It is interesting to note that the size of the total effect is not
necessarily larger than the size of either the direct or the indirect effect, as
measured by the SS discrepancy. That is, simultaneous eliminations of more than
one connection may induce smaller overall damage than elimination of anyone of
them. For example, the size of the total effect of the bias is 48.03, while the direct
and the indirect effects of the bias are both 50. Similarly, the total indirect effect
could be smaller than either one of the partial indirect effects. These somewhat
counter-intuitive phenomena are entirely due to the nonlinear transformations

R T
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(a) Cut 1,6,10 (48.03) (b) Cut 6,10 (50)

Fig. 13 The total and the indirect effects of units: (a) & (b) for bias, (c) & (d) for x, (e) & (f)
for %, and (g) for k. (Numbers in parentheses refer to increase in SS.)

applied to the summed contributions to obtain activation functions in NN models.
Although the distinction among the total, the direct and the indirect effects were
made above only in terms of the effects on the output unit, similar distinctions can
also be made for the effects on hidden units.

Just as the linear contributions evolved over time, the nonlinear contributions
also evolve during the course of network training. The nonlinear contributions in .
earlier stages of network development can be calculated in the same way as in the
final stage. We can look at the history of nonlinear contributions of a unit by
tracing their changes over time. Figure 14 displays the direct effect of the input
variables (the nonlinear contributions of Connections 1,2 and 3) in stages 1 and 2,
and that of &, (the nonlinear contributions of Connection 4) in stage 2. The direct
effects of the five non-output units (the nonlinear contributions of Connections 1
through 5) in the final stage were given in Figure 12(a)-(e).

In the first stage no units could contribute effectively toward the solution. The
output prediction function as well as the nonlinear contribution function of each
input unit was completely flat at zero. In the second stage the output prediction
was improved substantially. Elimination of any one of the four non-output units
(the bias, x1, %, and %) flattens out the prediction function at either —.5 or .5,
indicating that all of them are important for prediction at this stage. The non-
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Stage 1 (Cut 1) Stage 2 (Cut 1)

bs 0o 0.5

Fig. 14 The change in the nonlinear contributions of connections over different stages.

lineér contribution functions of the four units all look similar in shape to the output
prediction function at this stage; only their elevations differ. This tendency
remains essentially the same in the final stage (see Figure 11(a-e) and Figure 12(a-

e)).

7. Discussion

In this paper we have literally seen the mechanism of learning and function
approximations in a CC network. We have emphasized the roles that units are
playing through their connections with other units. We have analyzed how a new
hidden unit is recruited, how activations at hidden units are produced, how contribu-
tions are derived and combined to yield network predictions, and how connection
strengths are adjusted to give optimal network predictions. We have also analyzed
network’s sensitivities to untrained patterns (generalizations), to particuar sets of
training patterns used (environmental bias), and to deletions of some connections in
the derived network. Although the situation (the continuous xo7 problem) taken up
in this paper is somewhat limited in scope, we have done similar analyses and
demonstrated their usefulness in other contexts (Takane, 1995, 1998) as well as in
real empirical situations (pronoun acquisition) with much success (Oshima-Takane,
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Takane & Shultz, 1995; Oshima-Takane, Takane & Takane, 1998 ; Takane,
Oshima-Takane & Shultz, 1994). '

In all of the above analyses, visualizations of approximated functions play a
particularly important role. The visualization strategy works best when there are
only up to two input variables (excluding the bias). It still works when the number
of input variables in three or perhaps four by slicing the functions; that is, by
drawing a series of bivariate functions at several values of the third and the fourth
variables. Examples of slicing functions can be found in Moseholm, Taudorf and
Frosig (1993), Oshima-Takane, Takane and Takane (1998) and Takane (1988).
Beyond that, however, more sophisticated visualization techniques seem to be in
order. We refer to Roosen (1995) and Plate, Band, Bert and Grace (1997) for some
of the techniques for visualizing high dimensional functions. Roosen proposed a
functional ANOVA approach that decomposes approximated functions into the sum
of basic functions pertaining to the main and the lower-order interaction effects
among the input variables. Plate et al,, on the other hand, proposed a special
technique for visualizing departures of the approximated functions from the gener-
alized additive models (GAM : Hastie & Tibshirani, 1990). See also the paper by
Plate in this volume.

There is one useful technique for the analysis of knowledge representations we
deliberately did not discuss in this paper. Linear contributions associated with
different connections in the network are usually correlated. This implies that the
contributions are partially redundant. Principal component analysis (PCA) may be
applied to the matrices of contributions to eliminate this redundancy. The
reduced-rank approximations (afforded by PCA) may be graphically presented in a
manner similar to the above. The reduced-rank approximations may also improve
network’s generalization performance (Takane, Oshima-Takane & Shultz, 1994).
In the example discussed in this paper, the derived network was already fairly
minimal, and there was not much room for further rank reduction. PCA of
unstandardized contributions in CC networks has proven to be useful for under-
standing the nature of the contributions from different units (Shultz, Oshima
-Takane & Takane, 1995). Plotting component scores (possibly after a rotation
like VARIMAX that improves interpretability) is particularly useful for this pur-
pose. PCA has been applied to the analysis of knowledge representations in CC
networks simulating a variety of cognitive-developmental phenomena (e.g., Shultz,
1998 ; Sirois & Shultz, in press; Tetewsky, Shultz & Takane, 1995).

The matrix of contributions may contain known components. It may, for
example, contain linear effects of input variables and the biast These known
effects may be eliminated before PCA is applied to the residuals. This will
highlight more interesting aspects of contributions such as interactions among input
variables. The summed contributions play a crucial role in network performance.
We may eliminate the effect of the summed contributions from the matrix of
contributions and analyze the rest. More generally, the matrix of contributions
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may be decomposed into several components before each component is subjected to
PCA (Takane & Shibayama, 1991). In general, partialing out known or trivial
effects from the matrix of contributions is an effective way of extracting unique
“contributions of particular units.

When there are more than one output unit, contributions to different output
units are related in a special way. They are obtained by applying different weights
to a same set of activations. We may form a single matrix of contributions by
arranging matrices of contributions to different output units side by side and apply
PCA to this super matrix. However, it may be more interesting to apply a three-
way PCA such as PARAFAC (Harshman, 1972). It may lead to a more parsimoni-
ous representations of contributions. PARAFAC solutions are also not rotatable,
unlike usual two-way PCA solutions. Unique orientation of axes may facilitate
interpretation.

More recently, DCP (Discriminant Component Pruning), a method based on
PCA of summed contributions in multi-layered back-propagation networks, has
been proposed (Koene & Takane, 1998) to enhance interpretability of NN models.
DCP may also be extended to cover CC networks.
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