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Models of Cognitive Development

THoMAS R. SHULTZ*

One of the important unsolved problems in cognitive development is the pre-
cise specification of developmental transition mechanisms. Transition is one of the
two major issues in cognitive development, the other being the issue of structure.
The question of structure focuses on what develops at particular ages and stages.
The question of transition focuses on how these structures develop. How does the
child progress from one stage or level to the next ? It has been estimated that 95 %
of literature on cognitive development deals with issues of structure and diagno-
sis of structure (Sternberg, 1984). It is likely that transition issues are ignored lar-
gely because they are so difficult.

Past theories of developmental transitions, such as Piaget’s (1972) assimila-
tion-accommodation model of adaptation, although interesting, have been too
vague to be of much use (Boden, 1982). I believe that computational modeling can
provide insights into the problem of transition mechanisms. Connectionist mode-
ling techniques, based loosely on principles of neuronal computation, appear to be
especially promising in this respect.

In this paper, I argue that generative algorithms provide the right sort of
connectionist model. I focus on the cascade-correlation algorithm which my col-
leagues and I have applied to several diverse areas of cognitive development,
including the balance scale, seriation, and the integration of velocity, time, and
distance cues. '

*  Laboratoire de psychologie cognitive, McGill university, Montréal, Québec.
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1. CONNECTIONISM

Connectionist networks are composed of many inter-connected units. Each unit’s
activity level is modulated by the weighted sum of inputs from other units, passed
through a non-linear squashing function. Each unit runs a simple program in which
the weighted sum of inputs from other units is first computed. Then the unit outputs
a number reflecting its activity level, which is a non-linear function of this weighted
sum. Passing the weighted sum through a non-linear squashing function ensures that
units tend to be either off or on, input has to reach a learnable threshold in order for
the receiving unit to become active, and amount of activity in a unit is limited. Once
the unit’s activity level has been computed, the activity is then sent on to other units
running this same simple program.

Connection weights among the units are adjusted by learning so that the network
can learn to map inputs to appropriate outputs without error. Consistent with the ana-
logy to brain-style computation, units correspond roughly to neurons, unit activity
levels to firing rates, and connection weights to synapses.

There has been considerable skepticism about the appropriateness of connectio-
nist models of higher level cognition and cognitive development. But there is a gro-
wing list of connectionist models in the areas of cognitive (McClelland, 1989), per-
ceptual (Harnad, Hanson, et Lubin, 1994), and language development (Chauvin,
1989 ; Elman, 1993 ; MacWhinney, Leinbach, Taraban, et McDonald, 1989 ;
Plunkett et Marchman, 1991 ; Schyns, 1991 ; Seidenberg et McClelland, 1989). Each
of these models provides interesting explanatory insights. It is also noteworthy that
each of these models uses static, pre-designed networks.

I believe that generative connectionist algorithms are capable of providing better
models of a wide variety of cognitive developmental problems. Generative algo-
rithms start with a minimal network structure and construct the rest of the network
as learning progresses (Fahlman et Lebiere, 1990; Frean, 1990; Marchand, Golea,
et Rujdn, 1990; Mézard et Nadal, 1989). This affords a more principled approach to
network construction than is typical in connectionist research and allows for grow-
th in computational power as well as learning.

II. CASCADE-CORRELATION

With a number of colleagues, I have applied a specific generative connectionist
algorithm, cascade-correlation (Fahlman et Lebiere, 1990), to modeling transitions in
cognitive development. Cascade-correlation utilizes a particularly sensible way of
building up network structure. Like other generative algorithms, cascade-correlation
builds its own network topology by recruiting new hidden units as it needs them to
solve a problem. It starts with a minimal network of input units and output units.
During training, the algorithm may add hidden units one-by-one, installing each new
hidden unit on a new layer. From a developmental point of view, the importance of
generative connectionist algorithms like cascade-correlation is that they are able to
simulate underlying developmental changes that are either qualitative or quantitative.
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There are two alternating, recurrent phases in the cascade-correlation algorithm :
an output phase in which connection weights entering output units are adjusted in
order to reduce the network’s error, and an input phase in which new hidden units
are selected and installed in the network. During the output phase, connection
weights are adjusted according to a gradient descent procedure known as Quickprop
(Fahlman, 1988). The focus is on output side weights, i.e., those connection weights
going into output units. Quickprop modifies each connection weight to minimize the
error at the network’s output units. Error is computed as the sum of squared discre-
pancies between the output activations the net should be producing and those it is
actually producing. Both first and second derivative information from the error func-
tion are used to compute connection weight changes. Weight changes are proportio-
nal to the slope and inversely proportional to the estimated curvature of the error
function. This allows connection weight changes to be decisive and effective.

‘When error is no longer decreasing or the algorithm looses patience at not having
solved the problem in some specified number of passes through the training
examples, there is a shift to the input phase. In the input phase, a pool of candidate
hidden units receives trainable input from the input units and any existing hidden
units. Outputs from candidate hiddens are not yet connected to the output units. The
purpose of the input phase is to recruit a hidden unit whose activations correlate
highly with errors at the output units. Connection weights into the candidate units
are adjusted using Quickprop to maximize the correlations between activations on
the candidate units and the network’s current error. When the correlations are no lon-
ger increasing or a set number of passes through the training examples has occurred,
the candidate hidden unit whose activations come to correlate best with the net-
work’s current error is selected for installation. Selected hidden units are installed
into the network in a cascade, such that each new hidden unit receives input from
the input units and from any previous hidden units. After installation of a new hid-
den unit, the algorithm reverts back to the output phase. These recurring phases of
network growth are portrayed in figure 21.1 for a generic cascade-correlation net-
work with two input units and a single output unit.

Effectively, cascade-correlation is systematically searching not only weight
space, but also the space of network topologies. The algorithm efficiently finds a
network topology and a set of connection weights to solve the problem it is being
trained on.

In this paper, I summarize cascade-correlation simulations of three basic pheno-
mena in cognitive development : the balance scale, seriation, and the integration of
velocity, time, and distance cues. Each is a classic developmental task from Piaget’s
work that has received considerable attention in the contemporary literature.
Moreover, each of the three domains involves sequential stages of acquisition.

III. THE BALANCE SCALE

In balance scale tasks, the child is typically presented with a rigid beam on which
a number of pegs have been placed at different distances to the left and right of a ful-
crum. The experimenter places some number of equally valued weights on a peg on
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Figure 21.1

Generic cascade-correlation nets in various phases of training. Each net has two input units
drawn at the bottom and one output unit drawn at the top. Frozen connection weights are drawn
with solid lines, trainable connection weights with dashed lines. a. Initial output phase before
any hidden units have been installed. b. Input phase, in which each of a pool of candidate units
is trained to predict the error at the output unit. c. Next output phase, after installation of best
candidate hidden unit. d. Next input phase, to recruit a second hidden unit. e. Next output

the left side and on a peg on the right sidel. The child’s task is to predict what will
happen when supporting blocks are removed. Will the scale tip to the left, to the
right, or will it balance ?

By giving the child the six different kinds of problems shown in figure 21.2,
Siegler (1976, 1981) was able to infer the rules children use to solve balance scale
problems. Balance problems have an equal number of weights on each side of the
fulcrum at equal distances. In weight problems, distance is held constant, but one
side of the scale has more weight than the other. In distance problems, the number
of weights is held constant, but distance from the fulcrum varies.

In conflict problems, one side has greater weight and other side has greater dis-
tance. In conflict-weight problems, the side with greater weight goes down. In

1. Inhelder and Piaget (1955) initially used baskets of weights suspended from a beam.
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conflict-distance problems, the side with greater distance goes down. And in
conflict-balance problems, the scale balances.

Siegler (1976, 1981) found that children progress through four distinct rule-
based stages on this task between the ages of 5 and 17 years of age. Children’s
expected performance on the six types of balance scale problems at each of these
stages is shown on the right side of figure 21.2. Children in Stage 1 predict outcomes
on the basis of how many weights have been placed on each side. In Stage 2, chil-
dren continue to use weight information, and begin to use distance information when
the two sides have equal weights. By Stage 3, they are using weight and distance
about equally, but become confused when one side has greater weight and the other
side has greater distance. In the final Stage 4, children perform correctly on a wide
range of balance scale problems, suggesting to some that they may be comparing the
torques on each side of the fulcrum. Torque is the product of weight and distance on
one side of the fulcrum.

Figure 21.2

Stage
1 2 3 4
Balance
|il | | I I |i| correct correct correct correct
Weight
‘l | | I% itl | | I correct correct correct correct
Distance

‘lil | I |i| l | incorrect correct correct correct
Conflict-weight
| |i| | |i| | I‘ correct correct guess correct
Conflict-distance
"il | l |i| | | incorrect incorrect guess correct

Conflict-balance

| I |i| I Iil I incorrect incorrect guess correct

Six types of balance scale problems and predicted performance at four different rule-based
stages. The arrows indicate the side of the balance scale that goes down when supporting
blocks are removed.
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Such stages are characteristic of a large number of problems in which informa-
tion on two dimensions must be integrated. This generality, clarity, and replicability
of these stages have made the balance scale a benchmark for detailed computational
modeling in cognitive development. There are now both connectionist and rule-
based models of balance scale development.

The four stage sequence of performance on the balance scale has been simula-
ted in cascade-correlation nets (Shultz, Mareschal, et Schmidt, 1994). Rule dia-
gnosis over training epochs for a typical network is shown in figure 21.3. An
epoch is a sweep through all of the training patterns. Figure 21.3 shows an order-
ly progression through Siegler’s four rules. The overlap of rule diagnoses at tran-
sition points suggests that the stage transitions are quite tentative. The Hs at the
bottom of the Figure show the epochs at which a hidden unit was recruited. About
one-half of the hidden units installed in these nets were followed by quick stage
progressions. Across networks, there was some skipping and some temporary
regression back to earlier stages, characteristics that are also common to stage pro-
gressions in children.
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Rule diagnosis over epochs in a representative balance scale network. H marks the
epochs at which hidden units are recruited.

The second major psychological regularity in the balance scale literature is the
torque difference effect (Ferretti et Butterfield, 1986), wherein balance scale pro-
blems with large torque differences are easier for children to solve than problems
with small torque differences. Torque difference is the difference between the torque
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on one side of fulcrum and the torque on the other side. Results indicate that the lar-
ger the absolute torque difference, the easier the problem is for children to solve.
This is a perceptual effect, not explainable by Siegler’s rules since any such rule
should apply regardless of the torque difference.

We performed a second simulation in the same fashion except that test problems
were chosen at each of four levels of torque difference. Figure 21.4 plots the mean error
midway through training and at the end of training for 16 nets. The nets showed faster
and deeper error reduction with increasing torque difference, just as with children.

Figure 21.4 ' :
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Mean error in 16 balance scale nets as a function of torque difference at two epochs.

Nets in both simulations were trained to predict balance scale outcomes, given
various configurations of weight and distance information as input. Two environ-
mental constraints were necessary to produce these results. First, there had to be a
strong bias in favor of equal distance problems. This follows McClelland’s (1989)
assumption that, although children have lots of experience lifting differing num-
bers of objects, they have relatively little experience placing those objects at dif-
fering distances from a fulcrum. The second environmental constraint was a gra-
dual expansion of the training problems, conforming to our assumption that the
child’s environment changes gradually, providing exposure to an increasing varie-
ty of problems.

Our results with cascade-correlation nets were better than all previous computa-
tional models of balance scale development. McClelland’s (1989) static back-pro-
pagation network model could not stay in Stage 4, and it required segregated hidden
units for weight and distance information. Newell’s (1990) Soar program failed to
reach Stage 4 and its ability to acquire the first three stages in order may well have
depended on receiving balance scale problems in a particular order. Soar is a pro-
duction system that learns rules through search-based problem solving. Langley’s
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(1987) production rule model modifies existing rules through discrimination lear-
ning, and only captured Stage 3 on the balance scale.

None of these previous models tried for the torque difference effect, but we know
from our own research (Schmidt et Shultz, 1991) that McClelland’s (1989) back-
propagation network model can capture it. The rule-based models would seem to be
incapable of capturing the torque-difference effect since they do not represent
amounts of weight and distance differences. In this sense, perceptual effects like
torque-difference are a kind of lever to separate rule-based from connectionist
models.

IV. SERIATION

The four stages of development on Piaget’s (1941) seriation task have also been
simulated with cascade-correlation nets (Mareschal et Shultz, 1993). In the seriation
task, the child is asked to sort by length a set of sticks of different lengths that are
arranged in a random fashion. Example results from the four stages are presented in
figure 21.5. In Stage 1, children move the sticks randomly or seem unable to make
any move. In Stage 2, children sort a few sticks, creating sorted subsets of two, three,
or four items, but seem unable to complete the entire array. By Stage 3, they achie-
ve a complete sort by a trial and error process, in which moves are often corrected.
Finally, in Stage 4, children complete a full sort without errors, by using a systema-
tic procedure such as moving the smallest out of order stick to its correct position.
Piaget’s evidence indicated that children progress through these stages between four
and seven years of age.

Stage 1 Stage 3 or 4

i

Stage 2 Stage 2

Examples of stages of seriation performance.
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Figure 21.6 shows stage diagnosis in a representative network over epochs of
training. As in the balance scale simulations, there was mostly correct ordering of
stages, soft transitions between stages, and some regression back to earlier stages.
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Rule diagnosis over epochs in a representative seriation network.

The seriation simulations also captured well known perceptual effects on seria-
tion tasks such as the tendency for seriation difficulty to increase with decreases in
size differences among the sticks (Elkind, 1964 ; Klingma, 1984). Figure 21.7 indi-
cates that the proportion of nets achieving a complete sort (i.e., reaching Stages 3or
4) increases with the step size of the inputs. Step size corresponds to the difference
in length between adjacent sized sticks.

Certain architectural and environmental constraints were required to capture
these seriation effects. First, there had to be two modular nets, one to identify which
stick to move and another to identify where to move it. Both modules were presen-
ted with the same input, namely the current status of the array of sticks. Second,
there had to be a small bias in favor of nearly ordered arrays, conforming to our
assumption that such arrays would be more common in the environments of young
children. A nearly sorted array could, for example, serve as a cue for a child to fini-
sh the sort. Third, there had to some smaller arrays in the training set. We worked
principally with arrays of six items, but it was important to include a few arrays of
three items in training. It is reasonable that such small arrays would be common in
the child’s environment, and evidence suggests that children are able to sort these
small arrays before they can sort large ones (Koslowski, 1980).
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Mean proportion of nets performing a complete sort as a function of step size difference.

Again, performance of our cascade-correlation nets were superior to that of pre-
vious computational models of seriation. A number of rule-based models (Baylor,
Gascon, Lemoyne, et Pothier, 1973 ; Retschitzki, 1978 ; Young, 1976) captured the
static behavior characteristic of particular seriation stages, but these models showed
no transitions, no perceptual effects, and no spontaneous variation between or within
individual children.

V. VELOCITY, TIME, AND DISTANCE

Cascade-correlation nets have also simulated rule-based stages in the integration of
velocity, time, and distance information (Buckingham et Shultz, 1994). In classical phy-
sics, velocity = distance / time. Thus, distance = velocity * time, and time = distance /
velocity. Piaget (1946a et b) wrote two books on how children come to integrate these
concepts, and many other researchers followed up his initial investigations. For
example, Piaget would show the child two trains running along parallel tracks and ask
«Which train travels for the longer time ?» Four-year-olds chose the train that traveled
for the longer distance, suggesting that their notion of time was based on spatial distan-
ce. Later researchers criticized this technique on the basis that it tested the child’s abili-
ty to ignore information, not to integrate it (Levin, 1977 ; Wilkening, 1981). For
example, on the just mentioned task, travel time information could be directly read from
the trains if the child could ignore data on distance, velocity, and all other variables.
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A pure inference task was designed by Wilkening (1981). Children had to pre-

&+ qigt oge dimension (e.g., velocity) from kggwled e of the other two (e.g., time and
distance). For example, three levels of vélocity iRformation were represented by a

turtle, a guinea pig, and a cat. These three animals were said to be fleeing from a bar-
king dog, and the child was asked to imagine these animals running while the dog
barked. The child’s task was to infer how far an animal would run given the length
of time the dog barked. This would be an example of inferring distance from velo-
city and time. .

Cascade-correlation nets learning similar tasks typically progressed through an
identity stage (e.g., velocity = distance), followed by an additive stage (e.g., veloci-
ty = distance — time), and finally the correct multiplicative stage (e.g., velocity = dis-
tance / time). Many of these stages have been found with children (Wilkening,
1981), and others remain as predictions for future psychological research.

Figure 21.8 shows rule diagnosis in a representative net learning all three infe-
rence tasks. Rule diagnosis is based on correlations between network outputs and
various algebraic rules like those observed in children, computed every fifth epoch
during training. To characterize network performance, an algebraic rule had to cor-
relate positively with network responses, account for more than 50 % of the varian-
ce in network responses, and account for more variance than any other rules did. For
velocity and time inferences, this net exhibited an identity rule, followed by a diffe-
rence rule, followed in turn by the correct ratio rule. Results were similar for dis-
tance inferences, except that there was no identity rule. There is no reason the net
should favor either velocity or time information in making distance inferences
because both velocity and time vary proportionally with distance.

Figure 21.8
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Rule diagnosis over epochs in a representative velocity, time, and distance network. H marks
the epochs at which hidden units are recruited.
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Such rule progressions are natural for cascade-correlation nets. The shift from
linear to non-linear solutions occurs because of the progressive recruitment of hid-
den units. Linear rules include identity (e.g., velocity = distance), sum (e.g., distan-
ce = velocity + time), and difference (e.g., time = distance — velocity) rules, whereas
non-linear rules include product (e.g., distance = velocity * time) and ratio (e.g.,
velocity = distance / time) rules. In contrast, static back-propagation nets are unable
to capture these stage sequences (Buckingham, personal communication). If a back-
propagation net has too few hidden units, it fails to reach the correct multiplicative
rules; if it has too many hidden units, it fails to capture the intermediate difference
stages on velocity and time inferences. There seems to be no pre-designed back-pro-
pagation net topology that can capture all three stages on these tasks.

No alternative computational models have been applied to the velocity, time, and
distance phenomena.

CONCLUSION

Cascade-correlation nets implement the right sort of model for simulating cogni-
tive development. They show the ability to capture rule-based stages (all three simu-
lations), perceptual effects (balance scale and seriation), and developmental transi-
tions (all three simulations).

The basis for rule-like behavior in cascade-correlation nets, as found in these and
other simulations (Shultz, Schmidt, Buckingham, et Mareschal, in press), is the abi-
lity of the nets to extract statistical regularities from the learning environment. These
include simple linear regularities as well as more complex non-linear regularities,
signaled in cascade-correlation by the recruitment of new hidden units into the net-
work. Simple linear regularities include the use of weight information on the balan-
ce scale and identity rules in the integration of velocity, time, and distance cues.
More complex non-linear regularities include the torque rule on the balance scale
and correct ratio rules in integrating velocity, time, and distance cues.

Learning of rule-like behaviors in psychologically realistic stage sequences is a
matter of both domain-specific factors like environmental bias and task modulariza-
tion and domain-general factors like a summative activation rule and the recruitment
of hidden units. Environmental bias favoring equal distance problems forced balance
scale nets to focus on weight information to the temporary exclusion of distance infor-
mation. Modular nets were required for generating seriation phenomena. Use of an
activation rule that sums the inputs to units was important in producing early additive
rules on balance scale and velocity, time, and distance judgments. Recruitment of hid-
den units was important in the eventual acquisition of non-linear rules, such as the
torque rule on the balance scale (compare the torques on each side of the fulcrum) and
the correct ratio rules in integrating velocity, time, and distance cues.

Perceptual effects reflect the continuous nature of network computations in tasks
where quantitatively described items are mapped to a qualitative comparison. In
such cases, different sources of quantitative information must be compressed to
reach a qualitative decision. Whenever the relevant quantitative inputs are large and
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clear, the qualitative decision is easier. This characterizes the torque difference effect
on the balance scale and the effect of stick size differences in seriation. No percep-
tual effects would be expected on tasks like the integrating velocity, time, and dis-
tance where quantitative inputs are mapped onto a quantitative output. No matter
what size differences are represented on the inputs, the net must learn predict the
output as exactly as possible.

The performance of cascade-correlation nets can be contrasted with that of other
modeling techniques, both rule-based and connectionist. Symbolic rule-based
models often have difficulty with stage transitions (balance scale and seriation simu-
lations), perceptual effects (balance scale and seriation simulations), and variation
within and between subjects (seriation simulations). Static connectionist networks,
such as back-propagation, can capture perceptual effects and variations, but often
have difficulty with stage sequences, as in the balance scale simulations.

Cascade-correlation nets simulate developmental transitions with the dual tech-
nique of hidden unit recruitment and connection weight adjustment. This allows
modeling of both underlying qualitative and quantitative changes. As such, this sort
of model allows a novel and precise re-formulation of Piaget’s notions of assimila-
tion and accommodation (Shultz ef al., in press).

It is possible to imagine three types of cognitive encounters in cascade-correla-
tion nets. First, there is pure assimilation without learning. This occurs via correct
generalization to previously unseen patterns, with neither connection weight
changes nor hidden unit recruitment. Second, there is assimilative learning via
connection weight adjustment, but without hidden unit recruitment. Here, the net
learns new patterns that do not require non-linear increases in representational
power. Piaget had no way of describing learning without accommodation, i.e.,
without underlying qualitative change. Finally, there is accommodation via hidden
unit recruitment, where the net needs to increase its computational power.

These types of cognitive encounter are not merely qualitative distinctions, but
rather regions on a quantitative continuum of learning difficulty. Pure assimilation
requires minimal learning and pure accommodation requires extensive learning.
Furthermore, all three processes are driven by same underlying mechanism of error
reduction, i.e., reducing the discrepancies between expectations and outcomes.
Further development of these ideas could lead to a novel and productive theory of
cognitive development.



