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One of the key unsolved problems in cognitive development is the precise
specification of developmental transition mechanisms. As the work in this
volume attests, it is clear that computational modeling can provide insights
into this problem. In this chapter, we focus on the applicability of a specific
generative connectionist algorithm, cascade-correlation (Fahlman & Le-
biere, 1990), as a process model of transition mechanisms. Generative
connectionist algorithms build their own network topologies as they learn,
allowing them to simulate both qualitative and quantitative developmental
changes. We compare and contrast cascade-correlation, Piaget’s notions of
assimilation and accommodation, Papert’s little known but historically
.relevant genetron model, conventional back-propagation networks, and
rule-based models.

Specific cascade-correlation models of a wide range of developmental
phenomena are presented. These include the balance scale task; concepts of
potency and resistance in causal reasoning; seriation; integration of the
concepts of distance, time, and velocity; and personal pronouns. Descrip-
tions of these simulations stress the degree to which the models capture the
essential known psychological phenomena, generate new testable predic-
tions, and provide explanatory insights. In several cases, the simulation
results underscore clear advantages of connectionist modeling techniques.
Abstraction across the various models yields a set of domain-general
constraints for cognitive development. Particular domain-specific con-
straints are identified. Finally, the models demonstrate that connectionist
approaches can be successful even on relatively high-level cognitive tasks.
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TRANSITION AS A MAJOR UNSOLVED PROBLEM

Although researchers have come some distance in understanding the
development of children’s thinking, much of the research has been directed
toward a structural analysis of the relevant thought processes. Mechanisms
governing developmental transitions were often neglected as this issue was
typically viewed as too complex to fathom. Nevertheless, it has also been
argued that such structural descriptions do not suffice (Boden, 1982). To
fully understand cognitive development, one also needs a theory of the
various transformations that structures undergo. Moreover, even when
transition mechanisms were tentatively proposed, they tended to account
for only qualitative transitions (van Geert, 1991).

Piaget’s theory of cognitive development is a prime example of a theory
that fails to specify transition mechanisms with sufficient precision (Bates
& Elman, 1993; Boden, 1982). The proposed motors of development in
Piagetian theory are assimilation, accommodation, and equilibration
(Piaget, 1972). Assimilation consists in the child modifying the incoming
environmental information to allow it to fit within the child’s existing
structures. Accommodation occurs when the child modifies existing mental
structures under environmental pressures. Finally, equilibration consists in
the coordination of assimilation and accommodation so as to achieve
optimal harmony between the environment and mental structures. Assim-
ilation and accommodation always occur together, although phases of
predominant assimilation or predominant accommodation also occur.

Piaget struggled throughout his career to precisely formulate these ideas
(Piaget, 1977). Yet many contemporary researchers feel that Piaget fell
short of this goal (Boden, 1982). Piaget was criticized for assuming what he
was trying to explain (Macnamara, 1976), as well as for not analyzing
critical presuppositions (Ninio, 1979). The issue of how newly created
structures are integrated with older structures, without completely dis-
rupting the child’s existing reasoning abilities, is not resolved (Boden, 1982).
Piaget’s concepts are not constrained enough to carry over into the
computational domain.

Although we have focused on Piaget’s work to illustrate our point, he is
not the only theorist who faltered when faced with the problem of transition
mechanisms. Indeed, when reviewing a number of proposed transition
mechanisms, Flavell (1984) found fault with all of them. The criteria he
suggested for evaluating theories of transition are as follows. First and
foremost, a good theory should propose clearly defined mechanisms. All
modes of operation should be described precisely and in great detail.
Second, the theories should suggest empirical studies that would allow
evaluation of the plausibility of the models as accounts of how cognitive
development proceeds. Thus, the ultimate value of a theory is related to its
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ability to account for existing observations and to suggest new studies that
lead to the discovery of novel phenomena.

A COMPUTATIONAL APPROACH
IS THE REQUIRED SOLUTION

One solution to the lack of precision in transition mechanisms is to use a
formal language such as mathematics to describe the processes involved.
The consistency of the proposed mechanisms could then be tested through
computer simulations. Simulation is an ideal medium for exploring the
implications of a complex model and can result in the prediction of
seemingly counterintuitive findings (Lewandowsky, 1993). It provides a
formal framework that can disambiguate verbal formulations.

The connectionist models we present here make use of both the mathe-
matical and computational levels. The dynamics of a network are specified
by activation functions, learning rules, training regimes, and so on. The
legitimacy of the proposed model is then evaluated through explicit
comparisons of computer simulations with observed psychological data.

The complimentarity of computational modeling and traditional devel-
opmental theorizing promises to be fruitful. If modelers can take account of
the empirical data provided by traditional psychological accounts, then
crucial questions may be answerable (Boden, 1980). The promise of the
computational approach is that it naturally satisfies Flavell’s (1984) meth-
odological criteria because it is precise and generates novel predictions.

With these goals in mind, early modelers of cognitive development often
adopted a production system approach (Boden, 1988). Initially these
rule-based models were static descriptions of performance during a par-
ticular stage of development. More recently though, developmental re-
searchers are exploring the utility of self-modifying production systems
(Klahr, Langley, & Neches, 1987; Newell, 1990). The adequacy of these
models, however, was challenged by the application of connectionist
models.

Attempts to provide a formal analysis and implementation of Piagetian
development within a connectionist framework can be traced to the early
1960s. Papert (1963) tried to build an automated equilibratory system that
he called the genetron. He argued that behavioristic learning theorists were
correct in claiming that the underlying mechanisms of intelligence are
simple if considered independently, but that they unfortunately ignored the
interactive complexity of the ensemble. Papert argued that models that
relied on progressive and hierarchical acquisition of functions would evolve
in a stagelike manner. He hypothesized that such models would develop
through alternating periods of first lowering variability in the system, and
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then constructing new functions. The genetron was largely hand con-
structed from a collection of elementary perceptrons (two-layered net-
works). Although an attempt was made to simulate children’s developing
integration of information in a length comparison task, no tangible
empirical results were provided and the project was apparently dropped.
Presumably, the technical limitations of perceptrons (Minsky & Papert,
1969) outweighed the potential benefits of this type of model.

APPROPRIATENESS OF CONNECTIONIST APPROACHES

Modern connectionist methods offer a number of potential advantages for
the creation of process models of cognition, including the ability of these
nets to learn procedural and declarative knowledge, generalize to novel
situations, and derive coherent solutions despite variable environmental
input. Because of these strengths, connectionist simulations are now
starting to illuminate several aspects of cognitive, perceptual, and language
development.

Harnad, Hanson, and Lubin (1994) showed how categorical perception
might arise as a natural side effect of back-propagation learning. Several
psychological phenomena in concept acquisition and semantic development
were addressed within the connectionist framework, including prototype
and typicality effects, semantic over- and underextension, the mutual
exclusivity constraint, vocabulary explosion, and the emergence of compre-
hension before production (Chauvin, 1989; Schyns, 1991).

Several other aspects of language development were also simulated with
connectionist techniques, including the formation of the English past tense
(Hare & Elman, 1992; Marchman, 1992; Plunkett & Marchman, 1991),
article choice for German nouns (MacWhinney, Leinbach, Taraban, &
McDonald, 1989), word recognition and naming (Seidenberg & McClelland,
1989), and syntactic development (Elman, 1993).

The pioneering attempt to apply modern connectionist techniques to
developmental problem solving tasks was McClelland’s (1989) model of
balance scale stages, a task that we discuss in detail later.

Taken together, this research suggests that a connectionist approach to
cognitive development cannot be easily dismissed. The models yielded
qualitatively accurate simulations of a variety of different phenomena, and
provided a number of explanatory insights. Recent theoretical papers
argued that the application of connectionist techniques to cognitive devel-
opment is fostering a needed return to the traditional issues of change and
transition (Bates & Elman, 1993; Plunkett & Sinha, 1992; Shultz, 1991). For
the aforementioned reasons of difficulty, developmental psychologists have
tended to ignore issues of change and transition in favor of diagnostic
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concerns. Connectionist networks provide a precise and concrete way to
think about developmental change.

All of the foregoing models had static network processing structures that
were hand designed by the researchers. Further, all of the learning was
accomplished solely by small adjustments in network weights over many
epochs. For our simulations of cognitive development, we opted instead for
a generative algorithm, in which small quantitative changes in connection
weights are augmented by qualitative changes in network topology as
learning progresses. A number of generative connectionist learning frame-
works exist (Alpaydin, 1991; Hertz, Krogh, & Palmer, 1991). We focus on
one, cascade-correlation (Fahlman & Lebiere, 1990), that is particularly
suitable for modeling cognitive development.

Continuous small weight changes can sometimes produce qualitative

behavioral shifts, even in static networks. Such outcomes were described in
terms of mathematical catastrophe theory (Pollack, 1990; van der Maas &
Molenaar, 1992). A traditional view of cognitive development is that
qualitative behavioral changes arise instead from a major restructuring of
cognitive processing (Piaget & Inhelder, 1969). A possible advantage of
using generative network models is that both types of transition mecha-
nisms can be examined simultaneously. Some qualitative behavioral
changes may result from continuous quantitative adjustments alone,
whereas others may also require qualitative changes in network topology.
Research with static networks does not facilitate the study of interactions
between underlying quantitative and qualitative changes.

THE CASCADE-CORRELATION LEARNING ALGORITHM

Cascade-correlation begins with a minimal network topology consisting of
a single layer of input units fully connected to a single layer of output units
(Fahlman & Lebiere, 1990; Fig. 5.1a). The algorithm then designs and
recruits its own hidden units as and when it needs them. Cascade-
correlation operates in two alternating phases: an output phase in which
weights leading to output units are modified (Figs. 5.1a, 5.1c) and an input
phase in which candidate hidden units are trained for installation in the
network (Fig. 5.1b). The name cascade-correlation presumably derives
from the way that hidden units are recruited into the network. In each input
phase, the candidate hidden unit whose activations correlate maximally
with the network’s existing error is selected for installation. Hidden units
are arranged in a sort of cascade, so that each new hidden unit receives
input from all of the previous hidden units.

Learning proceeds in batch mode, that is, all weight modifications occur
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FIG. 5.1. Training in cascade-correlation. Modifiable connections are represented by dashed
lines and nonmodifiable connections are represented by solid lines. (1a) and (Ic) refer to output
phases, (1b) to an input phase. Adapted with permission from Shultz, Mareschal, and Schmidt
(1994).

after a complete blocked presentation of all of the input-output pattern
pairs. This is a requirement of the quickprop weight adjustment algorithm
that is used within cascade-correlation (Fahlman, 1988). Such a complete
presentation of the training patterns is called an epoch. Victory is achieved
when all output activations are within a small threshold of their target
values.

There is considerable psychological (Oden, 1987) and physiological
(Dudai, 1989; Squire, 1987) evidence for batch learning. For example, the
hippocampus processes information in batch mode in order to relay its
information to relevant cortical areas at some later time. Batch learning is
potentially more computationally efficient than pattern learning because it
requires fewer weight updates for the same number of patterns.! Batch
learning also avoids making and unmaking redundant weight changes that
might result from the purely local evaluations of error signals in pattern
learning. Even in batch learning, however, outputs are compared to their
targets independently of other patterns. Thus, the system never has to
process more than one pattern at a time although it does keep a running sum
of the error that is eventually used to adjust the weights.

'In pattern learning, weights are adjusted after every training pattern.
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Output Training

During the output training phase, weights leading to the output units are
modified so as to minimize the sum of squared error (E):

E = EE(A"’ - Top)2 M
P

where o indexes the output units, p indexes the input-output pairs, A is the
actual activation of an output unit, and T is the target activation for that
output unit. If E stagnates (i.e., ceases to change by more than a specified
amount for a certain number of epochs) or a specified maximum number of
epochs elapses, the algorithm changes to the input phase.

Input Training -

During the input training phase, weights leading to the output units are
frozen, meaning that they are no longer allowed to change. A number of
candidate hidden units are connected with random weights from all input
units and existing hidden units. The weights leading to each candidate unit
are then adjusted to maximize the absolute value of the correlation (C)
between the activation of that unit and the residual error at the output units,
across all patterns.

Ezl(hp - <h>)(eop - <eo>)|

° P
EE(eOP - <eo>)2 @)
op .

C =

where h,, is the activation of the candidate hidden unit for pattern p, <h>
is the mean activation of the candidate hidden unit for all patterns, e, is the
residual error at output o for pattern p, and <e,> is the mean residual
error at output o for all the patterns. ‘

Training continues until C stagnates or a prespecified maximum number
of epochs has elapsed as described earlier. At this point, the candidate unit
with the largest C is retained and all other candidate units are discarded.
The input weights to the newly installed hidden units are then frozen and the
unit is allowed to send output to all of the output units. The algorithm
returns to the output training phase with the added power of the new hidden
unit that is particularly adept at detecting the residual error that the network
was encountering.
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The Quickprop Algorithm

Rather than using the usual back-propagation algorithm (Rumelhart,
Hinton, & Williams, 1986) to modify weights, cascade-correlation uses a
second-order algorithm developed by Fahlman (1988) called quickprop.
Quickprop was inspired by Newton’s minimization methods and incorpo-
rates curvature information into the optimization process. It is based on
two assumptions: that weights contribute independently to the function
being optimized, and that the function is locally quadratic. The value of the
function and its slope at the current and previous points are used to
uniquely define a parabola. The weight that minimizes this parabola is then
selected as the next weight for that connection in the network. Although this
is the mechanism at the heart of the quickprop algorithm, under some
conditions modifications occur so as to bootstrap the process and avoid
certain computational pitfalls (for a detailed description and justification of
these modifications see Mareschal, 1992). The actual update rules in
Fahiman’s code are:

Wy — wy = efiwy)if wy, ~ w; =0
___Jw)
M T2 ey — fowy M2
Lwy) 3)
lﬂwl) = fow)| <

wy — w, = u(w, — w,) otherwise

- wl)iwa"' Wl $0and

where the indices 1, 2, 3, represent three consecutive time steps, f is the
derivative of the function being optimized (E in the case of the output
phase, C for the input phase), ¢ is a parameter controlling the amount of
gradient descent, and m is a parameter controlling the maximum step size.
The product e f{lw,) is added to the weight update even when the previous
weight change is nonzero, that is, in lines 2 and 3 of Equation 3, except
when the current slope is of opposite sign from the previous slope. This
detail is not presented in Equation 3 in order to keep this equation legible.

Activation Functions

Three types of activation functions are available for hidden units in
cascade-correlation: linear, sigmoid, and gaussian. Throughout all of the
present models, we used sigmoid activation functions, symmetrical around
0 and ranging from -0.5 to +0.5.
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where y is the resulting activation of the receiving unit indexed by i, x is the
activation of a sending unit indexed by J, and w is the weight connecting
those two units. Our input units typically have linear activation functions,
meaning that they sum all input into them and output that sum.

Developmental Implications

Papert’s (1963) genetron, developed specifically to model Piagetian phe-
nomena, is a historical precedent for cascade-correlation. The genetron
consisted of hierarchically ordered and recurrently connected perceptron
units. Papert gave several mathematical arguments for why this model
should develop through alternate phases of noise reduction and internal
function construction, thereby giving rise to stagelike development.

Mareschal (1991) identified similarities between the genetron and cascade-
correlation. Both can be expressed within the Piagetian framework. For
Piaget, equilibration consisted of alternating periods of accommodation to
new information followed by assimilation of familiar information. In
connectionist models, the knowledge structure of a domain is embodied in
the nodal architecture and the knowledge content is embodied in the weights
linking those nodes. The period of error reduction can be viewed as the
assimilation (or partial assimilation) of information into previously existing
knowledge structures. Only the weights (i.e., the content of the knowledge)
are being modified. The period of hidden unit recruitment can be seen as the
accommodation of knowledge structures to unassimilated information. As
with the child, assimilation corresponds to a period in which new informa-
tion can be integrated within existing knowledge structures, whereas
accommodation corresponds to a period in which genuinely new structures
are created out of older ones without functional impairment of the system
as a whole.>

We now turn to a review of some of our cascade-correlation models of
developmental phenomena. These include models of balance scale phenom-
ena; concepts of potency and resistance in causal reasoning; seriation;
integration of the dimensions of distance, time, and velocity; and acquisi-
tion of personal pronouns. All of these simulations, except for pronouns,
involve reasoning about aspects of the physical world. As noted earlier,

2We extend this interpretation of cascade-correlation in terms of assimilation and accom-
modation in the General Conclusions and Discussion section.
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most developmental connectionist work concerned concept or language
acquisition. The simulation choices reflect a smattering of a benchmark
modeling problem (balance scale), topics we worked on and thus were
interested in and knew well (potency and resistance; pronouns), and basic
well-known developmental phenomena (seriation; distance, time, velocity).

THE BALANCE SCALE

The balance scale task is an appealing candidate for cognitive develop-
mental computational modeling. The task combines an explicit and well-
defined methodology with detailed human observations. The clarity and
replicability of balance scale phenomena with humans, coupled with the
classical developmental appeal of its stagelike character, led to both
connectionist (McClelland, 1989; Shultz & Schmidt, 1991) and rule-based
models (Langley, 1987; Newell, 1990).

We used cascade-correlation as a transition mechamsm to create two
general types of working models of developmental balance scale phenom-
ena, each embodying different sets of theoretical assumptions. One type of
model adopted the assumption of a biased training environment, after
McClelland (1989). A second type of model investigated the effect that
prestructuring the network’s starting state had on development of behavior
on the balance scale. After reviewing the task’s psychological background,
an evaluation of existing balance scale models is presented, and then we
report on the two cascade-correlation models.

Psychology of the Balance Scale

The balance scale task was developed by Inhelder and Piaget (1958) for their
studies of proportionality concepts. Examples of the balance scale appa-
ratus appear on the left side of Fig. 5.2. The child is shown a balance scale
supported by blocks so that the scale stays in the balanced position. Next,
a number of weights are placed around one of a number of evenly spaced
pegs on either side of the fulcrum, and it becomes the child’s task to predict
which arm will go down, or whether the scale will balance, once supporting
blocks are removed. For perfect responding, the task requires that the child
integrate information from the two dimensions of weight and distance.
Perfect performance on this task can be calculated via multiplication.
Torques can be calculated for both the left and right arms by multiplying
weight by distance; the side with the larger torque will go down. If the
torques are equal, then the scale will balance.

Siegler (1976, 1981) operationalized Inhelder and Piaget’s (1958) obser-
vations with a rule assessment methodology, proposing that development
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FIG. 5.2. Predicted percentage of correct answers on different balance scale problem types
for children responding in accordance with different rules. Adapted with permission from
Shultz, Mareschal, and Schmidt (1994).

on the balance scale task is characterized by the use of four increasingly
powerful rules. Children diagnosed as using a given rule are classified as
being in the corresponding stage of development. Stage 1 performers use
only weight information to determine if the scale will balance. Stage 2
subjects emphasize weight information but consider distance if weights on
either side of the fulcrum are equal. Stage 3 subjects correctly integrate both
weight and distance information for simple problems, but respond indeci-
sively when one arm has greater weight and the other greater distance. Stage
4 subjects correctly integrate weight and distance information for near
perfect performance, suggesting but not requiring that they explicitly
understand and use torques. There is some debate concerning the propor-
tion of the population that reaches Stage 4, yet it is clear that some
individuals do so (Siegler, 1981). Because very few studies have assessed
adult competencies, there remains the possibility that Stage 4 performance
may be achieved given a high degree of experience, perhaps even without
explicit knowledge of torque (Shultz, Mareschal, & Schmidt, 1994).

In order to assess children’s stages of development, Siegler partitioned the
entire set of balance scale problems into six different problem types, and
used performance on a subset of these problems to classify subjects as
conforming to a particular rule. Balance problems have equal numbers of
weights placed at equal distances from the fulcrum. In weight problems,
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distances on ecither side of the fulcrum are equal so the side with more
weights goes down. In distance problems, the arm with greater distance goes
down because the two sides have equal weights. Conflict problems have
greater weight on one arm and greater distance on the other. The correct
response to a conflict problem determines its classification as a conflict-
weight, conflict-distance, or conflict-balance problem. A child’s perfor-
mance was classified by the pattern of successes and errors observed when
tested with 24 problems, 4 from each of the 6 problem types. Siegler’s four
rules, as they appear on the right side of Fig. 5.2, define the expected
percentages of correct responses across the six problem types.

A number of basic observations emerged from balance scale research
using both Piagetian style observation and Siegler’s rule assessment meth-
odology. First, as children get older, they appear to progress systematically
through rule-based stages as described earlier. A second developmental
observation is a pattern of U-shaped performance between Stages 2 and 4
for conflict-weight problems. Children predict correct outcomes for these
problems during Stages 1 and 2, lose this ability during Stage 3, and regain
it in Stage 4. A third balance scale regularity is that the greater the
difference in torque between the two sides of a balance scale, the more likely
it is that a child will respond correctly (Ferretti & Butterfield, 1986). This
torque difference effect makes it possible for the same child to be classified
at different stages by Siegler’s rule assessment procedure depending on the
test problems’ differences in torque.

A Review of Previous Balance Scale Models

There are three symbolic models and two connectionist models of the
balance scale task published to date. Klahr and Siegler (1978) modeled each
of the four stages of balance scale development as production rules. This
work is descriptive of the child’s performance, but no attempt was made to
provide a mechanism for stage transitions. Langley (1987) expanded upon
Klahr and Siegler’s (1978) findings by adding a transition mechanism.
Langley’s model started with a set of rules that made random predictions.
The system would then learn from its errors on specific problems and
improve with experience. The transition mechanism was a discrimination
process that looked for differences between cases in which correct predic-
tions were made and cases in which errors were made.

Langley (1987) reported that the system learned to perform at Stage 3,
but never reached Stage 4. Moreover, it did not appear to move through
Stages 1 and 2 on its way to Stage 3. The model’s responses were not tested
for the torque difference effect or for U-shaped development on conflict-
weight problems.

Newell (1990) reported on a model of the balance scale task using the
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Soar architecture, which creates rules by chunking the results of search-
based problem solving. This model learned to correctly respond to just four
balance scale problems, moving through Stages 1, 2, and 3 in the process,
although Stage 4 was never achieved. The model’s responses were not tested
using Siegler’s rule assessment methodology, and no attempt was made to
test for the torque difference effect or for U-shaped development on
conflict-weight problems. There was no comparison of the model’s output
to human data, except for an overall qualitative judgment of stage
transition. The psychological realism of this Soar model is questionable.
First, stage transition apparently occurred from processing a single exem-
plar, whereas children have years of experience lifting and holding objects
before they make the same transition. Second, it is unclear how dependent
the Soar model was on observing specific exemplars in a certain order
(Shultz & Schmidt, 1991). Finally, as mentioned, the Soar model failed to
reach the level of Stage 4 responding.

McClelland (1989) used a back-propagation network that assumed sepa-
‘rate processing of weight and distance information, implemented by having
two hidden units receive only weight input and two others receive only
distance input. A subset of all the possible training patterns was randomly
selected each epoch with a strong bias in favor of equal distance problems.
It was suggested that this bias, responsible for the appearance of the first
two stages, reflects children’s extensive experiences picking up differing
numbers of objects and their limited experience at placing such objects at
various distances from a fulcrum. Recent extensions to this model (McClel-
land & Jenkins, 1991) also demonstrated a differential readiness to learn,
behaviorally similar to children in Siegler’s (1976) experiments.

McClelland’s model successfully captured many of the details found in
the human balance scale literature, including orderly stage progression. It
can also capture the torque difference effect (Schmidt & Shultz, 1991).
However, this model failed to achieve a consistent level of Stage 4
performance. Of notable merit, McClelland’s was the first balance scale
model subjected to the rigorous rule assessment methodology used with
humans and the first to demonstrate that progression through rule-based
stages could be accomplished by connectionist learning.

The Environmental Bias Model

We have previously reported on a cascade-correlation model of develop-
ment on a 10-peg, 10-weight balance scale task (Shultz, Mareschal, &
Schmidt, 1994; Shultz & Schmidt, 1991). This model incorporated the
assumption of an environmental training bias (after McClelland, 1989),
where equal-distance problems (problems in which the distance of weights
on either side of the balance scale are equal) were much more frequent than
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other types of problems in the training corpus. This training bias makes it
difficult for the network to extract information contributed by the distance
dimension, but allows the network to rely on weight information, thus
encouraging initial performance at Stages 1 and 2. Coupled with this
environmental bias was a training method that gradually introduced new
patterns for the network to learn from. This training method is called
expansion training and it conforms to the authors’ assumption that the
child’s environment changes gradually as the child is exposed to more and
more instances of lifting and holding objects.

The initial network topology of the environmental bias model appears in
Fig. 5.3. The input encoding of both distance and weight information was
implemented using integers in the range of 1 to 5. The activation values of
the outputs (2 real numbers between —0.5 and +0.5) are interpreted to
transform the network’s output into one of three possible predictions. A
prediction of left side down was conveyed by excitation of the first output
unit and inhibition of the second output, whereas a prediction of right side
down was conveyed by the reverse pattern. A balance prediction was
conveyed by neutral (i.e., 0) values on both outputs.

The environmental bias model’s initial training corpus was composed of
100 training patterns randomly selected without replacement from the entire
set of 625 possible training instances (1 to 5 weights per peg, crossed with 1
to 5 regularly spaced pegs on either arm). Of these initial patterns,
approximately 90% had weights placed equally distant from the fulcrum.
On each subsequent epoch, another training pattern was randomly drawn

Down side

Bias Weight Distance Weight Distance

FIG. 5.3. Initial balance scale network topology and an example of input encoding for the
environmental bias balance scale network.

ey
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with replacement (also subject to the same bias) and added to the set of
instances from which the network learned.

After each output epoch, the network’s performance was evaluated using
Siegler’s rule assessment methodology. Twenty-four testing instances bal-
anced for torque difference (four from each of the six different problem

_types, and of those four, one from each of four different torque difference
Jevels) were randomly chosen at the beginning of each simulation run for
use in assessing the network. All 16 runs of the model demonstrated orderly
longitudinal stage progression as scored according to the criteria used in
human studies (Siegler, 1976). Transitions between stages were typically
soft, with a good deal of going back and forth between stages before settling
into the higher stage. There were also observations of stage skipping and
regression back to earlier stages (Shultz, Mareschal, & Schmidt, 1994;
Shultz & Schmidt, 1991). A limited amount of stage skipping and regression
is characteristic of human data as well (Chletsos, De Lisi, Turner, &
McGillicuddy-De Lisi, 1989; Siegler, 1981).

Also congruent with human data, less error was observed in network
responses to testing problems with larger torque differences. Recall that
torque difference is the absolute difference between the torques on each arm
of the balance scale. ,

The environmental bias model was also capable of strong Stage 4
performance, a quality missing in all previous balance scale modeling
efforts (Langley, 1987; McClelland, 1989; Newell, 1990). Furthermore, the
model captured all of these phenomena without having to separate the
internal representations of weight and distance, as were required in previous
connectionist models of the task (McClelland, 1989).

The Prestructured Weight Dimension Model

A second modeling attempt investigated whether a cascade-correlation
model would naturally pass through all of the stages witnessed with humans
if it were to start off focusing on weight information. This simulation tested
the merits of a nativist position that sees evolution as having innately
specified some initial state, as well as the initial structure, of the computa-
tional apparatus. This is similar in spirit to Spelke’s (1990) suggestion that
infants have implicit assumptions about their world that organize their
sensory inputs.

Just as the evolutionary medium consists of an infinitely large space of
possible tokens, so too does the connectionist medium. The entire space of
possible models for a given network topology is delimited by a separate
dimension for each degree of freedom in the model (each network connec-
tion, or weight), and the starting point of the model within this connection
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space constrains the form that the token model can take on the basis of new
experiences. Evolution can be viewed in this light, as a coarse search
through a space of possible organism types. Learning can be described as
the further investigation of the local connection space around a token
individual (Nolfi, Elman, & Parisi, 1990).

The current simulation investigated whether or not a connectionist model
possessing, from the outset, a structure for assimilating weight but not
distance information would produce the developmental sequence observed
in children’s balance scale performance. Another way of phrasing this is to
ask whether domain-specific knowledge, as part of the network’s starting
state, can produce a realistic developmental sequence as domain-general
learning procedures are applied. Whereas the environmental model dis-
cussed earlier places domain-specific constraints in the environment, this
model internalizes such constraints.

There are several ways of placing a network into a particular region of
connection space. One could supply initial connection weight values by
hand, arrange for them to be inherited by natural selection (Belew,
Mclnery, & Schraudolph, 1990), or pretrain the network with equal
distance problems.

We adopted the last of these approaches for ease of implementation,
creating a model in which networks were first placed in a region of
connection space such that they performed at the level of stage 1, before
being exposed to a corpus of unbiased training instances. The initial
prestructured network topology appears in Fig. 5.4. Ten inputs and an
obligatory bias unit were fully connected to each of two output units. Of the
10 inputs, 5 represented the left arm of the balance scale, and 5 represented

Down side
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FIG. 5.4. Initial network topology and an example of input encoding for the prestructured
weight balance scale network.
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the right arm. Distance for either arm was encoded by a real valued number
in the range of 0.0 to 1.0 that was proportional to the distance at which
weights were placed on the arm. The weight dimension was represented
jocally with each unit of a given arm corresponding to the number of
weights placed on that arm. For a given balance scale problem, the distance
input value was entered as input to the corresponding weight input unit.
This input encoding provides a compact representation of balance scale
problems, yet does not produce a significantly different style of learning
from locally encoded networks (Schmidt, 1991). The method of interpreting
the outputs used in the environmental bias model was retained for usein the
current model.

Network weights were randomly initialized in the range of —1.0to +1.0
before pretraining began. During pretraining, the networks were exposed to
a corpus consisting only of weight problems, until a proficient level of
performance was reached, thereby endowing the network with a structure
capable of processing weight problems. At this point, the network’s
connection weights were preserved and the training set was switched to
include all 625 possible training instances. This second phase of training
continued until the network had learned all of the training patterns.

After each output epoch during the second training phase, the responses
of 96 networks to a set of 88 different testing problems were recorded. The
testing problems included the 24 testing problems used by McClelland
(1989) to diagnose network performance, and 4 problems from each of the
four nonbalance problem types at four different torque difference levels.
This collection of testing problems provided enough information to classify
the networks’ responses at four different levels of torque difference, as well
as in the conventional manner in which problem type is confounded with
torque-difference level.

Longitudinally, of the 96 networks, 83 (86%) were classified by one of
Siegler’s four rules at some point in development. Eighty nets (83%)
demonstrated all four rules in the idealized sequence (, 2, 3, 4). Sixty-eight
nets (71%) displayed temporary regressions from Rule 4 to Rule 3. No other
substantial regressions occurred. Thirteen nets (14%) skipped a stage at
some point in development.

All of the networks performed well on the weight problems without
requiring hidden units, and each required the addition of a single hidden
unit in order to accommodate distance information. In all cases, the
addition of this unit propelied them from Stage 1 into subsequent stages.
This transition demonstrates that at least some qualitative changes in
behavior (the use of distance information) require qualitative changes in
network structure. However, we also observe qualitative behavioral changes
(conforming to increasingly sophisticated rules) from the less drastic
quantitative adjustment of connection weights.
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Next, a cross-sectional analysis of rule use was carried out according to
the method detailed by Schmidt (1991; Schmidt & Shultz, 1991). The 86%
of networks that were classified by one of Siegler’s four rules was fairly
close to the human figure of 78%. If one drops the youngest age group from
this calculation, as Siegler (1981) did, then 84% of nets were classified,
compared with 91% of children. Fig. 5.5 plots the percentage of errors
made on Siegler’s six problem types at each of the four stages for Siegler’s
rules, children’s data, and our network simulations. The epochs chosen for
network results were those that most closely matched the children’s data. In
Fig. 5.5 there is a close correspondence between human and network
responses for Rules 1 and 2. Rule 3 network performance deviated from the
children’s data in a number of ways, with poorer performance on weight
and distance problems and better performance on conflict-balance prob-
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FIG. 5.5. Proportion correct on different balance scale problem types for rules, children,
and networks with early weight experience.
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lems. Network Rule 4 performance was also generally worse than that of the
children, with a notable difference on conflict-distance problems. Fig. 5.5
also depicts a U-shaped developmental trend in network performance on
conflict-weight problems across Stages 2 through 4, similar to that observed
with children.

Two different analyses for detecting the torque difference effect were
performed on these networks. First, a cross-sectional analysis classified the
network with four different testing sets, each containing problems of
differing magnitudes of torque difference. Classifications of network
performance improved with torque difference. As depicted in Fig. 5.6, the
model’s mean number of problems correct for each of the problem types
increased with torque difference, except at torque difference level 4 for
weight problems. The human data show similar trends, with children more
frequently solving problems correctly from larger torque difference levels
(Ferretti & Butterfield, 1986). '

The second analysis used to assess the torque difference effect contrasted
a network’s total sum of squared error scores (¢ss) collected at each level of
torque difference midway (output epoch 40) and late (output epoch 80) in
training. Networks were tested with each of the four distinct testing sets,
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FIG. 5.6. Differences in accuracy for balance scale problem types at different levels of
torque difference for networks with prestructured weight experience. ,
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consisting of problems chosen from a unique torque difference level, that
were used in the cross-sectional analysis of the torque difference effect. At
each of the four levels of torque difference, there were four problems
representing each of Siegler’s six problem types. The tss error scores from
each output epoch sampling demonstrated strong negative linear trends.
Although a measure of this sort is not strictly applicable to human data, this
trend demonstrated that the larger the problem’s torque difference, the
smaller the error observed.

In summary, the prestructured weight dimension model demonstrated
that all four of Siegler’s rules do indeed fall naturally out of a cascade-
correlation network that starts off from an initial state structured to
specifically process weight but not distance information. Moreover, net-
works in the current simulation demonstrated some of the finer subtleties of
human performance such as U-shaped development curves on conflict-
weight problems and the torque difference effect.

Balance Scale Conclusions

The cascade-correlation balance scale models reported in this chapter
capture the phenomena in children’s balance scale data, including orderly
stage progression and the torque difference effect. Both cascade-correlation
models achieved a consistent level of Stage 4 performance, and at least one
of the models also demonstrated U-shaped error performance for conflict—
- weight problems. Furthermore, both models accomplished their successes
without the need to prespecify the network topology, or to assume separate
processing structures for the weight and distance dimensions. It would
appear that a generative connectionist learning algorithm is not only
capable of implementing successful models of cognitive development on the
balance scale task, but does so with fewer assumptions and a greater level
of success than do previous methods. Although the use of a domain-general
learning algorithm was crucial, both models required domain-specific
constraints in terms of either the structure of the environment or the initial
placement of the network in connection space. There is not yet definitive
evidence for differentiating the better set of modeling assumptions, al-
though both models do make predictions about the learning environment.
One model predicts that there is an environmental bias, whereas the other
does not. Both models predict that Stage 4 performance does not necessarily
require explicit knowledge of the torque rule, and that this competence can
be achieved by adequate exposure to the problem domain.

The cascade-correlation learning architecture (and connectionism in
general) greatly constrains the range of successful implementations of the
balance scale task. Only a few specific sets of underlying assumptions yield
the desired longitudinal performance. It will be of telling interest, for
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purposes of model and theory building, to discover what characteristics of
successful connectionist implementations correspond with human data. Qur
modeling efforts have captured a number of key phenomena observed in the
human cross-sectional data, including some aspects of performance that
other models failed to achieve. Accurate models of this nature can provide
a means of investigating longitudinal properties that are difficult to reveal
solely via the typical cross-sectional investigations of children.

CONCEPTS OF POTENCY AND RESISTANCE
IN CAUSAL PREDICTION

Accurately predicting the magnitude of a physical effect requires the
integration of information regarding potency of the cause and resistance to
the effect’s occurrence. In some physical systems, potency and resistance are
combined in a subtractive manner (p—7r) to produce the effect, whereas in
others, they are combined by division (p+r).

Psychology of Potency and Resistance

Past research on the development .of these concepts revealed a number of
psychological regularities. Zelazo and Shuitz (1989) conducted a study with
two pieces of physical apparatus, one of which combined potency and
resistance using a subtraction rule (a two-tray balance scale) and the other
combining potency and resistance using a division rule (a ramp). From 1 to
6 equal weights of identical appearance could be placed on the potency tray
of the balance, and from 1 to 6 identical weights could be placed on the
resistance tray of the balance. The magnitude of effect was indicated by the
degree of deflection of a dial on the face of the scale. The six levels of
potency and six levels of resistance generated 36 possible patterns. In an
analogous way, from one to six wooden blocks of identical appearance
could be placed at the top or bottom of the ramp. The number of blocks
placed at the top constituted the manipulation of potency; the number of
blocks placed at the bottom constituted the manipulation of resistance.
Magnitude of effect was the distance traveled by the leading edge of the
leading block at the bottom of the ramp after the collision caused by the
release of the blocks at the top. The six levels of potency and six of
resistance for the ramp generated 36 effect size patterns.

With increasing age, children showed an increase in the number of levels
of potency and resistance used and gradual convergence on the correct rule.
The subtraction rule was acquired earlier than the division rule, and there
was temporary overgeneralization of subtraction to division problems.
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Potency and Resistance Simulations

We were able to simulate these psychological regularities in cascade-
correlation networks (Shuitz, Zelazo, & Strigler, 1991). As in the psycho-
logical research, 72 problems were created by combining six levels of
potency and six levels of resistance with two different combination rules,
subtraction and division. These problems were the training patterns for
some of the network simulations. Potency and resistance were coded in a
variety of different ways in different simulations, but we focus here on what
we called Gaussian coding. The six amounts of potency or resistance were
coded over six input units such that the ntk unit received an input value of
3 and the two surrounding units an input value of 1 each. Other input units
in the same bank received an input of 0. Thus, the input unit activations
approximated a Gaussian distribution. There were six such units for
potency and six for resistance. In addition, there was an apparatus unit that
was coded as O for subtraction and 1 for division. All inputs and the bias
unit were fully connected to a single output with a linear activation function
that represented the magnitude of effect, scaled to fall between 0 and 1.

Before each epoch of training, the network was tested with the 36 sub-
traction training patterns, the 36 division training patterns, and 36 non-
trained patterns in which the subtraction outputs were associated with an
apparatus unit coded for division. Comparing error scores on the first two
sets of patterns provided a measure of how well the network was learning the
correct subtraction and division rules, respectively. Comparing error scores
on the second and third pattern sets enabled an assessment of whether or not
the network might be using subtraction to solve the division problems.

Learning and overgeneralization effects in one network are portrayed in
Figs. 5.7 and 5.8, respectively. Fig. 5.7 shows earlier and deeper learning of
subtraction than of division. Fig. 5.8 shows a sizable overgeneralization
effect in which, just prior to asymptotic performance, the error for a
subtraction rule on the division problems is lower than that for a division
rule on five epochs. All of the Gaussian coded networks showed these
general patterns, although not at precisely the same epochs.

To examine the ability of these networks to simulate the gradual increase
in levels of potency and resistance, a separate simulation was run in which
network predictions were generated every fourth epoch (up to 20 epochs) for
all of the 72 training patterns. These predictions were analyzed in the same
manner as for human subjects to obtain the number of levels of potency and
resistance employed on both subtraction and division problems (Zelazo &
Shultz, 1989). The results, plotted in Fig. 9 for each of four apparatus and
potency versus resistance combinations, reveal a steady increase in the num-
bers of levels used. For comparison, the mean numbers of levels used by
human subjects are listed in the upper left corner of Fig. 5.9.
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FIG. 5.9. Mean numbers of levels of potency and resistance used over epochs.

-One concern with networks that use distributed binary input codings is
that, because they employ so many input units and consequently have so
many weights, they might be memorizing the training patterns rather than
abstracting useful generalizations about them. Generalization ability was
assessed by training the networks with a randomly selected two thirds of the
training patterns and testing on both the training patterns and the one third
nontrained patterns at each epoch. Mean error for 10 networks at each
epoch for training and test patterns is presented in Fig. 5.10. The results
reveal that error for the test patterns decreases with that for the training
patterns, indicating good generalization.

All of these results held up with a variety of different input coding
techniques, except that coding potency and resistance with integer values
precluded a gradual construction of these dimensions. All of the cascade-
correlation networks we tried reached an asymptote error close to the adult
error of 1.08, computed in the same way as network error. None of the
networks recruited any hidden units to reach this level of performance.

We had more difficulty simulating these effects with back-propagation
networks, whether or not they were equipped with hidden units. This is
probably due to the fact that units with sigmoid (S-shaped) activation
functions are somewhat unstable in their middle range in that a small
change in net input can produce a large change in activation. Using linear
output units was avoided because excessive positive feedback can occasion-
ally lead to diverging output activations. Because cascade-correlation
switches to a hidden unit recruitment mode if a fixed number of epochs has
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FIG. 5.10. Mean error at each epoch for training and test patterns on potency and resistance
problems.

passed, it can escape from such cases. Thus, it is relatively safe to use linear
output units in the cascade-correlation architecture. The option of linear
output units in cascade-correlation thus provided an unexpected advantage.
Further experimentation revealed that it was possible to simulate the human
regularities with nonlinear output units, but these effects are more robust
with linear outputs.

Potency and Resistance Conclusions

Network simulations of the concepts of potency and resistance covered all
of the phenomena found in the effect size predictions of children. These
included an increase in the number of levels of potency and resistance used
and convergence on the correct rules as learning progressed, early acquisi-
tion of the subtraction rule, and temporary overgeneralization of subtrac-
tion to division problems. All but the first of these phenomena would
appear to be due to the domain-general characteristics of cascade-
correlation learning, particularly to the use of an activation function that
sums the inputs to a receiving unit. An additive activation function makes
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it easier to learn subtraction than division. Visual inspection of network
weights indicated the networks were using the apparatus unit to dampen
down predictions for division problems. Because the networks were using
the same set of weights to solve both subtraction and division problems, the
subtraction rule emerged first and temporarily generalized to division
before the weights were sufficiently adjusted to lower the division errors.

The gradual increase in the number of levels of potency and resistance
used to predict effect size is due to a domain-specific constraint of input
encoding that does not inherently represent quantitative dimensions. The
Gaussian coding technique used here is one of a number of coding
techniques that fail to provide quantitative dimensionality. Initially, the
network knows nothing about the relations among adjacent input units. As
learning progresses, the network constructs the dimensions of potency and
resistance. In contrast, coding inputs as integers on single units fails to
generate an increase in levels used, because the quantitative dimensions are
explicitly provided to the network.

SERIATION

Piaget and his colleagues (Piaget, 1965; Piaget & Inhelder, 1973) developed
the seriation task in order to demonstrate the presence of developmental
stages in children’s transitive reasoning. Because the results initially seemed
clear and replicable, a number of production rule models of children’s
seriation were published (Baylor, Gascon, Lemoyne, & Pothier, 1973;
Young, 1976). However, these models remained structural descriptions in
the sense that they depicted behaviors at particular stages and did not
implement any transition mechanisms.

In this section we describe a cascade-correlation model of the develop-
ment of children’s seriation abilities. A more detailed account can be found
in Mareschal and Shultz (1993). We begin with a brief review of the relevant
psychological literature. Then, the network architecture is described. Fi-
nally, the model’s performance is presented and evaluated.

Psychology of Seriation

Piaget (1965) reported that children’s ability to seriate (sort) a set of objects
along a specified dimension evolved through four successive stages of
performance. Children in the first stage made no real effort to order the
objects and either moved them around at random or presented the objects
in the same order as they had found them. Children in the second stage were
able to correctly order subsets of the set of objects, but did not extend this
order over the whole set. Hence, they would construct successive ordered
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subsets of two, three, or four objects. This led to a variety of characteristic
outcomes including ordered pairs of triplets, a series that first rises then
falls off, and correct seriation of the first few elements followed by inability
to continue the series appropriately. Children in the third stage sorted the
complete set of items, but only by using an empirical trial and error method
with many self-corrections. Finally, children classified as being in the fourth
stage constructed an ordered set quickly and efficiently by applying what
appeared to be a systematic strategy. Piaget labeled this strategy the
operational method. It consisted in selecting the smallest, as yet unordered,
element and moving it into its correct place in the series.

Rule-based models (Baylor et al., 1973; Young, 1976) succeeded in
capturing the systematicity of performance at each of these four stages.
However, in depth protocol analyses revealed that seriation was far more
flexible than Piaget suggested (Young, 1976). Random selection strategies
were observed in children of all ages, including those well into the fourth,
operational stage (Kingma, 1982).’

Moreover, perceptual factors were found to influence children’s perfor-
mance. Piaget (1965) noticed that if the differences between elements were
too large, then Stage 3 seriators would artificially be promoted to Stage 4
because the empirical method they use would be efficient given the high
perceptual salience of the dimension generating the order. Conversely, if
differences between objects become sufficiently small, seriation perfor-
mance deteriorates (Elkind, 1964; Kingma, 1984). Also, Koslowski (1980)
showed that Stage 1 seriators could be made to seriate at a Stage 4 level if
given an abbreviated task with few items. She suggested that these children
possessed the requisite seriation skills and that there is development in the
precision with which these skills are applied.

The production rule models not only fail to capture stage transitions but
do not address the perceptual saliency issues. A connectionist approach
suggests an alternative modeling solution because (as illustrated throughout
this chapter) it can capture rulelike behavior and perceptual effects without
sacrificing flexibility.

The Seriation Model

We adopted an approach first suggested by Young (1976), who decomposed
seriation into a succession of independent moves based on immediate
perceptual features. Similarly, our cascade-correlation model is designed to
respond to independent arrays with an appropriate move. Once a move has
been computed by the network model, it is carried out by supporting
software, and the network is then presented with the resulting array.
Iterating this procedure may ultimately produce an ordered array.

The network was given the dual task of identifying which item should be
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moved and where it should be moved, according to Piaget’s operational
method. We opted for a modular solution because simulations using a
single homogeneous network failed to demonstrate psychologically realistic
performance. A number of researchers argued for modular task decompo-
sition (Jacobs, Jordan, & Barto, 1991; Minsky, 1986). Modular architec-
tures were claimed to increase both learning speed and generalizability
(Jacobs et al., 1991).

. The two modules consist of two simultaneously but independently trained
networks, as shown in Fig. 5.11. The which network is trained to identify
which item should be moved when presented with an array. The where
network is trained to identify where an item should be moved to when
presented with the same array. In both cases, targets are defined as the
move dictated by Piaget’s operational method. As noted earlier, this
involved selecting the smallest unordered stick and placing it in its correct
position. The modules are independent because the weight updates within
each network are based solely on the error arising within that network. Each
network has no information concerning the performance of its counterpart.
Because each move requires integrating responses across modules, the
macroscopic behavior of the model as a whole results from the interaction
of the developmental states of each independent module. Thus, systematic
errors may arise when one module lags behind the other in performance.

The model was trained to seriate an array of six items as follows. Each
item had a unique value determined by an integer ranging from 1 to 6. The
location of the item was spatially coded on a bank of six linear input units.
Thus, a completely ordered array was coded by a 1 in the first unit, a 2 in
the second unit, and so forth, with a 6 in the sixth unit. The output (whether
which or where) was coded on a bank of six sigmoid units in which the unit
coding the correct position is turned on and all others are turned off. The
actual response was determined by selecting the output unit with the highest
activation.

Pilot studies revealed that the model was sensitive to the disorder of the
arrays presented. Disorder was quantified as the sum squared distance @
from the target ordered array. Input patterns were classed as being distant
from the solution if d was greater than 20 and near to the solution if &® was
less than or equal to 20. Of the total 720 possible six-element patterns, 79%
are distant patterns and 21% are near-patterns. A biased training set was
constructed by randomly sampling 50 distant and 50 near patterns. In order
to capture the fact that even very young children can successfully order sets
of 3 elements, we included 20 3-element series in the training set.

The model’s performance was evaluated in two ways. Generalization was
tested by evaluating whether or not the model produced the correct move
for all of the possible six-element series. Its seriation stage performance was
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evaluated by presenting a test pattern to the network.? The state resulting
from each move was cycled back as the next input. The cycling process
continued until the presence of a loop was detected. From the resulting trace
of arrays, the model was then classified as being in one of the four
developmental stages.

Stage classification can be somewhat of a problem, not just for networks,
but also for children (Kingma, 1982). In particular, it is not always clear
how to differentiate between Stage 3 and Stage 4 seriators. In our
simulations, Stages 1 and 2 are diagnosed as described by Piaget. To
distinguish between Stage 3 (empirical) and Stage 4 (operational) seriators,
both the procedure used and the number of self-corrections criteria are
simultaneously applied. A network is classified as Stage 4 if it correctly
constructs a series according to the operational method with at most one
error from which it continues using the same operational method, or if it
seriates in the same or fewer moves than required by the operational
method. It is classified as Stage 3 if it constructs a completed series in any
other way. Under these conditions, networks typically exhibited a succes-
sion of all four stages in the correct order.

To test whether or not these networks responded to perceptual variations
in the same way as children do, we ran three additional conditions. In these,
the training set consisted only of the 100 6-clement arrays. The three
conditions differed only in the size of differences between successive
elements of the ordered set: 1.0, 0.5, 0.25. The proportions out of 20
models able to complete a full sort by the end of training were 0.85, 0.55,
0.15 respectively. Thus, as with the children, the more easily the stick sizes
can be distinguished, the better the seriation performance. Furthermore,
85% of the models trained with 1.0 size differences were diagnosed at Stage
4, as compared to only 25% of the nets trained with 0.5 size differences.
This supports Piaget’s (1965) claim that Stage 3 performers would be classed
at Stage 4 as size differences between sticks increase.

Inspection of Hinton diagrams generated at epochs representing consis-
tent stage behavior revealed no drastic differences in weights between
adjacent stages. Instead, stage differences were marked by rather small
modifications in the size of weights. The Hinton diagrams also revealed that
the development of seriation ability began by adjusting weights leading to
those units dealing with the short end of the series and was progressively
extended along the length of the series until appropriate weights were found
for the larger end of the series.

Finally, the disorder of the array positively predicted the model’s ablhty
to identify the correct move in the generalization test. In a study carried out
on children aged 4 to 7 years, we found that disorder was similarly related

3Following Retschitzki (1978), we used the {S 2 4 1 6 3} array.
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to children’s decisions as to whether a series was completed, or still needed
some sorting (Mareschal, 1992).

Seriation Conclusions

Cascade-correlation nets captured progression through the four seriation
stages, as well as a perceptual effect based on the differential sizes of the
items to be sorted. Another perceptual effect on array disorder was noted,
and some supporting psychological evidence was provided by studies of
children who showed more difficulty with less disordered arrays.

A number of domain-specific constraints were required to capture
seriation stages, including a modularization of the task into which and
where subnets and a slight environmental bias in favor of smaller and less
disordered arrays. Both of these biases seem reasonable. Smaller arrays are
probably more common to the young child’s experience than large ones, and
less disordered arrays are more likely to function as a cue to sorting
attempts than are highly disordered arrays. In any case, these biases could
be considered as predictions for the young child’s environment. Task
modularity could also conceivably be assessed through psychological re-
search that concentrated on possible dissociations between selection and
insertion abilities.

Perceptual effects in seriation can be attributed to the domain-general
characteristics of the learning algorithm. As with the balance scale task,
more distinctive quantitative inputs naturally result in clearer activation
signals downstream and more decisive moves; inputs to hidden and output
units are a function of the activation values of sending units.*

DISTANCE, TIME, AND VELOCITY

Recently we began to extend our research from tasks that involve the
integration of two physical dimensions (e.g., weight and distance in the

“In chapter 8 (this volume), Klahr critizes our seriation model for not exhibiting the multiple
strategies typical of children. However, our model is motivated by the fact that it is the
rule-based models that are 100 rigid to account for both individual variation among children
and the variation across seriation problems due to perceptual effects on the seriation task (as
their authors freely admit). In contrast, even though we constructed our training patterns with
the single rule specified by Piaget (move the smallest unordered stick to its correct position),
we found considerable variation in performance among nets and problems (Mareschal, 1992).
A variety of behaviors fell under various stage diagnoses, and there was sufficient variation to
account for the various perceptual effects. This is the only existing seriation model to
spontaneously generate variation, and much of that variation does correspond to variation in
children.
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balance scale task, and potency and resistance in causal prediction) to those
involving three dimensions. The example we cover here is the integration of
distance, time, and velocity concepts. In classical physics, distance is
definedasd = ¢ X v, timeas ¢ = d + v, and velocity as v = d + ¢, where
d is distance, ¢ is time, and v is velocity.

Psychology of Distance, Time, and Velocity Concepts

Piaget (1969, 1970) investigated the development of these concepts after
Einstein had inquired about the nature of children’s understanding of time
and velocity. Piaget’s research led him to conclude that the acquisition of
these concepts occurred in three stages. At 4 or 5 years of age, intuitive
notions emerge. For example, children’s early concept of distance traveled
is in terms of the stopping point of an object rather than the interval
between starting and stopping points. These early intuitions are followed by
an intermediary stage and finally, the adultlike concepts emerge at approx-
imately 8 or 9 years of age. In response to Einstein’s inquiry, Piaget
concluded that although an intuitive notion of velocity existed independent
of time, the notion of time was dependent on the child’s notion of velocity
at most ages. Thus, children’s early understanding was more akin to
relativistic concepts of time and velocity.

Siegler and Richards (1979) addressed several methodological difficulties
in Piaget’s work, including the use of tasks that were not necessarily
comparable across concepts. Siegler and Richards presented children with
two toy trains running along parallel tracks and asked them to judge which
train either traveled for the longer time, the greater distance, or faster. They
hypothesized three rules based on Piaget’s work. Children using Rule 1
would make their judgments based on the stopping points of the trains.
Those using Rule 2 would also consider starting points when the trains
stopped at the same point. Finally, children using Rule 3 would solve the
problems correctly.

Siegler and Richards used a rule assessment methodology similar to that
employed with the balance scale. Their results indicated that S-year-old
children used Rule 1 on all three tasks, whereas adults used Rule 3. In
between these two age groups, children often confused velocity and
distance, distance and time, and time and velocity. In addition, children
understood distance and velocity concepts before time concepts.

Levin (1977) examined children’s understanding of time and argued that
in tasks used by Piaget and Siegler and Richards, distance and velocity
information served as interfering cues with children’s understanding of
time. Moreover, Levin (1979) argued that cues logically unrelated to time
interfere in a similar manner.

Wilkening (1981) made a similar argument, suggesting that research by
Piaget and others appeared to have tested the child’s ability to ignore rather
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than integrate dimensional cues. For example, to judge which train traveled
the greater distance, the child simply had to compare the distance of the two
trains and ignore their times and velocities.

Within the framework of Anderson’s (1974, 1991) Information Integra-
tion Theory, and its assessment methodology, functional measurement,
Wilkening (1981) designed new tasks in which values on two dimensions
were given and the value of the third dimension had to be inferred by the
child. For example, in a distance-inference task, children were shown an
apparatus that had, at one end of a footbridge, a dog and several other
animals that were said to be frightened of the dog. The children were told
that the other animals would run along the bridge as soon as the dog began
to bark and would stop when the barking ceased. The task involved
determining how far each animal would run. Thus, the children were given
the characteristic velocity of the animals and the time they ran (the duration
of barking), and asked to infer the distance they would run.

Wilkening studied the performance of three age groups: S-year-olds,
10-year-olds, and adults. The findings included the following: (a) in the
distance-inference task, all age groups used the correct multiplication rule;
(b) in a time-inference task, 10-year-olds and adults employed the correct
division rule, whereas S-year-olds used a subtractionrule, f = d — v; (c) in
a velocity-inference task, the two older age groups used a subtraction rule,
v = d - t, and the 5-year-olds used an identity rule, v = d.

Wilkening concluded that young children did have the ability to integrate
these dimensions. However, he was unwilling to make comparative claims
about the developmental rates of the three concepts because it appeared that
the subjects had differing memory demands across the three tasks. For
example, in the distance task, subjects of all age groups used an eye-
movement strategy in which they appeared to “follow” the unagmary
animal as it ran across the footbridge.

In a follow-up study, Wilkening (1982) attempted to increase the memory
demands of the distance task by presenting the time information (barking)
before the velocity information (animal identity) and lessen the memory
demands of the velocity task by visually presenting the time information.
The modifications partially supported his hypothesis in that 5-year-olds
were observed to use an additive rule (d = ¢ + v) in the distance task.
However, the results of the velocity task remained unchanged. Thus, it
remains to be seen whether or not the mastery of time before velocity
concepts is an accurate description of the developmental course or a
memory artifact of Wilkening’s tasks.

Simulating the Acquisition of Distance, Time,
and Velocity Concepts

We followed Wilkening’s example by creating input patterns that included
information about two dimensions and having the network predict, as
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output, the value of the third dimension. We chose dimensional values
ranging from 1 to 5 as our input values. The dimension that was to be
predicted received an input of 0. We crossed five levels of distance, time,
and velocity respectively to obtain 75 input patterns. There were 25
instances of each of the three inference pattern types: distance, time, and
velocity.

The initial network topology consisted of three banks of input units, one
bank each for distance, time, and velocity information, connected to one
linear output unit. We used what we call nth encoding for the dimensional
values on the input units. In nth encoding, a value n is represented by
assigning an input value of 1 to the nth input unit and 0 to all other units.
Thus, to encode the 3 dimensional values having a range of 1 to 5, a total
of 15 input units were used—5 units for each dimension. For a given
inference pattern, one input bank would receive activations of 0 on all five
of its inputs, indicating it was unknown. With respect to the other two input
banks, the appropriate unit would receive an activation of 1 corresponding
to its dimensional value and O on the other units within the bank.

Training And Testing. At each epoch of training, all 75 inference
problems were presented to the network. Thirty networks were trained for
a maximum of 1,500 epochs. Every fifth epoch, the net was tested to obtain
the relevant information necessary to assess its performance.

In analyzing a network’s performance, we are not so much interested in
whether or not the network can accurately predict, for example, a given
velocity from time and distance information. Rather, we are interested in
what sort of rule best captures the network’s predictions over each of the
three problem types. Thus, we look at correlations between the network’s.
responses and those predicted by various plausible rules such as identity (v
= d,orv = ¢), addition (v = d + ¢, or v = d - {), or multiplication (v
=dXtv=t+d orv=d -+ {)rules. In this way, we investigated
networks’ ability to capture the stage progressions observed by Wilkening
with children. In order to capture consistent network performance, a given
rule had to correlate positively with network responses, account for more
than 50% of the variance in network responses, and account for more of
" that variance than other rules did.

Results. A stage-by-epoch plot of a typical network based on stage onset
and offset and hidden unit recruitment is shown in Fig. 5.12. All 30
networks demonstrated a similar developmental sequence. As can be seen,
early in training, before the recruitment of any hidden units, time and
velocity identity stages (f = d and v = d) were observed. On average, these
identity stages began together and lasted for the same length of time. The
time and velocity identity rules were strong predictors of the networks’
responses, accounting for over 90% of the variance in predictions. During
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FIG. 5.12. Rule diagnosis results for one network showing the progrésion of stages over
epochs for distance, time, and velocity inferences. Each H marks the recruitment of a hidden
unit.

this same period, the networks’ responses to distance-inference patterns was
not captured by any of the rules that were tested.

After the first hidden unit had been recruited, additive stages were
observed with respect to all three inference types. Distance, time, and
velocity inferences were captured by the additive rulesd =t +v,t=d -
v, and v = d — 1, respectively. Although all three of these stages began at
approximately the same epoch, the distance additive stage was typically
longer. These 3 additive rules were good predictors of the networks’
responses, accounting for over 80% of the variance in predictions.

Multiplicative stages of time (f = d + V) and velocity (v = d + )
inferences began just after the second hidden unit was recruited. On
average, the multiplicative stage of distance inferences (d = t X v) began
after the third hidden unit was recruited. All three defining multiplicative
rules of the stages eventually reached a maximum 7* of 1.00. This occurred
earlier for time and velocity inference patterns than for distance inferences.
See Buckingham and Shultz (1994) for a more detailed presentation of these
results.

Analysis of Hinton diagrams revealed that the first hidden unit distin-
guished distance inference patterns from time and velocity inference
patterns. Typically, weights from the time and velocity input banks were of
the same sign and opposite in sign to weights from the distance input bank.
As a result, when a distance inference pattern was presented, the time and
velocity inputs augmented each other. In contrast, when a time or velocity
inference pattern was presented, the distance input was counteracted by the
velocity or time input. Unfortunately, Hinton analysis of the second and
third hidden units were less revealing. However, given the relatively abrupt
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transition after the installation of these hidden units to multiplicative
stages, the need for increased nonlinearity seems evident.

Conclusions on Distance, Time, and Velocity

Our simulation results differ only marginally from Wilkening’s (1981)
human resuits. The distance developmental sequence observed in network
performance is the same as the one found by Wilkening—a progression
from an additive rule to correct integration based on multiplication. With
respect to the time and velocity developmental sequences, the networks
began with an identity rule, progressed to an additive rule, and then finished
with a correct multiplicative rule. Wilkening’s human subjects did the same,
except that they showed no identity rule for time inferences and failed to
reach the correct multiplicative rule for velocity inferences. Qur network
results predict these “missing” stages for younger and older (more experi-
enced) subjects than those used by Wilkening.

Identity, additive, and multiplicative stages in network performance
emerged from the domain-general constraints of the cascade-correlation
learning algorithm. That is, identity rules arise from the limited computa-
tional abilities of cascade-correlation’s initial perceptron topology. Al-
though simple weight adjustment is sufficient to decrease a substantial
proportion of the sum of squared error of the various inference patterns, it
is insufficient to allow the emergence of performance characterized by more
advanced rules. After the recruitment of a single hidden unit, more complex
performance emerges that can be characterized by additive rules in which
two known values are added or subtracted to predict a third value. Finally,
performance characterized by the correct multiplicative rules requires
further computational nonlinearity provided by the recruitment of addi-
tional hidden units. .

Developmental performance, characterized by specific algebraic rules,
can be simulated in a network that learns by simple weight adjustment and
hidden unit recruitment. The progression from linear to nonlinear rules
parallels the potency and resistance simulations presented earlier. Such
progressions occur naturally in cascade-correlation nets because they em-
ploy units with an additive activation function.

ACQUISITION OF PERSONAL PRONOUNS
Consider the following interchange:

Father (to daughter): “OK, Jane, let’s practice our pronouns.”
Jane (enthusiastically): “Okay, dad.”
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Father (pointing to himself): “Me” (and then to daughter): “You!”
Jane (pointing to herself gleefully): “You!”

Father (pointing to himself): “No, no. Me!”

Jane (confused, points to father): “Me!”

Father (frustrated after several failed attempts): “OK, me Daddy, you
Jane.”

This fictional dialogue between a father and his young daughter is meant to
illustrate two problems a child faces when trying to learn the correct use of
personal pronouns such as me and you. First, the referent of me and you is
not fixed but shifts with conversational role. For example, when a child’s
father and mother talk to each other, both refer to themselves as me and to
the other as you. Thus, the referent of me and you depends on who is
speaking and who is being addressed. Second, the model for correct use of
personal pronouns is not ordinarily given in speech addressed directly to the
child. As just demonstrated, when a father addresses his child, he refers to
himself as me and to the child as you. If Jane were to imitate what she
heard, she would incorrectly refer to herself as you and to her father as me.
Such errors have been called reversal errors because the child reverses the
correct use of the pronouns.

Psychology of Personal Pronouns

Given that the task of learning personal pronouns is so complex, it is
remarkable that most children master their correct use by 3 years of age
(Clark, 1978). Perhaps even more remarkable is the fact that the majority
of children do so without reversal errors (Charney, 1980b; Chiat, 1981).
However, some children, like the fictional Jane, do make reversal errors,
and such errors can often persist for months (Clark, 1978; Oshima-Takane,
1992; Schiff-Meyers, 1983). . ‘

Theories of personal pronoun acquisition can be placed in one of two
categories: those focusing on children’s correct performance, and those
focusing on the errors children make. Within the former category, research
focused on speech roles (Shipley & Shipley, 1969) and imitation without
understanding (Charney, 1980b). Examples of theories focusing on errors
include children’s inability to distinguish self from other (Bettleheim, 1967;
Charney, 1980a) and the interpretation of pronouns as names, in which the
first person pronoun equals the name of the parent and the second person
pronoun equals the name of the child (Clark, 1978). Regardless of the
focus, these theories can account for only part of the picture. Focusing on
errors does not explain how the majority of children master personal
pronouns without error, and focusing on correctness fails to explain why
some children make persistent reversal errors.
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In an attempt to understand the variation in children’s pronoun errors,
Oshima-Takane (1988) hypothesized that the nature of the speech that a
child hears plays a critical role. Although some researchers have argued that
nonaddressed speech (in which the child is not being talked to) is unimpor-
tant in language acquisition (de Paulo & Bonvillian, 1978; Ervin-Tripp,
1971), Oshima-Takane maintained that it is this type of speech that enables
the child to acquire the correct semantic rules for pronouns. The correct
semantic rules specify that the first person pronoun refers to the person
using it and the second person pronoun refers to the person who is
addressed.

The importance of nonaddressed speech in acquiring personal pronouns
was shown in both a training experiment (Oshima-Takane, 1988) and an
observational study (Oshima-Takane & Derevensky, 1990). In the training
experiment, 18 English-speaking, 19-month-old children and their parents
participated in a pronoun game. In the nonaddressee condition, the game
had two parts. In the first part, the mother pointed to herself and said me.
Then the father said me pointing to himself, after which the mother pointed
to the father and said “Yes, you.” Immediately following this exchange, the
second part of the game began. Here the mother pointed to herself and said
me once again and then waited for the child to say me pointing to himself
or herself. If the child said me the mother responded “Yes, you.” If the child
did not respond, the mother simply pointed to the child and said you. In any
event, the game was then replayed.

In the addressee condition, the game involved only the second part of the
nonaddressee game, except that both mother and father took turns ad-
dressing the child. The results of this experiment indicated that only the
children who heard nonaddressee speech were able to use the pronouns
without error. In contrast, reversal errors were common among children in
the addressee condition.

In the observational study, 16 first- and secondborn children who had a
sibling 1 to 4 years older were observed during free-play sessions (Oshima-
Takane & Derevensky, 1990). Although the two groups did not differ on
general language measures such as mean length of utterance, the second-
born children acquired personal pronouns earlier than the firstborn chil-
dren. This result was predicted from the fact that secondborn children have
more opportunities to hear speech not addressed to them because they hear
conversations between the parent and older sibling.

We attempted to model the learning of personal pronouns in English. We
used extreme versions of Oshima-Takane’s (1988) training experiment, as
illustrated in Fig. 5.13. In this figure, the arrows originate from the speaker,
start out in the direction of the addressee, and end up pointing to
the referent. We trained the network in two phases. During Phase 1, the
network was trained on only parent speaking patterns, illustrated in the top
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FIG. 5.13. Training patterns for the pronoun simulations. Adapted with permission from
Shultz, Buckingham, and Oshima-Takane (1994).

half of Fig. 5.13, simulating the early period in which children listen to
conversations without participating. In Phase 2, the network was trained on
child speaking patterns, illustrated in the bottom haif of Fig. 5.13,
simulating the later period when children join in conversation. The critical
question was how long it would take the network to learn the child speaking
patterns in Phase 2 given the type of Phase 1 training it had received.

Pure Condition Simulations

In our first set of simulations (Shultz, Buckingham, & Oshima-Takane,
1994), we examined two idealized situations: one in which a child only hears
speech addressed to him or her (addressee condition), and the opposite
situation in which he or she only hears speech between his or her parents
(nonaddressee condition).

We used four patterns in each condition. In the addressee condition,
shown in the top left of Fig. 5.13, the patterns corresponded to both the
mother and the father addressing the child and saying me and you
appropriately. In the nonaddressee condition, shown in the top right of
Fig. 5.13, the patterns corresponded to one parent addressing the other
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parent and referring to the self or the other. In Phase 2, the network was
trained on child speaking patterns, shown at the bottom of Fig. 5.13. There
were four such patterns corresponding to the child speaking to each parent
and saying me or you. Again, the critical question was how long it would
take the network to learn the child speaking patterns in Phase 2 given the
type of Phase 1 training it had received.

The initial network topology consisted of six input units and a bias unit
fully connected to two output units (Fig. 5.14). The six input units were
comprised of three pairs of units corresponding to speaker, addressee, and
referent, respectively. The identities of the participants in the conversation
were distributed across a pair of units as follows: 1 0 for father, 0 1 for
mother, and 1 1 for child. The target values on the output units were +0.5
—0.5 for me responses and ~0.5 +0.5 for you responses.

We discovered that addressee training during Phase 1 was easy for our
networks. On average, the networks required only 14 epochs to reach
victory. This contrasted sharply with the length of time needed to master
nonaddressee patterns, where the mean number of epochs to victory was 47
epochs. Moreover, only within the nonaddressee condition was it necessary
to recruit a hidden unit. The extra computational power provided by the
hidden unit was necessary to encode the shifting pronominal reference
found in the nonaddressee patterns. That is, in the addressee patterns, you
always referred to the child and me always referred to the mother or the
father. Conversely, in nonaddressee training, the referent of me and you
could be either mother or father.

Training times required for Phase 2 patterns revealed the opposite
tendency. That is, networks that had received nonaddressee Phase 1
training were able to learn Phase 2 patterns very quickly (M = 14 epochs),

Bias Father Mother Mother
Speaker Addressee Referent

FIG. 5.14. [Initial network topography and an example of input and output coding for the
situation in which the father speaks, points to the mother, and says you.
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whereas those that had received addressee training in Phase 1 required 111
Phase 2 epochs, on average. In addition, the networks in the latter
condition needed to recruit a hidden unit, whereas the nonaddressee
networks did not. Again, we took this as evidence that nonlinear compu-
tational power was needed to encode pronominal shifts. Because the
networks that received nonaddressee training had already compensated for
these shifts, they could more easily learn the child speaking patterns.

Networks in the addressee condition showed persistent reversal errors
before performing correctly. Fig. 5.15 shows a plot of the output activa-
tions for a typical run in the addressee condition. The dashed lines indicate
the score thresholds for positive and negative targets. For the network to be
considered as using a particular pronoun, the two outputs have to be on
opposite sides of these dashed lines. This network initially says you when it
should be saying me: The network begins by making a reversal error. In
contrast, networks in the nonaddressee condition often showed rapid
correct generalization, as can be seen in Fig. 5.16. Thus, rapidly correct
generalization was associated with nonaddressee training, and persistent
reversal errors were associated with addressee training.

Mixed Condition Simulations

Our second pronoun simulation (Shultz, Buckingham, & Oshima-Takane,
1994) examined a more realistic learning environment. By using five
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FIG. 5.15. Results for one pronoun network in the addressee condition. Output activations
are plotted across epochs for the pattern in which the child is speaking to the mother and
referring to self. After making persistent reversal errors, the mistake is eventually overcome
following the recruitment of a hidden unit, marked by an H. Adapted with permission from
Shultz, Buckingham, and Oshima-Takane (1994).
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FIG. 5.16. Results for one pronoun network in the nonaddressee condition. Output activa-
tions are plotted across epochs for the pattern in which the child is addressing the father referring
to self. Adapted with permission from Shultz, Buckingham, and Oshima-Takane (1994).

conditions with frequency multiples of addressee:nonaddressee patterns of
9:1, 7:3, 5:5, 3:7, and 1:9, we examined the effects of various hybrid
learning environments. The 9:1 and 5:5 conditions might correspond to the
linguistic environments of first- and secondborns, respectively. A firstborn
is likely to hear addressee speech during the day, while one parent is away
at work, and a bit of nonaddressee speech in the evening, when the working
parent returns. A secondborn, in contrast, is likely to receive about equal
measures of addressee and nonaddressee speech all day. The extra nonad-
dressee speech is provided by conversations between the caretaking parent
and the older sibling.

The same network topography and training patterns used in the first
experiment were used in this simulation. The only difference was in the
number of exposures of a given pattern during an epoch. After the network
had learned the 40 patterns of Phase 1, it was trained on the four child
speaking patterns as in the previous simulation.

At first we were surprised to find that networks having more addressee
than nonaddressee patterns took longer to learn the Phase 1 patterns, as is
illustrated in Fig. 5.17. This was the opposite of what happened in our
previous simulation. However, upon reflection, this might also be explained
in terms of shifting pronominal reference. The need to encode such a shift
could be temporarily masked by the frequency of addressee patterns.

The time required to learn the child speaking patterns in Phase 2 reflects
what was found in the earlier simulation. As can be seen in Fig. 5.18, there
is a negative linear trend associated with increased frequency of non-
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FIG. 5.17. Mean number of epochs needed to reach victory on pronouns in Phase 1 with
standard deviation error bars. Adapted with permission from Shuitz, Buckingham, and
Oshima-Takane (1994).
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FIG. 5.18. Mean number of epochs needed to reach victory on pronouns in Phase 2 with

standard deviation error bars. Adapted with permission from Shultz, Buckingham, and
Oshima-Takane (1994).

addressee patterns. In other words, networks receiving more nonaddressee
training learned more rapidly than networks receiving more addressee train-
ing. This supports the notion that secondborn children learn per-
sonal pronouns earlier than firstborn children because of their opportunity
to hear speech not addressed to them (Oshima-Takane & Derevensky, 1990).
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Adding a Self/Other Input Unit

It occurred to us that the task presented to our networks might be difficult
because we assumed the network was the child, but were in no way telling
it so. That is, the input patterns only indicated the identity of the individuals
with respect to linguistic role (i.e., speaker, addressee, or referent). We did
not tell the network that in the addressee situation the network was being
talked to, and that in the nonaddressee situation it was merely listening to
two other speakers. In order to be more realistic, we decided to make this
information explicit to the network.

To code the identity of the network, we added a third input unit to each
of the three input unit pairs. This additional unit indicated whether the
individual being encoded was the child (seif) or one of the parents (other).
An activation of 1 was used to indicate other, whereas 0 indicated self.
Otherwise, the architecture and training patterns were the same as in the
first pronoun simulation.

Compared to networks in the first pronoun simulation, the self/other
unit increased the rate of learning by six epochs on average in the addressee
condition but had no influence on the nonaddressee condition. This latter
finding was not surprising because the self/other input unit should not
contribute to understanding, as it had a constant value of 1 across patterns
(i.e., the parents occupied all speech roles). In the addressee condition, the
added salience that parents and child were different made learning easier
than the already simple addressee task.

Of more interest was whether or not the explicit information about self or
other would benefit the network in Phase 2, where the child speaking
patterns had to be learned. The number of epochs needed to learn in the
addressee condition was cut to about one half (60 epochs) the original time.
In the nonaddressee condition, there was a increase of approximately 4
epochs.

Thus, the time required for the net to learn the proper use of personal
pronouns was substantially reduced in the addressee condition by the
addition of self/other information. This did not alter the basic finding that
nonaddressee training aided the acquisition of child speaking patterns as
compared to addressee training. Moreover, error patterns found in the first
simulation were unchanged in the current simulation. That is, reversal
errors were still associated with addressee training, and fast and accurate
generalization still reflected nonaddressee training. Thus, it appears that the
findings in the previous simulations were not due to our having made the
task confusing by not explicitly telling the network that it was playing the
role of the child.
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Pronoun Conclusions

By manipulating domain-specific constraints regarding how much ad-
dressee versus nonaddressee speech to which the network was exposed, we
simulated children’s performance that is marked by persistent reversal
errors and correct performance. The more nonaddressee speech to which
the network is exposed, the less time is required for the network to learn the
correct semantic rules. An interaction between domain-specific and general
constraints is responsible for correct rule use. We found that hidden units
are necessary to encode pronominal shifts. In order for the networks to
detect these shifts, some nonaddressee speech has to be processed and
hidden units must be in place.

Use of computer simulations enabled us to look at idealized learning
environments that would have been impossible to find in a child’s world or
to replicate within a laboratory setting. For example, we were able to have
a purely nonaddressee environment where the network’s attention was
guaranteed without the need for participation in conversations.

The use of connectionist architectures allowed us to examine some
realistic effects with respect to the frequency with which children were
exposed to nonaddressee and addressee input. For example, we were able to
examine the differing expected environments of first- and secondborn
children. Within a symbolic framework such as Soar (Newell, 1990) such
frequency effects would be difficult to obtain. For Soar, presentation of a
single instance of a given type of linguistic input would typically be
sufficient to create a rule to account for it. Yet, it is obvious that children
hear many instances of personal pronouns as they discover the correct
semantic rules for pronoun use.

We showed that prior knowledge attained from addressee and nonad-
dressee speech greatly affects the ability to generalize to a new situation in
which the network begins to use pronbuns. Our simulations, along with
Oshima-Takane’s (1988) findings, suggest that children acquire the correct
use of personal pronouns by attending to speech that is not addressed to
them.’ Also, it is likely that persistent reversal errors are due to children
attending to speech addressed to them without having much opportunity to
hear nonaddressee speech.

GENERAL CONCLUSIONS AND DISCUSSION
We reported on successful cascade-correlation simulations in several dif-

ferent domains of cognitive development. Most of these domains deal with
the child’s understanding of aspects of the physical world. In the case of a
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noted benchmark task for developmental simulations, the balance scale,
our network models captured the progression through four rule-based
stages and the torque difference effect. The latter is a perceptual salience
effect wherein problems with large absolute torque differences between one
side of the balance scale and the other are easier to solve than problems with
small torque differences. Our network models also captured all major
psychological regularities regarding the prediction of effect magnitude from
information on causal potency and causal resistance, including the correct
order of rule emergence, temporary overgeneralization of an early rule, and
"increasing levels of potency and resistance. In the realm of seriation, the
networks mimicked the development of four rule-based stages and a
well-documented perceptual effect on differential stick sizes. Networks also
predicted a new perceptual effect based on array disorder, for which some
confirming evidence has been found. In the case of integration of time,
distance, and velocity cues, the networks captured known rule-based stages
and predicted reasonable new ones. In the one area of language develop-
ment we simulated, acquisition of personal pronouns, network models
simulated the beneficial effect of listening to overheard speech, as opposed
to speech addressed to the child. This entailed a stage transition from
persistent reversal errors to correct usage in the case of children exposed to
a large proportion of directly addressed speech, and nearly errorless
performance in the case of children exposed to a large proportion of
overheard speech.

To appreciate the relations among the different simulation topics, it is
useful to note that they can be classified in terms of whether the inputs and
outputs are quantitative or qualitative in nature. All of the simulations
require the integration of two or more distinct sources of input information
to predict some result or action. The balance scale task requires integration
of quantitative information on the weight and distance of objects on two
sides of the scale to produce a qualitative prediction of which side of the
scale will tip down. The causal prediction task requires integration of
quantitative information on causal potency and causal resistance to quan-
titatively predict effect size. Seriation requires integration of quantitative
information on the size and position of each of a number of sticks to yield
a qualitative move: which stick to move and where to move it. The
time-distance-velocity task requires integration of quantitative information
on two dimensions to predict the quantitative value of a third dimension.
Use of the personal pronouns me and you requires integration of qualitative
information on the identities of speaker, addressee, and referent to yield a
qualitative selection of the correct pronoun. This classification of tasks can
be useful in interpreting perceptual effects. We now turn to a discussion of
key features that can be abstracted from the various simulations.
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Rule Learning

As noted in the review of previous work, connectionist learning has been
demonstrated to generate rulelike behavior without explicit representation
of rules. All of the present simulations show such rulelike behavior: the four
balance scale rules; the two rules for predicting effect size from causal
potency and resistance; the four seriation rules; the numerous normative
and primitive rules for integrating time, distance, and velocity cues; and the
semantic rules governing the use of English personal pronouns. In none of
these cases were the relevant rules explicitly represented in the networks.
Rather, rule use had to be diagnosed from systematic behavior just as is
commonly done in psychological research with children. Explicit in the
networks are units and their interconnections and activations. Patterns of
network activity, after appropriate changes in network topology and
weights, are capable of causing the network to behave as if it were following
rules. Of course, the same might be true of children.

The basis for rulelike behavior in connectionist models is the ability of
these networks to extract statistical regularities in the learning environment.
In some cases, these regularities are simple linear relationships, but in the
more interesting cases the regularities are subtle nonlinear relationships. In
both cases, the network learns to similarly treat similar input-output pairs.
But in the nonlinear cases, signaled in cascade-correlation nets by the
recruitment of hidden units, the network must learn an underlying simi-
larity structure that is not evident from examining the input patterns alone.
Rather, the net’s ability to represent abstract nonlinear similarity structures
is developed through learning.

Unlike most previous models in cognitive development, the rulelike
behavior of connectionist networks is learned, rather than hand designed by
the modeler. Several previous models of the balance scale and seriation, for
example, were characterized by hand-;lesigned explicit rules that captured
particular stages but failed to develop in the sense of moving naturally from
one set of rules to the next.

Does rulelike behavior in connectionist networks mean that the networks
are merely different implementations of symbolic rule-based systems
(Fodor & Pylyshyn, 1988)? Not if the implementation differences make a
difference in terms of ability to predict and interpret psychological phe-
nomena. For example, one advantage of a connectionist implementation of
rulelike behavior is that the “rules” are less brittle, in the sense of being
more tolerant of input coding error, and more likely to generalize appro-

SA notable exception among explicit rule-based systems is Soar (Newell, 1990), a production
system that learns its own rules through look-ahead search.
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priately to novel patterns. Both minor deviations from trained inputs and
novel, but similar, inputs would be handled in a mostly correct fashion by
connectionist nets that have not simply memorized the training patterns,
Simple memorization of training patterns can occur if the network has
excess computational power (not likely in cascade-correlation nets because
they recruit only the power they need) and is trained too deeply. Appro-
priate generalization to novelty was demonstrated in all of the present
simulations. Other “implementational” advantages of connectionist nets are
discussed later. : ’

Stages

Not only do cascade-correlation nets learn appropriate rulelike behaviors,
they can also learn them in psychologically realistic sequences. Such
invariant sequences are a hallmark of stages of cognitive development
(Flavell, 1971). Getting stages in the correct developmental order is not easy
for computational modelers. For the domains treated here, even those
previous models with a transition mechanism (all on the balance scale)
failed to capture all of the stages in the correct order. Langley’s (1987)
rule-based model of the balance scale captured only Stage 3, ignoring Stages
1 and 2, and failing to reach Stage 4. The Soar model of the balance scale
failed to progress past Stage 3 (Newell, 1990). The back-propagation model
of the balance scale did reach Stage 4, but failed to stay there (McClelland,
1989). Reaching and staying in the final stage on the balance scale is partly
a matter of learning the problem sufficiently deeply, but it is also a matter
of being able to construct new representational power, something with
which rule-based models and ‘static connectionist networks have had
considerable difficulty. Both the Langley model and the Soar model lacked
the ability to represent torques and could not apparently develop this
ability. The static back-propagation network model of the balance scale
could not reach and stay in Stage 4 without sacrificing Stages 1 and 2.

Cascade-correlation nets captured the correct stage progressions in all
five domains that were studied here, and did so with a variety of desirable
psychological properties, including soft transitions, some stage skipping,
and a limited amount of regression to early stages. Again, one notices less
brittleness than is common in explicit rule-based models. With network
models, transition to a higher level stage is typically soft and tentative,
occasionally a stage is skipped altogether, and sometimes the net reverts
back to an earlier stage at least temporarily. These tendencies reflect the
dynamic, chaotic quality of connectionist networks. Due to the randomness
inherent to starting configurations and other vagaries of travel through
weight space and topology space, network behaviors are not entirely
clear-cut and uniform.
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It was argued elsewhere that connectionist models tend to produce those
aspects of stages that are supported by psychological data (qualitative
change, ordinality, and organization), and avoid producing those aspects of
stages that are inconsistent with psychological data (abruptness and con-
currence; Shultz, 1991). Networks do undergo qualitative changes in
their behavior, capture invariant sequences of behavior, and exhibit a good
deal of organization; but théy change stages somewhat gradually and,
because they are typically task specific, do not change stages all at once
across domains.

The ability of cascade-correlation nets to capture correct stage sequences
was due to a variety of factors. In the case of the balance scale, it was
critical for the net to be in a particular region of connection weight space
early in its developmental history and to recruit a small number of hidden
units. The critical region of connection weight space is characterized by an
emphasis on how much things weigh, as opposed to where they are placed
on the balance scale, and could be managed either by environmental bias in
favor of equal distance problems or by prestructuring network connections.
With the current focus in the connectionist literature on determining what
can be accomplished by learning from scratch, innate ideas are not much
explored. But the potential for such investigation exists. Some connectionist
researchers are beginning to study the breeding of connectionist networks
through genetic algorithms (Belew et al., 1990) and the interaction of
evolutionary processes with learning (Nolfi et al., 1990).

Stage sequences on the potency and resistance task and the time-
distance-velocity task were the result of a network activation rule that sums
its inputs. Hidden unit recruitment was also required for the achievement of
higher level stages in the integration of time, distance, and velocity cues.
Seriation stages resulted from a modularization of the task into selecting
versus moving a stick and slight environmental biases in favor of smaller,
less disordered arrays. The sequence of stages in the acquisition of personal
pronouns (persistent reversal errors followed by correct usage) was due to
an environmental bias for hearing directly addressed speech and the
recruitment of a small number of hidden units.

Perceptual Effects

Connectionist techniques can also capture a variety of perceptual effects on
cognitive developmental tasks. In the present work, these include the torque
difference effect on the balance scale and the stick size effect in seriation.
Such perceptual effects can be expected to occur whenever two or more
items, quantitatively described, are being mapped onto a qualitative
comparison. In contrast, no such effects can be expected on tasks like
potency and resistance or time-distance-velocity, where quantitative inputs
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predict a quantitative output. No matter how distinctive the input values are
for these quantitative to quantitative tasks, the idea is to predict the output
value as precisely as possible.

Such perceptual effects are pervasive in cognitive developmental re-
search, but no theoretical account integrates them with the cognitive
features of the task. Perceptual effects appear to be particularly immune to
symbolic rule-based accounts because rules are typically sensitive only to the
direction of input differences, not to the amount of such differences. For
example, a balance scale rule might be sensitive to whether one side of the .
scale had more weights than the other side, but it would not typically be
sensitive to how much more. In contrast, the naturalness of the emergence
of these perceptual effects from connectionist models is worth noting.
Perceptual effects are a natural result of the continuous nature of network
computations. Larger differences in inputs produce clearer activation
patterns on hidden units and more decisive qualitative decisions on output
units. Connectionist accounts hold the promise of a much tighter theoretical
integration of perceptual and cognitive factors than was previously possi-
ble. This is another case of where connectionist implementations have a
decided implementational and explanatory advantage over rule-based im-
plementations.

Theoretical Issues

Connectionist models are not psychological theories. Rather, they are
powerful tools that may, along with more conventional empirical and
theoretical work, help us to develop coherent psychological theories (Mc-
Closkey, 1991). Good theories explain phenomena in terms of indepen-
dently motivated principles and show how previously unrelated phenomena
derive from common underlying principles. Theoretical ideas emanating
from successful connectionist models often satisfy these criteria (Seiden-
berg, 1993). Here, the explanatory principles are constraints on cognitive
development — some, domain-general and others, domain-specific.

Among the domain-general constraints: (a) Cognitive judgments, deci-
sions, and actions result from brain-style computation, in which excitation
or inhibition is passed among simple processing units that vary in their
temporary level of activity; and (b) Cognitive developmental transitions
occur through the dual techniques of connection weight adjustments
between existing units and recruitment of new hidden units, both of which
serve to reduce the discrepancy between expectations and results. In the
present models, these domain-general constraints are formally specified by
the cascade-correlation algorithm.

Among the domain-specific constraints: (@) Some problems are too
difficult to solve in a single homogenous network. Such problems require
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modularity in network organization, such that different networks solve
different aspects of the overall problem. (b) Different problems require
different coding schemes for inputs and outputs in the training and
generalization patterns. Although many phenomena appear to be robust
against considerable variation in coding techniques, different problems do
require particular input data and output actions. (c) Some phenomena
require bias in either the training environment or the initial weight
structure.

These domain-specific constraints can be taken as testable predictions
whenever they are not yet empirically documented. Such constraints are
similar to Gelman’s (1990) first principles that, to enable learning, focus the
child’s attention on the relevant features of the environment. This type of
constraint does not force the child to attend to particular data, but it does
provide a filter for data relevance. .

We differ from the more extreme nativist positions in the belief that our
particular input representations are not necessarily innate. We do not claim
that children are born with knowledge representations innately adapted for
tasks such as seriation or balance scales, but rather, their performance on
these tasks results from a process that incorporates these types of input
constraints. That is, when children become able to learn about tasks like
seriation or the balance scale, they do so under the kinds of input
constraints described by our models. We leave open the question of whether
these specified input configurations result from a maturational process or

"from earlier learning (e.g., during infancy) that itself might have been
highly constrained.

Weight adjustment is suited to modeling underlying quantitative changes,
whereas hidden unit recruitment is suited to modeling qualitative ones. This
allows a novel and computationally precise reformulation of Piaget’s
useful, but vague, notions of assimilation and accommodation. Indeed, we
can now go one step farther than did Piaget, because he had no way of
describing learning without accommodation, that is, without qualitative
change.

Using Piaget’s terms, one can conceptualize three general types of
cognitive encounters in cascade-correlation nets: assimilation, assimilative
learning, and accommodation. Pure assimilation occurs without learning. It
is represented in cascade-correlation by correct generalization to novel
problems without either weight changes or hidden unit recruitment. Assim-
ilative learning occurs by weight adjustment, but without hidden unit
recruitment. Here, the network learns new patterns that do not require
nonlinear changes in representational power. Accommodation occurs via
hidden unit recruitment when new patterns cannot be learned without
nonlinear increases in computational power.

In cascade-correlation, these three types of encounter are all driven by the

o i S
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same process —adaptation via error reduction. Although these three possi-
bilities can be conceptualized as qualitatively different from each other, it is
perhaps more useful to view them quantitatively, on a dimension of
learning difficulty. Pure assimilation is easiest because it requires little or no
learning, whereas accommodation is relatively difficult, as assessed by
metrics such as epochs to learn.

Adaptation through assimilation and accommodation can also be rein-
terpreted through rule-based and back-propagation perspectives, but with
less satisfactory results. In a rule-based learning system like Soar, assimi-
lation could be construed as rule-firing, and accommodation, as chunking
new rules through impasse-driven search (Newell, 1990). In back-propaga-
tion learning, accommodation could be viewed in terms of weight adjust-
ment and assimilation as the absence of such adjustment (McClelland,
1989). There is room for assimilative learning in neither of these frame-
works. All learning in rule-based systems seems to create qualitatively
different structures. Each new rule adds qualitatively different structure
(van Geert, 1991). Conversely, no learning in static back-propagation nets
creates qualitatively different structures because the network topology
never changes. Yet, psychologically, some learning requires small quanti-
tative adjustments (e.g., learning a new phone number), whereas other
learning requires more substantial qualitative changes in representation and ‘
processing (e.g., learning to use personal pronouns or learning to integrate
time, distance, and velocity information).5

Thus, on theoretical grounds, cascade-correlation is a particularly prom-
ising tool for modeling and eventually explaining cognitive development.
The simulations reported here suggest that cascade-correlation networks
can capture a wide range of developmental phenomena. Such successful
applications could lead to new explanatory theories of cognitive develop-
ment, although these new theories might look rather different than do
classical information processing accounts (Seidenberg, 1993).

In broad outline, such a connectionist-inspired theory views the child as
being equipped with powerful, general purpose learning techniques, based
primarily on pattern association, but capable of constructing new represen-

SKlahr's chapter 8 (this volume) suggests that computational analysis of Piaget’s notions of
assimilation and accommodation is uninformative. Our motivation for this analysis is to show
that the mathematics of cascade-correlation can be related to some traditional, albeit vague
ideas about transition in cognitive development. This might enhance the relevance of our
simulations for traditional developmentalists, but more significantly it underscores the
importance of having a transition rule that incorporates both qualitative and quantitative
change. Also, the mapping of computational models to assimilation and accommodation is not
as unconstrained as Klahr suggests. The developmental models presented throughout this
volume are each sufficiently specified to determine whether they incorporate qualitative or
quantitative change.
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tations and thus, greater computational power. Knowledge is represented
by patterns of activation across many simple processing units, not by
explicitly formulated symbolic rules. Cognitive processing occurs according
to basic principles of neuronal functioning (excitation and inhibition) rather
than by the matching and firing of rules. Rather than an artificial
separation between perceptual and cognitive processes, there is a tight
theoretical integration of perception and cognition. Such a system can be
innately structured in certain ways and learns from environmental feed-
back, based primarily on correlations among events and instances, with
sensitivity to biases afforded by the learning environment. Qualitatively
new representational skills emerge as required to reduce error. When new
representational structures do emerge, they elaborate on the results of
earlier computations. Learning is the primary engine of cognitive transi-
tions, yielding the many qualitative and quantitative changes one sees in
cognitive development.
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