
Learning the Structure of a Mathematical Group

Anna Jamrozik (anna.jamrozik@mail.mcgill.ca)
Department of Psychology, McGill University, 1205 Penfield Avenue

Montreal, QC H3A 1B1 Canada

Thomas R. Shultz (thomas.shultz@mcgill.ca)
Department of Psychology and School of Computer Science, McGill University, 1205 Penfield Avenue

Montreal, QC H3A 1B1 Canada

Abstract
A mathematical group is a set of operations that satisfies the
properties of identity, inverse, associativity, and closure.
Understanding of group structure can be assessed by changing
elements and operations over different versions of the same
underlying group. Participants learned this structure more
quickly over four different, successive versions of a subset of
the Klein 4-group, suggesting some understanding of the
group structure (Halford, Bain, Mayberry, & Andrews, 1998).
Because an artificial neural network learning the task failed to
improve, it was argued that such models are incapable of
learning abstract group structures (Phillips & Halford, 1997).
Here we show that an improved neural model that adheres
more closely to the task used with humans does speed its
learning over changing versions of the task, showing that
neural networks are capable of learning and generalizing
abstract structure.

Keywords: generalization; mathematical groups; Klein 4-
group; systematicity; neural networks; sibling-descendant
cascade-correlation.

Introduction
Generalization allows application of what was learned in
one task to new tasks, thus distinguishing understanding
from mere memorization (Shultz, 2001). Phillips and
Halford (1997) questioned the ability of current feedforward
neural networks to learn abstract structures and to generalize
to related problems. Mathematical groups offer a
challenging context to test for such generalization.
Generalization is achieved if the structure underlying a
group can be extracted and applied to new instances.

Human participants demonstrated some ability to
extrapolate the structure underlying a series of four different
versions of what was described as a Klein 4-group task
(Halford et al., 1998). Attempts to create a feedforward
network able to do the same were unsuccessful (Phillips &
Halford, 1997). The modeling failure was cited approvingly
by Marcus (1998) as part of a general argument against the
ability of neural networks to generalize outside of the
training set as well as humans do. Here, we identify some
serious shortcomings of that unsuccessful model and present
a more appropriate neural-network model that exhibits
generalization by learning the Klein 4-group structure more
quickly with each new version of the task, as Halford et al.’s
participants did.

The Klein 4-group
A mathematical group is a set of operations that satisfies
four criteria: identity, inverse, associativity, and closure.
The Klein 4-group, named after German mathematician
Felix Klein, is one of only two possible four-element groups
(the other is the cyclic 4-group). The four elements of the
Klein 4-group are operations that, when combined, create
other operations that are also members of the group. Table 1
shows how the Klein 4-group might be used to structure a
task like that used by Halford et al. (1998), which can be
visualized as moving from one position to another in a two-
dimensional plane.

Table 1: Example of the Klein 4-group.

* Identity Horizontal Vertical Diagonal

Identity Identity Horizontal Vertical Diagonal

Horizontal Horizontal Identity Diagonal Vertical

Vertical Vertical Diagonal Identity Horizontal

Diagonal Diagonal Vertical Horizontal Identity

The identity criterion is satisfied by an operation that does

not change the operation it acts on. Notice that the first row
and first column in Table 1 each use an identity operation
and thus preserve the effect of the other operation. For
example, a horizontal operation followed by an identity
operation is simply a horizontal operation. The inverse
criterion is satisfied when every operation has an inverse
that reverses the action of that operation. Inverse operations
are designated in the diagonal of Table 1, marked by cells
labeled identity. For example, a horizontal operation can be
undone by a reverse horizontal operation, leaving the system
in the same place it started.

The associative law of operations specifies that two
operations applied in a certain order result in the same final
state even if their order is reversed. For example, a
horizontal operation followed by a vertical operation yields
the same result as does a vertical operation followed by a
horizontal operation. Finally, closure states that the result of
any combination of operations can also be produced by a
different, single operation. For example, combining a

vertical operation with a horizontal operation is equivalent
to using a diagonal operation.

The Klein 4-group, and foregoing examples, can be
visualized as in Figure 1, with four states at the corners and
the six edges representing the three non-identity operations.

Figure 1: A graphical representation of the Klein 4-group.

Human Extrapolation of Group Structure
In a series of experiments, Halford et al. (1998)
demonstrated people’s ability to extrapolate an abstract
structure underlying a series of four tasks involving a
modified and simplified subset of the Klein 4-group.
Curiously, the diagonal and identity operations, present in
the full Klein 4-group, were missing from this subset. The
Halford et al. subset is pictured in Figure 2. This structure
allows for eight possible triads, or element-operation-
element sequences (e.g., A horizontal D). Three-letter
pronounceable but meaningless strings of letters (e.g.,
‘MIW’) were substituted for each of the four elements in the
group and simple shapes (e.g., ∆) were substituted for each
of the two operations. An example of a triad could be ‘MIW
∆ VOL’.

Figure 2: Halford et al.’s (1998) version of the Klein 4-
group.

Participants completed four versions of the task, each one
containing a maximum of six repetitions of the eight
possible triads. All four versions of the task shared the same
underlying structure but differed in the shapes and strings
used in the triads. Each triad was composed of an initial pair
formed of one element and operation. Participants were
asked to predict the element resulting from the
transformation by selecting from a list of four possible final
elements. Following each identification attempt, participants
were given feedback regarding the correct answer. After
identifying every pair correctly within a trial or after a
maximum of six trials, participants began the next version
of the task, with a different set of shapes and strings. By the
beginning of the fourth version of the task, participants’
error had decreased, suggesting that participants had
extracted something about the abstract relationship between
the elements and operations.

Previous Klein 4-group Network Models
Phillips and Halford (1997) argued that neither a simple
recurrent nor feedforward neural-network model could
capture the same degree of generalization found in humans.
They claimed that this was because the Klein 4-group
problem exhibited systematicity, which they defined as the
“property whereby cognitive capacities are grouped on the
basis of common structure” (Phillips & Halford, 1997, p.
614). The basic idea is that the same structure underlies all
four task versions and this structure can be learned and used
to speed the learning of each successive version. They
argued that connectionist networks are context-specific, not
structure-specific. Because the context of the problem
changes from task to task, they expected that networks
would be unable to improve their performance across
different versions of the Klein 4-group task.

Phillips and Halford (1997) created a fixed-architecture
feedforward network to test this hypothesis: 6 input units
leading to a layer of 3 hidden units, these leading to 2
hidden units, and finally to 4 output units. A localist coding
scheme was used for both inputs and outputs. This is a
binary scheme in which an input or output pattern contains
one non-zero bit. For example, the four group elements
could be represented as ‘1000’, ‘0100’, ‘0010’, and ‘0001’.
After the network successfully predicted each pattern in the
first task, then one, two, or all three of the weights
stemming from one input unit were reset, the network was
retrained on all other patterns, and then tested on the pattern
corresponding to the reset input unit. This was repeated for
10 trials for each weight reset (1, 2, or 3). With one weight
reset, the network was able to generalize to 7 of the 10 test
trials. With three reset weights, the network was unable to
generalize to the test input patterns.

Shortcomings of Previous Models
Phillips and Halford (1997) did not test network
generalization ability in the same way that humans were
tested. Humans were tested for improvement in learning
speed over four tasks all sharing an underlying subset of the

 A

B
horizontal

horizontal

v
e
r
t
i
c
a
l

v
e
r
t
i
c
a
l

D

C

A

C D

diagonal

horizontal

v
e
r
t
i
c
a
l

v
e
r
t
i
c
a
l

B

horizontal

identity

Klein 4-group structure. Phillips and Halford concluded that
participants were generalizing the structure of the group and
using it to solve later tasks because they became better at
learning to predict the correct final elements by the fourth
task. Their networks were tested in a different fashion. After
resetting the weights between one input unit and the hidden
units, the network’s ability to find the solution to the
element represented by that input unit was tested. No new
versions of the task were used. The resetting of weights
could be seen as erasing memory. The human experiment
involved learning new tasks by generalizing the structure of
earlier tasks, not as learning one task, having this knowledge
erased, and trying to learn a similar task.

Using a local input/output representation is known to
hamper generalization, because different elements are
represented on different units and weights. By using a
coding scheme known to limit generalization, feedforward
networks’ ability to generalize the Klein 4-group structure
was compromised. In order to more fairly assess this ability,
a coding scheme that facilitates generalization should be
used. Analog representation facilitates generalization by
representing different elements on the same units and
weights and has allowed for generalization and other
psychological effects to emerge naturally within neural
networks (Shultz, 2003).

The feedforward network used in Phillips and Halford’s
(1997) simulation was designed by hand, such that the
number of hidden units and their topology was fully
determined before training began. This prevented the
network from growing to meet the demands of the task.
People were under no such restrictions. With the alternative
of constructive learning, a learning algorithm can build its
own network topology to suit the problem (Shultz, 2006).
The topology can start with minimal structure and new
hidden units can be recruited as needed and placed in a
network topology that learns to minimize network error.

Finally, if the goal is to test human and network ability to
learn the abstract structure of the Klein-4-group, then the
full Klein 4-group should be used, not an arbitrary subset
that is not technically a group.

SDCC
In order to allow the networks in our simulation to construct
their own topologies, the Sibling-descendant Cascade-
correlation (SDCC) algorithm (Baluja & Fahlman, 1994)
was employed. As in ordinary cascade-correlation (CC),
SDCC allows networks to recruit hidden units as they are
needed in order to minimize error. But rather than installing
each hidden unit on its own layer as in CC, a new unit is
either installed on a new layer (descendant) or in the current
highest layer (sibling), depending on which candidate’s
activation correlates best with network error. Networks
created with SDCC are shallower than CC networks but
have a similar ability to learn and generalize (Baluja &
Fahlman, 1994). CC and more recently SDCC have been
used to successfully simulate many phenomena in human
learning and development (Shultz, 2003, 2006).

Method

Coding the Task
The task used in Phillips and Halford’s (1997) simulation
was modified to more fairly test network learning ability
and to better correspond with the task used in the human
experiments conducted by Halford et al. (1998).

Human participants in the Halford et al. (1998)
experiment had to choose which of four elements best
completed an element-operation pair. The difference
between elements and operations was stressed by coding
elements as three-letter strings and operations as shapes. In
addition, participants were given cards depicting each of the
four elements in order to facilitate solving the task (Halford
et al., 1998). We implemented the difference between
elements and operators by coding each element with a
different integer between 5 and 16 and each operation with a
different integer between 1 and 4.

Participants in the Halford et al. (1998) experiment
completed four different versions of the Klein 4-group task,
but networks in the Phillips and Halford (1997) simulation
only completed two versions. In our simulation, networks
completed four different versions of the task as humans did.
Participants’ performance in the Halford et al. (1998) task
was measured by their error rate. Participants were found to
have a lower error rate by the beginning of the fourth
version of the task than they had at the beginning of the first
version, suggesting that they were learning the task faster in
later versions. To mimic this, we recorded networks’
learning speed on each of the four tasks.

As noted, we used an analog coding scheme to facilitate
generalization rather than the localist coding scheme used in
Phillips and Halford’s (1997) simulation, which is known to
limit generalization.

Our networks were given an input of a triad, and asked to
predict if the given triad was or was not a possible member
of the Klein 4-group. There are 64 ways to combine one of
four possible initial elements, one of four possible
operations, and one of four possible final elements. Of these
64 possible combinations, 16 are valid members of the
Klein 4-group and 48 are not. All 64 triads (e.g., element 1,
horizontal, element 2; element 1, horizontal, element 3)
were created and paired with the corresponding output (+0.5
if the triad was a valid example of the Klein 4-group; -0.5 if
it was not). This approximated the limited choice given to
participants in the Halford et al. (1998) experiment, who
selected one of four possible elements to form a valid triad.

Each of the four elements was randomly designated with
a different integer between 5 and 16 and each of the four
operations was randomly designated with a different integer
between 1 and 4. There are 285,120 ways in which to pair
elements and operations with that coding. Operations and
elements were chosen from different sets of numbers to
mirror the distinction between operations and elements
found in the Halford et al. (1998) study, in which elements
were designated with letter strings and operations were
designated with shapes.

By designating elements and operations with numbers,
element-operation-element triads could be created and
paired with the appropriate output for that triad. For
example, if the triad ‘element 1, horizontal, element 2’,
translated say to 12 2 7, is a possible member of the Klein 4-
group, this input would be paired with the output +.5. By
pairing triads and outputs, a training set of 64 input-output
pairs, or training patterns, was created. Four sets of training
patterns were formed. A training epoch consisted of the
network processing each of the 64 training patterns.

Our network task thus approximated the task given to
human participants by Halford et al. (1998). Elements and
operations were differentiated and networks were given a
choice of answer. Networks were required to learn and thus
generalize over four different consecutive versions of the
task, allowing us to measure learning speed. The fresh
coding for each successive training set required as much
extrapolation as did the human experiment. Networks were
allowed to build their own topology and weights were not
erased when moving to a new version of the task.

Testing for Generalization
Twelve SDCC networks, corresponding to the 12
participants in the Halford et al. (1998) study, were trained
on four successive training sets, representing each of the
four versions of the task. Networks varied from each other
because of unique random initializations of their weights,
and because of unique random codings of elements and
operations.

Networks were trained on the first training set until
reaching victory. Victory was declared if all of the output
activations generated by the network for each training
pattern were within a certain threshold of the correct output.
In this case, this threshold was 0.4, the standard value for
sigmoid output units (Shultz, 2003). All other network
parameters were also left at their default values. Once the
network completed this first training set, the network began
training on the second set. At the start of this second phase,
the weights created during the first phase remained intact.
This allowed the network to preserve the knowledge used to
reduce error during the first training set and then to continue
learning from that point. The algorithm continued to recruit
hidden units as needed. Once victory for this second training
set was reached, a third training set was substituted, etc.
Upon completing four training sets, the network’s topology
and knowledge representations were examined.

If the networks reached victory faster for later versions of
the task than for earlier versions, then we would conclude
that networks had abstracted something of the underlying
structure of the task.

Results
The mean numbers of epochs needed to learn the successive
training sets are pictured in Figure 3; and the mean numbers
of hidden units recruited in successive training sets are
pictured in Figure 4. Fewer epochs and hidden units were

needed in later training sets. Hidden units were arranged on
a mean of 11 layers by the end of the fourth training set.

A one-way repeated measures ANOVA was conducted to
test whether a difference existed in the number of epochs
needed to reach victory across the four successive training
sets. This ANOVA revealed an overall difference between
the means, F(3, 33) = 26, p < .001. There were both linear,
F(1, 11) = 112, p < .001, and quadratic, F(1, 11) = 11, p <
.01, trends in these data, reflecting increased learning speed
across versions. Bonferroni–corrected pairwise comparisons
revealed that the mean of first training set was greater than
the mean of the third training set (p < .05), as for humans
(Halford et al., 1998). Additionally, the mean of the first
training set was also greater than the mean of the second
training set (p < .05).

An analogous ANOVA was conducted to test whether a
difference existed between the numbers of hidden units
recruited in successive training sets. This ANOVA also
revealed an overall difference between the means, F(3, 33)
= 39, p < .001. Again, there were linear, F(1, 11) = 244, p <
.001, and quadratic, F(1, 11) = 19, p < .002, trends in these
data, indicative of increased learning speed over successive
training sets.

0

500

1000

1500

2000

1 2 3 4

Training set

M
ea

n
ep

oc
hs

 to
 le

ar
n

Figure 3: Mean number of epochs needed to reach victory

during consecutive training sets, along with standard
deviation bars and linear and quadratic trend lines.

0

2

4

6

8

10

12

14

16

1 2 3 4

Training set

M
ea

n
hi

dd
en

 u
ni

ts
 re

cr
ui

te
d

Figure 4: Mean number of hidden units added during

consecutive training sets, along with standard deviation bars
and linear and quadratic trend lines.

To understand the networks’ knowledge representations,

the contributions of input and hidden units were analyzed

using Principal Component Analysis (PCA). Network
contributions are the products of sending-unit activations
and connection weights entering into output units (Shultz &
Elman, 1994). Although the full results cannot be elaborated
here because of space limitations, it was found that element
input units loaded onto one principal component while the
operation input unit loaded onto another principal
component. Component scores suggested that networks
distinguished the different element and operation values.

An example of the relationship between the four
operations and the component the operation unit loaded onto
is pictured in Figure 5 for one representative network. Mean
scores on this component distinguished the four operations
from each other. An example of the relation between the
four elements and the component representing those
elements is shown in Figure 6 for this same network. Both
initial and final element values were distinguished from
each other by these component scores. Such representations
became somewhat more precise with each successive
version of the task.

-1.5

-1

-0.5

0

0.5

1

1.5

Vertical Identity Diagonal Horizontal

Operation

M
ea

n
co

m
po

ne
nt

 s
co

re

Figure 5: Mean component-2 scores for network 6 after

the last training set. The operation input unit loaded heavily
onto component 2, which distinguished the four different

operations.

-1

-0.5

0

0.5

1

1 2 3 4

Element numbers

M
ea

n
co

m
po

ne
nt

 s
co

re

Initial
Final

Element

Figure 6: Mean component-1 scores for network 6 after

the last training set. The initial and final element input units
loaded heavily onto component 1, which distinguished the

four different element values.

The performance of the 12 Klein 4-group networks
training on the first training set was also compared to the
performance of 12 networks that had been pre-trained on

another moderately complex problem, continuous exclusive-
or (Shultz & Elman, 1994) before learning one training set
of the Klein 4-group task. This comparison was used to
examine whether networks reached victory for later training
sets because of the increased complexity of the networks
learning later sets. The pre-trained networks had recruited
an average of 6.17 hidden units during pre-training. When
training on the Klein 4-group task, the pre-trained networks
did not reach victory faster than networks without pre-
training. These results suggest that mere network
complexity cannot account for the increase in performance
across successive training sets.

Discussion
It is evident that the networks abstracted something of the
structure underlying all four of the training tasks because
they reached victory faster for later versions of the task than
for earlier versions. This simulates human performance in
the Halford et al. (1998) experiment, in which people were
faster in learning later than earlier tasks. The number of
trials needed by human participants and the number of
epochs needed by networks to reach victory are not directly
comparable because there is no way of knowing how much
processing humans are doing on each trial. What is
important is that both humans and networks exhibited faster
learning in successive versions of the task.

Knowledge-representation analyses consisting of PCAs of
network contributions revealed that the element input units
loaded onto one component and that the operation input unit
loaded onto the other component. In addition, the specific
elements and operations could be distinguished by variation
in component scores. The fact that these representations
became more precise with each new version of the task
supports the idea that networks were gradually abstracting
some of the structure of the Klein 4-group.

These learning speed and knowledge-representation
results contradict the claims by Phillips and Halford (1997)
and Marcus (1998) about the inability of neural networks to
generalize abstract relations outside of the training set.

As demonstrated by Browne (2002), the coding scheme
employed in training and testing networks plays a large role
in a network’s ability to generalize. The binary coding
scheme used by Phillips and Halford (1997) prevented
successful network generalization, as did their erasing of
weights when moving from one phase to another. Our
changing the identity of elements and operations in each
new training phase, while preserving the weights,
corresponded more closely to the method of Halford et al.’s
human experiment. Plus, our use of analog representations
allowed for generalization across the four different versions
of the problem. Another factor in the current networks’
ability to generalize may have been the use of SDCC, which
allowed networks to configure their own architecture, but a
direct test of this would require comparing the present
results to static networks (Shultz, 2006).

The possibility that the networks were not abstracting the
Klein 4-group structure but simply solving the task faster as

their architectures became more complex was refuted by
comparing the performance of networks only learning the
Klein 4-group task and networks pre-trained on a
continuous exclusive-or problem before learning the Klein
4-group task. Because the learning speed of the pre-trained
networks did not differ from networks without pre-existing
hidden units, more complex architectures could not explain
increases in learning speed.

The use of PCA to analyze knowledge representations in
our networks provided some understanding of how network
knowledge was organized. The PCAs revealed that
networks distinguished between operations and elements
and between different values on each of these two
dimensions. It would be interesting to determine if networks
trained on other mathematical group tasks would develop a
similar pattern of loadings, perhaps suggesting similar
solutions to the tasks.

Other future work might use the present simulations as
predictions for a psychology experiment in which
participants would be asked to classify example triads of
two elements and a transforming operation as instances or
non-instances of the full Klein 4-group.

A better experimental control for network complexity
than the continuous exclusive-or task used here might
involve randomizing the weights of an SDCC network that
was trained on a version of the Klein 4-group. Such a
randomized network would be exactly as complex in
topology as the network from which it was derived but lack
any content knowledge of the Klein 4-group.

Although Phillips and Halford (1997) claimed that the
Klein 4-group task is one of systematicity, this systematic
structure may only appear at a level of abstraction achieved
by rather skilled mathematicians. Shultz and Bale (2001,
2006) presented similar examples of CC networks
exhibiting rule-like behavior without directly representing
or manipulating symbolic rules. Symbolic rules can be seen
as emerging from the subsymbolic processing of neural
networks (Smolensky, 1988). In an analogous fashion, our
networks learned something about the structure of the Klein
4-group without actually representing and processing the
explicit rules of identity, inverse, associativity, and closure.

Acknowledgements
This research was supported by a grant from the Natural
Sciences and Engineering Research Council of Canada to
the second author. We are grateful to Dirk Schlimm for
helpful comments on an earlier draft.

References
Baluja, S. & Fahlman, S. E. (1994). Reducing network

depth in the Cascade-Correlation learning architecture.
Tech Report CMU-CS-94-209, School of Computer
Science, Carnegie Mellon University.

Browne, A. (2002). Representation and extrapolation in
multilayer perceptrons. Neural Computation, 14, 1739-
1754.

Halford, G. S., Bain, J. D., Maybery, M. T., & Andrews G.
(1998). Induction of relational schemas: Common
processes in reasoning and complex learning. Cognitive
Psychology, 35, 201-245.

Marcus, G. F. (1998). Rethinking eliminative
connectionism. Cognitive Psychology, 37, 243–282.

Phillips, S., & Halford, G. S. (1997). Systematicity:
Psychological evidence with connectionist implications.
In M. G. Shafto & P. Langley (Eds.), Proceedings of the
Nineteenth Annual Conference of the Cognitive Science
Society. Mahwah, NJ: Erlbaum.

Shultz, T. R. (2001). Assessing generalization in
connectionist and rule-based models under the learning
constraint. In J. Moore & K. Stenning (Eds.), Proceedings
of the Twenty-third Annual Conference of the Cognitive
Science Society. Mahwah, NJ: Erlbaum.

Shultz, T. R. (2003). Computational developmental
psychology. Cambridge, MA: MIT Press.

Shultz, T. R. (2006). Constructive learning in the modeling
of psychological development. In Y. Munakata & M. H.
Johnson (Eds.), Processes of change in brain and
cognitive development: Attention and performance XXI.
Oxford: Oxford University Press.

Shultz, T. R., & Bale, A. C. (2001). Neural network
simulation of infant familiarization to artificial sentences:
Rule-like behavior without explicit rules and variables.
Infancy, 2, 501-536.

Shultz, T. R., & Bale, A. C. (2006). Neural networks
discover a near-identity relation to distinguish simple
syntactic forms. Minds and Machines, 16, 107-139.

Shultz, T. R., & Elman, J. L. (1994). Analyzing cross
connected networks. In J. D. Cowan, G. Tesauro, & J.
Alspector (Eds.), Advances in Neural Information
Processing Systems 6. San Francisco, CA: Morgan
Kaufmannn.

Smolensky, P. (1988). On the proper treatment of
connectionism. Behavioral and Brain Sciences, 11, 1-74.

