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Abstract 
A mathematical group is a set of operations that satisfies the 
properties of identity, inverse, associativity, and closure. 
Understanding of group structure can be assessed by changing 
elements and operations over different versions of the same 
underlying group. Participants learned this structure more 
quickly over four different, successive versions of a subset of 
the Klein 4-group, suggesting some understanding of the 
group structure (Halford, Bain, Mayberry, & Andrews, 1998). 
Because an artificial neural network learning the task failed to 
improve, it was argued that such models are incapable of 
learning abstract group structures (Phillips & Halford, 1997). 
Here we show that an improved neural model that adheres 
more closely to the task used with humans does speed its 
learning over changing versions of the task, showing that 
neural networks are capable of learning and generalizing 
abstract structure.  

Keywords: generalization; mathematical groups; Klein 4-
group; systematicity; neural networks; sibling-descendant 
cascade-correlation. 

Introduction 
Generalization allows application of what was learned in 
one task to new tasks, thus distinguishing understanding 
from mere memorization (Shultz, 2001). Phillips and 
Halford (1997) questioned the ability of current feedforward 
neural networks to learn abstract structures and to generalize 
to related problems. Mathematical groups offer a 
challenging context to test for such generalization. 
Generalization is achieved if the structure underlying a 
group can be extracted and applied to new instances.  

Human participants demonstrated some ability to 
extrapolate the structure underlying a series of four different 
versions of what was described as a Klein 4-group task 
(Halford et al., 1998). Attempts to create a feedforward 
network able to do the same were unsuccessful (Phillips & 
Halford, 1997). The modeling failure was cited approvingly 
by Marcus (1998) as part of a general argument against the 
ability of neural networks to generalize outside of the 
training set as well as humans do. Here, we identify some 
serious shortcomings of that unsuccessful model and present 
a more appropriate neural-network model that exhibits 
generalization by learning the Klein 4-group structure more 
quickly with each new version of the task, as Halford et al.’s 
participants did. 

The Klein 4-group 
A mathematical group is a set of operations that satisfies 
four criteria: identity, inverse, associativity, and closure. 
The Klein 4-group, named after German mathematician 
Felix Klein, is one of only two possible four-element groups 
(the other is the cyclic 4-group). The four elements of the 
Klein 4-group are operations that, when combined, create 
other operations that are also members of the group. Table 1 
shows how the Klein 4-group might be used to structure a 
task like that used by Halford et al. (1998), which can be 
visualized as moving from one position to another in a two-
dimensional plane.   

 
Table 1: Example of the Klein 4-group. 

 
* Identity Horizontal Vertical Diagonal 

Identity Identity Horizontal Vertical Diagonal 

Horizontal Horizontal Identity Diagonal Vertical 

Vertical Vertical Diagonal Identity Horizontal 

Diagonal Diagonal Vertical Horizontal Identity 

 
The identity criterion is satisfied by an operation that does 

not change the operation it acts on. Notice that the first row 
and first column in Table 1 each use an identity operation 
and thus preserve the effect of the other operation. For 
example, a horizontal operation followed by an identity 
operation is simply a horizontal operation. The inverse 
criterion is satisfied when every operation has an inverse 
that reverses the action of that operation. Inverse operations 
are designated in the diagonal of Table 1, marked by cells 
labeled identity. For example, a horizontal operation can be 
undone by a reverse horizontal operation, leaving the system 
in the same place it started.  

The associative law of operations specifies that two 
operations applied in a certain order result in the same final 
state even if their order is reversed. For example, a 
horizontal operation followed by a vertical operation yields 
the same result as does a vertical operation followed by a 
horizontal operation. Finally, closure states that the result of 
any combination of operations can also be produced by a 
different, single operation. For example, combining a 



vertical operation with a horizontal operation is equivalent 
to using a diagonal operation.  

The Klein 4-group, and foregoing examples, can be 
visualized as in Figure 1, with four states at the corners and 
the six edges representing the three non-identity operations.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: A graphical representation of the Klein 4-group. 

Human Extrapolation of Group Structure 
In a series of experiments, Halford et al. (1998) 
demonstrated people’s ability to extrapolate an abstract 
structure underlying a series of four tasks involving a 
modified and simplified subset of the Klein 4-group. 
Curiously, the diagonal and identity operations, present in 
the full Klein 4-group, were missing from this subset. The 
Halford et al. subset is pictured in Figure 2. This structure 
allows for eight possible triads, or element-operation-
element sequences (e.g., A horizontal D). Three-letter 
pronounceable but meaningless strings of letters (e.g., 
‘MIW’) were substituted for each of the four elements in the 
group and simple shapes (e.g., ∆) were substituted for each 
of the two operations. An example of a triad could be ‘MIW 
∆ VOL’.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Halford et al.’s (1998) version of the Klein 4-
group. 

Participants completed four versions of the task, each one 
containing a maximum of six repetitions of the eight 
possible triads. All four versions of the task shared the same 
underlying structure but differed in the shapes and strings 
used in the triads. Each triad was composed of an initial pair 
formed of one element and operation. Participants were 
asked to predict the element resulting from the 
transformation by selecting from a list of four possible final 
elements. Following each identification attempt, participants 
were given feedback regarding the correct answer. After 
identifying every pair correctly within a trial or after a 
maximum of six trials, participants began the next version 
of the task, with a different set of shapes and strings. By the 
beginning of the fourth version of the task, participants’ 
error had decreased, suggesting that participants had 
extracted something about the abstract relationship between 
the elements and operations. 

Previous Klein 4-group Network Models 
Phillips and Halford (1997) argued that neither a simple 
recurrent nor feedforward neural-network model could 
capture the same degree of generalization found in humans. 
They claimed that this was because the Klein 4-group 
problem exhibited systematicity, which they defined as the 
“property whereby cognitive capacities are grouped on the 
basis of common structure” (Phillips & Halford, 1997, p. 
614). The basic idea is that the same structure underlies all 
four task versions and this structure can be learned and used 
to speed the learning of each successive version. They 
argued that connectionist networks are context-specific, not 
structure-specific. Because the context of the problem 
changes from task to task, they expected that networks 
would be unable to improve their performance across 
different versions of the Klein 4-group task. 

Phillips and Halford (1997) created a fixed-architecture 
feedforward network to test this hypothesis: 6 input units 
leading to a layer of 3 hidden units, these leading to 2 
hidden units, and finally to 4 output units. A localist coding 
scheme was used for both inputs and outputs. This is a 
binary scheme in which an input or output pattern contains 
one non-zero bit. For example, the four group elements 
could be represented as ‘1000’, ‘0100’, ‘0010’, and ‘0001’. 
After the network successfully predicted each pattern in the 
first task, then one, two, or all three of the weights 
stemming from one input unit were reset, the network was 
retrained on all other patterns, and then tested on the pattern 
corresponding to the reset input unit. This was repeated for 
10 trials for each weight reset (1, 2, or 3). With one weight 
reset, the network was able to generalize to 7 of the 10 test 
trials. With three reset weights, the network was unable to 
generalize to the test input patterns.  

Shortcomings of Previous Models 
Phillips and Halford (1997) did not test network 
generalization ability in the same way that humans were 
tested. Humans were tested for improvement in learning 
speed over four tasks all sharing an underlying subset of the 
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Klein 4-group structure. Phillips and Halford concluded that 
participants were generalizing the structure of the group and 
using it to solve later tasks because they became better at 
learning to predict the correct final elements by the fourth 
task. Their networks were tested in a different fashion. After 
resetting the weights between one input unit and the hidden 
units, the network’s ability to find the solution to the 
element represented by that input unit was tested. No new 
versions of the task were used. The resetting of weights 
could be seen as erasing memory. The human experiment 
involved learning new tasks by generalizing the structure of 
earlier tasks, not as learning one task, having this knowledge 
erased, and trying to learn a similar task.  

Using a local input/output representation is known to 
hamper generalization, because different elements are 
represented on different units and weights. By using a 
coding scheme known to limit generalization, feedforward 
networks’ ability to generalize the Klein 4-group structure 
was compromised. In order to more fairly assess this ability, 
a coding scheme that facilitates generalization should be 
used. Analog representation facilitates generalization by 
representing different elements on the same units and 
weights and has allowed for generalization and other 
psychological effects to emerge naturally within neural 
networks (Shultz, 2003). 

The feedforward network used in Phillips and Halford’s 
(1997) simulation was designed by hand, such that the 
number of hidden units and their topology was fully 
determined before training began. This prevented the 
network from growing to meet the demands of the task. 
People were under no such restrictions. With the alternative 
of constructive learning, a learning algorithm can build its 
own network topology to suit the problem (Shultz, 2006). 
The topology can start with minimal structure and new 
hidden units can be recruited as needed and placed in a 
network topology that learns to minimize network error.  

Finally, if the goal is to test human and network ability to 
learn the abstract structure of the Klein-4-group, then the 
full Klein 4-group should be used, not an arbitrary subset 
that is not technically a group.  

SDCC 
In order to allow the networks in our simulation to construct 
their own topologies, the Sibling-descendant Cascade-
correlation (SDCC) algorithm (Baluja & Fahlman, 1994) 
was employed. As in ordinary cascade-correlation (CC), 
SDCC allows networks to recruit hidden units as they are 
needed in order to minimize error. But rather than installing 
each hidden unit on its own layer as in CC, a new unit is 
either installed on a new layer (descendant) or in the current 
highest layer (sibling), depending on which candidate’s 
activation correlates best with network error. Networks 
created with SDCC are shallower than CC networks but 
have a similar ability to learn and generalize (Baluja & 
Fahlman, 1994). CC and more recently SDCC have been 
used to successfully simulate many phenomena in human 
learning and development (Shultz, 2003, 2006).  

Method 

Coding the Task 
The task used in Phillips and Halford’s (1997) simulation 
was modified to more fairly test network learning ability 
and to better correspond with the task used in the human 
experiments conducted by Halford et al. (1998). 

Human participants in the Halford et al. (1998) 
experiment had to choose which of four elements best 
completed an element-operation pair. The difference 
between elements and operations was stressed by coding 
elements as three-letter strings and operations as shapes. In 
addition, participants were given cards depicting each of the 
four elements in order to facilitate solving the task (Halford 
et al., 1998). We implemented the difference between 
elements and operators by coding each element with a 
different integer between 5 and 16 and each operation with a 
different integer between 1 and 4. 

Participants in the Halford et al. (1998) experiment 
completed four different versions of the Klein 4-group task, 
but networks in the Phillips and Halford (1997) simulation 
only completed two versions. In our simulation, networks 
completed four different versions of the task as humans did. 
Participants’ performance in the Halford et al. (1998) task 
was measured by their error rate. Participants were found to 
have a lower error rate by the beginning of the fourth 
version of the task than they had at the beginning of the first 
version, suggesting that they were learning the task faster in 
later versions. To mimic this, we recorded networks’ 
learning speed on each of the four tasks. 

As noted, we used an analog coding scheme to facilitate 
generalization rather than the localist coding scheme used in 
Phillips and Halford’s (1997) simulation, which is known to 
limit generalization.  

Our networks were given an input of a triad, and asked to 
predict if the given triad was or was not a possible member 
of the Klein 4-group. There are 64 ways to combine one of 
four possible initial elements, one of four possible 
operations, and one of four possible final elements. Of these 
64 possible combinations, 16 are valid members of the 
Klein 4-group and 48 are not. All 64 triads (e.g., element 1, 
horizontal, element 2; element 1, horizontal, element 3) 
were created and paired with the corresponding output (+0.5 
if the triad was a valid example of the Klein 4-group; -0.5 if 
it was not). This approximated the limited choice given to 
participants in the Halford et al. (1998) experiment, who 
selected one of four possible elements to form a valid triad.  

Each of the four elements was randomly designated with 
a different integer between 5 and 16 and each of the four 
operations was randomly designated with a different integer 
between 1 and 4. There are 285,120 ways in which to pair 
elements and operations with that coding. Operations and 
elements were chosen from different sets of numbers to 
mirror the distinction between operations and elements 
found in the Halford et al. (1998) study, in which elements 
were designated with letter strings and operations were 
designated with shapes.  



By designating elements and operations with numbers, 
element-operation-element triads could be created and 
paired with the appropriate output for that triad. For 
example, if the triad ‘element 1, horizontal, element 2’, 
translated say to 12 2 7, is a possible member of the Klein 4-
group, this input would be paired with the output +.5. By 
pairing triads and outputs, a training set of 64 input-output 
pairs, or training patterns, was created. Four sets of training 
patterns were formed. A training epoch consisted of the 
network processing each of the 64 training patterns.  

Our network task thus approximated the task given to 
human participants by Halford et al. (1998). Elements and 
operations were differentiated and networks were given a 
choice of answer. Networks were required to learn and thus 
generalize over four different consecutive versions of the 
task, allowing us to measure learning speed. The fresh 
coding for each successive training set required as much 
extrapolation as did the human experiment. Networks were 
allowed to build their own topology and weights were not 
erased when moving to a new version of the task.  

Testing for Generalization 
Twelve SDCC networks, corresponding to the 12 
participants in the Halford et al. (1998) study, were trained 
on four successive training sets, representing each of the 
four versions of the task. Networks varied from each other 
because of unique random initializations of their weights, 
and because of unique random codings of elements and 
operations.  

Networks were trained on the first training set until 
reaching victory. Victory was declared if all of the output 
activations generated by the network for each training 
pattern were within a certain threshold of the correct output. 
In this case, this threshold was 0.4, the standard value for 
sigmoid output units (Shultz, 2003). All other network 
parameters were also left at their default values. Once the 
network completed this first training set, the network began 
training on the second set. At the start of this second phase, 
the weights created during the first phase remained intact. 
This allowed the network to preserve the knowledge used to 
reduce error during the first training set and then to continue 
learning from that point. The algorithm continued to recruit 
hidden units as needed. Once victory for this second training 
set was reached, a third training set was substituted, etc. 
Upon completing four training sets, the network’s topology 
and knowledge representations were examined. 

If the networks reached victory faster for later versions of 
the task than for earlier versions, then we would conclude 
that networks had abstracted something of the underlying 
structure of the task.  

Results 
The mean numbers of epochs needed to learn the successive 
training sets are pictured in Figure 3; and the mean numbers 
of hidden units recruited in successive training sets are 
pictured in Figure 4. Fewer epochs and hidden units were 

needed in later training sets. Hidden units were arranged on 
a mean of 11 layers by the end of the fourth training set.  

A one-way repeated measures ANOVA was conducted to 
test whether a difference existed in the number of epochs 
needed to reach victory across the four successive training 
sets. This ANOVA revealed an overall difference between 
the means, F(3, 33) = 26, p < .001. There were both linear, 
F(1, 11) = 112, p < .001, and quadratic, F(1, 11) = 11, p < 
.01, trends in these data, reflecting increased learning speed 
across versions. Bonferroni–corrected pairwise comparisons 
revealed that the mean of first training set was greater than 
the mean of the third training set (p < .05), as for humans 
(Halford et al., 1998). Additionally, the mean of the first 
training set was also greater than the mean of the second 
training set (p < .05).  

An analogous ANOVA was conducted to test whether a 
difference existed between the numbers of hidden units 
recruited in successive training sets. This ANOVA also 
revealed an overall difference between the means, F(3, 33) 
= 39, p < .001. Again, there were linear, F(1, 11) =  244, p < 
.001, and quadratic, F(1, 11) = 19, p < .002, trends in these 
data, indicative of increased learning speed over successive 
training sets.   
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Figure 3: Mean number of epochs needed to reach victory 

during consecutive training sets, along with standard 
deviation bars and linear and quadratic trend lines.  
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Figure 4: Mean number of hidden units added during 

consecutive training sets, along with standard deviation bars 
and linear and quadratic trend lines.  

 
To understand the networks’ knowledge representations, 

the contributions of input and hidden units were analyzed 



using Principal Component Analysis (PCA). Network 
contributions are the products of sending-unit activations 
and connection weights entering into output units (Shultz & 
Elman, 1994). Although the full results cannot be elaborated 
here because of space limitations, it was found that element 
input units loaded onto one principal component while the 
operation input unit loaded onto another principal 
component. Component scores suggested that networks 
distinguished the different element and operation values.  

An example of the relationship between the four 
operations and the component the operation unit loaded onto 
is pictured in Figure 5 for one representative network. Mean 
scores on this component distinguished the four operations 
from each other. An example of the relation between the 
four elements and the component representing those 
elements is shown in Figure 6 for this same network. Both 
initial and final element values were distinguished from 
each other by these component scores. Such representations 
became somewhat more precise with each successive 
version of the task. 
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Figure 5: Mean component-2 scores for network 6 after 

the last training set. The operation input unit loaded heavily 
onto component 2, which distinguished the four different 

operations. 
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Figure 6: Mean component-1 scores for network 6 after 

the last training set. The initial and final element input units 
loaded heavily onto component 1, which distinguished the 

four different element values. 
 

The performance of the 12 Klein 4-group networks 
training on the first training set was also compared to the 
performance of 12 networks that had been pre-trained on 

another moderately complex problem, continuous exclusive-
or (Shultz & Elman, 1994) before learning one training set 
of the Klein 4-group task. This comparison was used to 
examine whether networks reached victory for later training 
sets because of the increased complexity of the networks 
learning later sets. The pre-trained networks had recruited 
an average of 6.17 hidden units during pre-training. When 
training on the Klein 4-group task, the pre-trained networks 
did not reach victory faster than networks without pre-
training. These results suggest that mere network 
complexity cannot account for the increase in performance 
across successive training sets.  

Discussion 
It is evident that the networks abstracted something of the 
structure underlying all four of the training tasks because 
they reached victory faster for later versions of the task than 
for earlier versions. This simulates human performance in 
the Halford et al. (1998) experiment, in which people were 
faster in learning later than earlier tasks. The number of 
trials needed by human participants and the number of 
epochs needed by networks to reach victory are not directly 
comparable because there is no way of knowing how much 
processing humans are doing on each trial. What is 
important is that both humans and networks exhibited faster 
learning in successive versions of the task.  

Knowledge-representation analyses consisting of PCAs of 
network contributions revealed that the element input units 
loaded onto one component and that the operation input unit 
loaded onto the other component. In addition, the specific 
elements and operations could be distinguished by variation 
in component scores. The fact that these representations 
became more precise with each new version of the task 
supports the idea that networks were gradually abstracting 
some of the structure of the Klein 4-group.  

These learning speed and knowledge-representation 
results contradict the claims by Phillips and Halford (1997) 
and Marcus (1998) about the inability of neural networks to 
generalize abstract relations outside of the training set.  

As demonstrated by Browne (2002), the coding scheme 
employed in training and testing networks plays a large role 
in a network’s ability to generalize. The binary coding 
scheme used by Phillips and Halford (1997) prevented 
successful network generalization, as did their erasing of 
weights when moving from one phase to another. Our 
changing the identity of elements and operations in each 
new training phase, while preserving the weights, 
corresponded more closely to the method of Halford et al.’s 
human experiment. Plus, our use of analog representations 
allowed for generalization across the four different versions 
of the problem. Another factor in the current networks’ 
ability to generalize may have been the use of SDCC, which 
allowed networks to configure their own architecture, but a 
direct test of this would require comparing the present 
results to static networks (Shultz, 2006).  

The possibility that the networks were not abstracting the 
Klein 4-group structure but simply solving the task faster as 



their architectures became more complex was refuted by 
comparing the performance of networks only learning the 
Klein 4-group task and networks pre-trained on a 
continuous exclusive-or problem before learning the Klein 
4-group task. Because the learning speed of the pre-trained 
networks did not differ from networks without pre-existing 
hidden units, more complex architectures could not explain 
increases in learning speed.  

The use of PCA to analyze knowledge representations in 
our networks provided some understanding of how network 
knowledge was organized. The PCAs revealed that 
networks distinguished between operations and elements 
and between different values on each of these two 
dimensions. It would be interesting to determine if networks 
trained on other mathematical group tasks would develop a 
similar pattern of loadings, perhaps suggesting similar 
solutions to the tasks.  

Other future work might use the present simulations as 
predictions for a psychology experiment in which 
participants would be asked to classify example triads of 
two elements and a transforming operation as instances or 
non-instances of the full Klein 4-group.  

A better experimental control for network complexity 
than the continuous exclusive-or task used here might 
involve randomizing the weights of an SDCC network that 
was trained on a version of the Klein 4-group. Such a 
randomized network would be exactly as complex in 
topology as the network from which it was derived but lack 
any content knowledge of the Klein 4-group.  

Although Phillips and Halford (1997) claimed that the 
Klein 4-group task is one of systematicity, this systematic 
structure may only appear at a level of abstraction achieved 
by rather skilled mathematicians. Shultz and Bale (2001, 
2006) presented similar examples of CC networks 
exhibiting rule-like behavior without directly representing 
or manipulating symbolic rules. Symbolic rules can be seen 
as emerging from the subsymbolic processing of neural 
networks (Smolensky, 1988). In an analogous fashion, our 
networks learned something about the structure of the Klein 
4-group without actually representing and processing the 
explicit rules of identity, inverse, associativity, and closure.  
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