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 Abstract – A constructive learning algorithm, knowledge-
based cascade-correlation (KBCC), recruits previously-learned 
networks in addition to the single hidden units recruited by 
ordinary cascade-correlation. This enables learning by analogy 
when adequate prior knowledge is available, learning by 
induction from examples when there is no relevant prior 
knowledge, and various combinations of analogy and induction. 
A review of experiments with KBCC indicates that recruitment 
of relevant existing knowledge typically speeds learning and 
sometimes enables learning of otherwise impossible problems. 
Current limitations of this approach are discussed.  
 
 Index Terms – Knowledge-based learning, neural networks, 
transfer. 

I.  INTRODUCTION 

 Neural networks are among the most successful 
approaches to modeling learning and development [1, 2]. 
However, a significant limitation of such neural learning is 
that it is typically conducted from scratch, without allowing 
for the influence of existing knowledge. For simulation 
purposes, this is unfortunate because people make extensive 
use of their existing knowledge when learning [3-9]. Use of 
knowledge is largely responsible for the ease and speed with 
which people are able to learn, as well as for interference of 
learning by existing knowledge. Typical neural networks fail 
to use knowledge while learning because they start learning 
from random connection weights. 

Here we examine a somewhat unusual neural-learning 
algorithm that does use its knowledge to learn new problems. 
This algorithm is an extension of cascade-correlation (CC), a 
constructive learning algorithm that has proved useful in 
simulating more than a dozen phenomena in learning and 
cognitive development [2]. Ordinary CC creates a network 
topology by recruiting new hidden units into a feed-forward 
network as needed in order to reduce error [10]. The algorithm 
extension, called knowledge-based cascade-correlation 
(KBCC), recruits whole previously-learned networks in 
addition to the single hidden units recruited by CC [11].  

KBCC is similar in spirit to recent neural-network 
research on inductive transfer [12, 13], multitask learning 
[14], sequential learning [15], lifelong learning [16], input re-
coding [17], knowledge insertion [18], and modularity [19]. 
KBCC incorporates and integrates many of these ideas by 
learning, storing, searching for, mapping, and recruiting 
knowledge within a constructive-learning approach. It often 
outperforms other knowledge-based learners, and it can 
potentially model a range of psychological phenomena.  

We describe the KBCC algorithm, review its performance 
on toy and realistic problems, and then discuss its advantages 
and limitations in the context of current literature on 
knowledge and learning in neural networks.  

II. KBCC 

As noted, KBCC is a variant of cascade-correlation (CC), 
a feedforward constructive algorithm that grows a network 
while learning, essentially by recruiting new hidden units as 
needed [10]. The principal innovation in KBCC is the 
potential to recruit previously-learned networks or indeed any 
differentiable function, in competition with single hidden 
units. The computational device that gets recruited is the one 
whose output correlates best with existing network error, just 
as in ordinary CC. 
 At the start of learning, a KBCC network (see Fig. 1 for 
an example) has only a bias unit and input units fully 
connected to output units with small randomized weights. 
During the initial learning phase, known as the output phase, 
connection weights feeding the output units are trained to 
minimize the sum of squared error, which is defined as 
 ( )∑∑ −=

o p
popo TVF 2

,,  (1) 

where Vo,p is the activation of output o in response to training 
pattern p, and To,p is the corresponding target activation value 
that the network is learning to produce. 

If error reduction stagnates or a certain number of epochs 
is reached without learning success, then the algorithm shifts 
to the so-called input phase. In input-phase, a pool of 



candidate units and source networks is collected, and small 
random weights are used to connect every non-output unit of 
the target network to each input of each recruitment candidate. 
Those weights are then trained to maximize a covariance 
between each candidate’s outputs co and residual error in the 
target network. This covariance for each candidate is defined 
as:  
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where Eo,p is the error at output unit o for pattern p, Vc is the 
matrix of candidate output activations for all patterns, E is the 
matrix of target network error for all patterns, and Cov(Vc,E) 
the covariance matrix relating output activations and errors.  

Input-phase training continues until a maximum number 
of epochs is reached or until the increases in correlations 
stagnate. When the input phase is finished, the candidate with 
the highest G value is installed in the network with new 
connection weights from the outputs of the recruit to the target 
network’s output units. These new weights are initialized with 
small random values having the negative of the sign of the 
correlation.  

The algorithm then shifts back to output phase to adjust 
all target-network output weights in order to use the new 
recruit effectively. KBCC continues to cycle back and forth 
between output and input phases until learning is complete, or 
some maximum number of epochs expires. A hypothetical 
KBCC target network with three recruits is illustrated in Fig. 
1.  

 
 
 
 

 
 
 

  
 
 
 
 
 
 

Fig. 1 Hypothetical KBCC network that has recruited two source networks 
and a sigmoid unit. The dashed line represents a single connection weight, 

thin solid lines represent weight vectors, and thick solid lines represent weight 
matrices. The arrow indicates direction of activation flow. 

 

II. APPLICATIONS OF KBCC  

KBCC has been applied to both toy and realistic 
problems.  

A. Toy Problems 
Although toy problems may not seem as challenging as 

realistic problems and simulations, they can play an important 

role in understanding the behavior and ability of complex 
algorithms such as KBCC.  

1) Geometric shapes: The first batch of toy problems we 
explored involved learning about two-dimensional geometric 
shapes under various transformations such as translation, 
rotation, and size changes, as well as compositions of complex 
shapes from simpler shapes [11]. Networks had to learn to 
distinguish points within a target shape from points outside 
the shape. Plots of activation outputs enabled evaluation of a 
network’s knowledge representations.   

An illustration of KBCC compositionality is presented in 
Fig. 2. To learn a cross shape, this network recruited 
previously-learned vertical and horizontal rectangles, greatly 
shortening learning time, and lessening the number of recruits 
and connection weights [11]. Notice that the recruited 
components of the cross in Figure 2 are very similar to their 
original sources and that the original sources remain unaltered 
in the composition. These are characteristics of classical, 
concatenative compositionality, in which the components are 
incorporated unaltered. This is supposed to be impossible for 
neural networks [20, 21].  

 
a.        b. 
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Fig. 2. Output activation diagrams for a KBCC network that learned a cross 
target (c) by recruiting its two components (a and b). Dark dots represent 

training points inside a shape; light dots training points outside a shape. White 
background indicates generalization to test points inside a shape, black 

background indicates generalization to test points outside the shape, and gray 
background indicates intermediate values. 

 
Learning time without relevant knowledge was 4 to 16 

times longer than with relevant knowledge on these kinds of 
problems, depending on particular conditions. There was a 
strong tendency to recruit relevant knowledge whenever it was 
available.   

Direct comparison revealed that KBCC networks were 
faster to learn translation problems than were Multitask 

 

inputs bias 

outputs 

source 1 

source 2 

unit 



Learning (MTL) networks [22]. An MTL network is trained in 
parallel on several tasks from the same domain, with a single 
output for each task [14]. MTL networks typically learn a 
common hidden-unit representation, which can be useful for 
learning subsequent tasks from the same domain.  

2) Parity: Other toy, but difficult problems involved 
learning high-level parity problems with knowledge of smaller 
parity problems. Parity problems require a network to turn on 
an output unit only when an odd number of binary inputs are 
on. Generalization in such problems has been notoriously 
difficult to demonstrate. KBCC networks learned parity-8 
problems (with 8 binary inputs) faster and with fewer recruits 
than did CC networks when parity-4 networks were included 
in the KBCC candidate source pool [23]. Such parity-4 
networks tended to be recruited by KBCC target networks 
whenever available.  

3) Chessboard Shapes: Similarly, KBCC networks 
learned complex chessboard shapes from knowledge of 
simpler chessboards [23]. As with parity, networks here used 
simpler previous knowledge to compose a solution to a 
similar, but more complex problem and learning was speeded 
up accordingly. Fig. 3 shows output activations of a KBCC 
network having learned an 8x8 chessboard shape after 
recruiting a 4x4 chessboard source network. The striped 
pattern indicates that this network learned alternating 
hyperplanes demarcating positive vs. negative output regions. 
This is an efficient solution that generalizes well even beyond 
the range of the training patterns.  
 
 

 
 

Fig. 3 Output activation plot for a KBCC network that learned an 8x8 
chessboard shape. The training patterns are marked with + for positive output 

and x for negative output. White background represents positive 
generalizations, black background represents negative generalizations, and 

gray background represents intermediate values.  
 

B.  Realistic Problems 
KBCC has also been applied to several realistic problems.  
1) Vowel Recognition: KBCC networks with knowledge 

of vowels from one sort of speaker (e.g., adult males) learned 
to recognize vowels spoken by other sets of speakers (e.g., 
children and adult females) faster than networks without such 
knowledge [24].  

2) Splice Junctions: KBCC was also applied to gene 
splice-junction determination using biological rules 

(previously learned as networks) as source knowledge. 
Because not all sources were recruited, KBCC was useful in 
identifying the knowledge that was required. On this task, 
KBCC required fewer recruits than did knowledge-free CC 
networks, but did not outperform CC on learning speed and 
accuracy, probably due to the limited utility of some of the 
rules [25].  

Rather than having to be learned, symbolic rules can be 
injected into a source network as in the KBANN (Knowledge-
Based Artificial Neural Networks) algorithm [18]. However, 
unlike KBANN, which combines inputs with only ANDs and 
ORs, a variant of KBCC, called rule-based cascade-
correlation (RBCC), uses an n-of-m scheme in which n of m 
inputs can turn on the output unit [26]. This is more general 
and more flexible than using only AND (essentially m-of-m) 
and OR (1-of-m).  

Moreover, unlike KBANN networks that involve 
injecting rules by hand into a target network, RBCC itself 
decides which rule-based sources to recruit, based on the 
standard CC criterion of selecting the source whose output 
activations correlate best with target-network error. RBCC 
(and ordinary KBCC) networks learned the splice-junction 
problem more accurately and faster than did KBANN 
networks [26]. RBCC networks also generalized better than 
did KBANN networks on this problem. An advantage of 
RBCC is that rules can be represented more crisply than if 
inductively learned by a CC source network.  

3) Primality: The most recent realistic problem to which 
we applied KBCC is prime-number detection. An integer 
greater than 1 is prime if it has exactly two divisors, 1 and 
itself. An integer greater than 1 having more than two divisors 
is termed composite. The integer 1 is by definition neither 
prime nor composite.  

One might think that the primality of an integer n could be 
determined by checking whether n is divisible by any integers 
between 2 and n – 1. Indeed it can be, but such testing can be 
much more efficient. The only divisors needed are primes 
from 2 to the integer part of √n [27]. Further increases in 
efficiency can be gained by starting with the smallest prime 
and increasing divisor size until finding a divisor that works. 
This is because the smaller the prime divisor, the more 
composites it can detect in a fixed range of integers.  

KBCC target networks learning to classify integers as 
prime or composite came to perform in just this fashion when 
their pool of source knowledge contained networks that knew 
whether an input integer could be divided by each of a range 
of divisors [28]. There was, for example, in the candidate pool 
a divide-by-2 network, a divide-by-3 network, etc., up to a 
divisor of 20. KBCC target networks recruited only source 
networks involving prime divisors below the square root of 
the largest number they were trained on (360). That is to say, 
they avoided recruiting single hidden units or source networks 
with composite divisors, any divisors greater than square root 
of 360 even if prime, and divisor networks with randomized 
connection weights. Moreover, they recruited their divide-by 



sources in order from small to large, installing all recruits on a 
single layer.  

Installing more than one recruit on the same layer is 
enabled by a variation of CC called sibling-descendant 
cascade-correlation (SDCC) [29]. One-half of the candidate 
recruits (known as siblings) have no inputs from the previous 
layer of hidden units; the other half of the candidates (known 
as descendants) do have such inputs just as in classical CC. 
Sibling and descendant candidates compete with each other to 
be recruited based on their relative values of G as computed in 
(2). In this fashion, SDCC can build a variety of network 
topologies, depending on which recruit’s activations correlate 
best with network error at the time of recruitment. Extension 
of the sibling-descendant idea to KBCC allows previously-
learned networks to likewise be installed as either siblings or 
descendants.  

To our initial surprise, KBCC target networks never 
recruited a divide-by-2 source network, but it turned out this 
was because they instead learned to use the last binary digit of 
n to easily determine if n was odd or even. As with humans, 
this is an effective shortcut to actually dividing by 2.  

Developing in this fashion, KBCC target networks 
learned to classify their training integers in about one third of 
the epochs required by knowledge-free control networks, with 
fewer recruits on fewer network layers, and they generalized 
almost perfectly to novel test integers. In contrast, even after 
learning the training patterns to perfection, knowledge-free 
networks generalized less well than automatic guessing that 
the integer was composite, which was true 81% of the time in 
the integers employed.  

A knowledge-representation analysis of the KBCC 
networks further revealed that they had composed an 
understanding of primality characterized by the Boolean 
expression: ¬(n is divisible by 2) ∧ ¬(n is divisible by 3) ∧ … 
∧ ¬(n is divisible by the largest prime <= √n). In other words, 
these KBCC networks represented primality as a composition 
of divisor components, thus contradicting the popular view 
that compositionality is beyond the ability of artificial neural 
networks [20, 21]. Because the internals of the recruited 
source networks were preserved, it was argued that this type 
of compositionality is fully concatenative, unlike the mere 
functional compositionality of networks that are unable to 
recruit existing knowledge [30, 31].  

Although not really a simulation of the psychology of 
prime-number testing, these results do bear some interesting 
similarities to the continued educational use of the ancient 
sieve of Eratosthenes (circa 200 BC) in teaching about prime 
numbers. Essentially, both methods order divisors from small 
to large and use only prime divisors below √n.  

III. NEUROLOGICAL CORRESPONDENCE 

 Although not a detailed model of brain circuits, KBCC is 
inspired by evidence about how the brain supposedly works 
and thus incorporates many neurological features. Like other 
artificial neural networks, KBCC contains generic neurons 
with sigmoid activation functions having an activation floor 

and ceiling and a sharp, but continuous threshold between 
them. Like ordinary CC, KBCC implements both direct and 
indirect connectivity between sites and grows by recruiting 
new computational devices, suggestive of synapto- and neuro-
genesis [32]. The topology of a KBCC network changes, not 
only by growing, but also by pruning relatively unused 
connections [33]. KBCC also mimics two fundamental 
features of brain organization, functional specialization and 
integration [34]. Source networks in KBCC are typically 
specialized and can be integrated into solutions of new tasks 
through learning. Unlike a variety of hybrid systems for 
combining symbolic and neural methods [35-38], RBCC is 
implemented in a homogeneous neural fashion, as are brain 
networks. RBCC has been used to model the interactions 
between frontal and temporal cortices during resolution of 
lexical ambiguities [32].  
 Until recently, it has not been clear how brains might 
implement complex learning algorithms like KBCC.  
However, the learning rules used in the CC family of 
algorithms can be rewritten in a mathematical form that is a 
small extension of the Hebb rule, which is widely regarded as 
being biologically realistic [39].  

IV. DISCUSSION 

  In closing, we address some of the advantages and 
limitations of knowledge-based learning as implemented in 
KBCC.  

A. Advantages of KBCC 
 KBCC is a general learner with considerable power and 
flexibility. Like CC, KBCC can automatically construct a 
network to suit the particular problem being learned, and 
escape from Fodor’s paradox about not being able to learn 
anything genuinely novel [40, 41]. KBCC seamlessly 
integrates inductive and analogical learning such that each can 
compensate for the other. It learns by analogy to what it 
already knows whenever it can, resorts to learning by 
induction from examples when it knows nothing relevant, and 
achieves required combinations of learning by analogy and 
induction [11].  
 Existing knowledge is automatically selected from 
various sources without the intervention of a human 
programmer and without regard for the number and order of 
network inputs and outputs [11]. KBCC selects, maps, and 
tweaks existing knowledge automatically to aid new learning, 
and is able to compose solutions without changing the 
recruited components [28], as in classical, concatenative 
compositionality. Building on existing knowledge in these 
ways allows learning to be fast and accurate [11] and is 
sometimes necessary for neural learning to generalize [28]. 

B. Limitations of KBCC 
 One of the biggest limitations of KBCC is that its search 
for source knowledge is computationally expensive, especially 
in a mature and experienced network that has learned a lot. 
However, the difficulty that humans have in finding analogous 
knowledge that they are known to possess suggests that this 



limitation may actually enhance data coverage in psychology 
simulations. Humans are known to sometimes require hints in 
their search for analogous knowledge [42, 43]. Perhaps KBCC 
could similarly benefit from hints, conceivably by biased 
weighting of G in (2) [32]. Such biasing of G would have to 
be implemented in some realistic and tractable fashion.  
 At this point, there are still too few psychology 
simulations using KBCC. This is partly due to the fact that 
most psychology experiments on knowledge-based learning 
use quite simple linearly-separable problems. KBCC, by 
starting in output phase, can learn such problems without 
having to recruit any knowledge. A possible solution might 
involve starting KBCC in input phase instead, where it would 
try to recruit relevant knowledge even for simple linear 
problems. Another solution would be to continue working 
with more complex, non-linear problems as here, and bring 
these into the laboratory for psychological study. Non-linear 
problems such as prime-number testing might be possible to 
use with ordinary human participants.  
 Another limitation is that, in its current form, KBCC 
never modifies the source networks that it recruits. Only the 
input weights to the source and the output weights from the 
source get modified with learning. Freezing of internal 
connection weights and installation of copies of source 
networks are computationally effective, but may be 
psychologically unrealistic. They seem to conflict with new 
psychological research on memory consolidation that 
indicates that memories are labile just after retrieval [44]. A 
natural way to modify weights inside of source networks 
would be to back-propagate error signals through all layers of 
source networks. It is an open question whether this would 
damage KBCC learning and performance and cover emerging 
results on memory reconsolidation.  
 Still another problem is that the technique currently used 
in pruning KBCC (and CC) networks is not psychologically 
realistic. In this technique, weights are pruned from a network 
until error on an additional, generalization test set begins to 
increase [33], a method known as early stopping. This is 
unrealistic because such test sets rarely occur in natural human 
learning. Perhaps simpler pruning methods such as removing 
very small weights would work nearly as well and be more 
psychologically realistic.  
 A final limitation of KBCC is that segmentation of 
learning tasks is done by the experimenter. It would be more 
natural for a learning algorithm to autonomously determine 
whether a learning task is new or old. This is a problem that is 
common in machine-learning algorithms and it has received 
relatively little attention. Perhaps the passage of time, changes 
in content or context, or changes in input or output coding 
could signal that a learning task is new and thus requires a 
fresh target network. An automatic novelty detector might also 
help with this problem [45].  
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