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Abstract 
 

A recent study of infant familiarization to artificial sen-
tences claimed to produce data that could only be ex-
plained by symbolic rule learning and not by unstru c-
tured neural networks. Here we present successful un-
structured neural network simulations showing that 
these data do not uniquely support a rule -based ac-
count. In contrast to other neural network simulations, 
our simulations cover more aspects of the data with 
fewer assumptions using a more realistic coding scheme 
based on sonority of phonemes. Our networks show e x-
ponential decreases in attention to a repeated sentence 
pattern, more recovery to novel inconsistent sentences 
than to novel consistent sentences, some preference re-
versals, and e xtrapolation.  

 
One of the most simulated phenomena in developmental 
psychology is a data set that was claimed to be immune from 
simulation by unstructured neural networks (Marcus, 
Vijayan, Bandi Rao, & Vishton, 1999). Although the authors 
maintained that their results could only be explained by ex-
plicit rules and variables, there are now at least eight connec-
tionist simulations of the data, most of which do not use 
explicit variable binding and none of which use explicit rules. 
Here we present additional neural simulations of these data, 
arguing that our model may provide the currently most satis-
fying account. The paper reviews the relevant infant data, 
presents various interpretations and models, and then fo-
cuses on our current model.  

The Infant Data 
The relevant experiments familiarized 7-month-old infants to 
three-word artificial sentences and then tested them on 
novel sentences that were either consistent or inconsistent 
with the familiar pattern. The design of these experiments is 
shown in Table 1. In Experiment 1, infants were familiarized 
to sentences with either an ABA pattern (e.g., ni la ni) or an 
ABB pattern (e.g., ta gi gi). There were 16 of these sen-
tences, constructed by combining four A-category words 
(ga, li, ni, and ta) with four B-category words (ti, na, gi, and 
la). After infants became familiar with a sentence pattern, 

they were tested with two sentences having novel words 
that were either consistent or inconsistent with the familiar 
pattern.  

 
Table 1: Marcus et al. (1999) experiments. 

 
Pattern Experiments 1 & 2 Experiment 3 

 Cond. 1 Cond. 2 Cond. 1 Cond. 2 
Familiarize ABA ABB ABB AAB 
Consistent ABA ABB ABB AAB 
Inconsistent ABB ABA AAB ABB 
 

When an infant looked at a flashing light to the left or 
right, a test sentence was played from a speaker situated 
next to the light. Each test sentence was played until the 
infant either looked away or 15 s elapsed. Infants attended 
more to inconsistent novel sentences than to consistent 
novel sentences, showing that they distinguished the two 
sentence types. 

Experiment 2 was the same except that the words were 
chosen more carefully so that phoneme sequences were dif-
ferent in the familiarization and test patterns. Experiment 3 
used the same words as Experiment 2, but in contrastive syn-
tactic patterns that each duplicated a consecutive word: 
AAB vs. ABB. The idea was to rule out the possibility that 
infants might have used the presence or absence of con-
secutively duplicated words to distinguish sentence types.  

In all three experiments, infants attended more to inconsis-
tent than to consistent novel sentences. Our concern is with 
the best theoretical account of these data. Is the infant cog-
nition based on rules and variables or on connections?  

A Rule and Variable Interpretation 
Marcus et al. (1999) argued that these grammars could not be 
learned by the statistical methods common to standard neu-
ral networks. They also tried some unsuccessful neural net-
work simulations using Simple Recurrent Networks (SRN). 
The authors proposed that a only a rule-based model could 
cover their data. "We propose that a system that could ac-
count for our results is one in which infants extract algebra-
like rules that represent relationships between placeholders 
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(variables) such as 'the first item X is the same as the third 
item Y' (p. 79)." They allowed that their data might also be 
accounted for by structured neural networks that implement 
explicit rules and variables in a neural style: "The problem is 
not with neural networks per se but with the kinds of neural 
networks that are currently popular. These networks eschew 
explicit representations of variables and relations between 
variables; in contrast, some less widely discussed neural 
networks with a very different architecture do incorporate 
such machinery and thus might form the basis for learning 
mechanisms that could account for our data (pp. 79-80)." 

Psychology of Familiarization 
A leading psychological analysis of familiarization assumes 
that infants build categories for stimuli (Cohen, 1973; Soko-
lov, 1963). Subsequently, they ignore stimuli that correspond 
to their categories, and concentrate on stimuli that are rela-
tively novel. These processes are often discussed in terms 
of recognition memory. If there is substantial recovery to a 
novel test stimulus, then it is considered novel. But if there 
is little or no recovery, then the stimulus is considered to be 
recognized as a member of a familiar category. During famili-
arization there is typically an exponential decrease in atten-
tion.  

Familiarization in Neural Networks 
Encoder networks that learn to reproduce their inputs on 
their output units can simulate familiarization and novelty 
effects in infants (Mareschal & French, 1997). Relations 
among stimulus features are encoded in hidden unit repre-
sentations, and accuracy is tested by decoding these hidden 
unit representations onto output units. Discrepancy be-
tween output and input representations is network error. 
Familiar stimuli produce less error than novel stimuli, which 
presumably deserve further learning. Such hidden unit rep-
resentations enable prototypes, generalization, and pattern 
completion (Hertz, Krogh, & Palmer, 1991).  

Other Neural Network Models 
There are at least eight alternative computational models of 
the Marcus et al. (1999) data, all of them connectionist mo d-
els, presumably attracted by the challenge that ordinary 
connectionist models would not be able to simulate the data. 
Most of these models are ordinary unstructured connection-
ist models without explicit rules and variables. All eight of 
these models cover the basic finding of the Marcus et al. 
(1999) experiments, namely noticing the difference between 
consistent and inconsistent sentences. It is beyond the 
scope of this brief paper to thoroughly review all of these 
models, many of which are as yet only sketchily reported. 
However, we can briefly characterize each model and identify 
what we believe to be its best virtue and most significant 
limitation.  

Four of the unstructured models use the SRN architecture, 
construing the network's task to be prediction of the next 

word in a sentence. Negishi (1999a, b) used an SRN without 
hidden units, coding each word in analog fashion with place 
of consonant articulation and vowel height. This is a simple 
network requiring no unusual hand-wired assumptions or 
pre-experimental experience. However, Marcus (1999a) 
claimed that it essentially implemented variables by using 
continuous values on the input units that are transmitted 
directly to the outputs, thus arguably disqualifying the 
model from meeting the challenge that variable binding is 
required.  

Following an argument that Marcus et al.'s (1999) SRNs 
failed because they lacked normal phonemic experience (Sei-
denberg & Elman, 1999), Elman (1999) pre-trained an SRN to 
distinguish whether each word differed or not from the pre-
vious word. Each word was coded on 12 binary phonetic 
features. Although 7-month-olds obviously know something 
about phonemes and it may be reasonable to include such 
knowledge in models, it is unlikely that infants receive any 
target signals about phonemic sameness and difference. 
More seriously, the network's task in both the pre-training 
and habituation phases of the simulation was discrimination 
rather than habituation as it was for the infants.  

Christiansen and Curtin (1999) pre-trained an SRN on word 
segmentation. The network learned to predict the identity 
and stress of the next phoneme in sentences from informa-
tion on 11 binary phonological features and the stress and 
utterance boundaries of individual phonemes. Presented 
with the Marcus et al. test sentences, the network then 
showed slightly better prediction of words occurring in in-
consistent than those occurring in consistent sentences. 
Again, the use of prior knowledge seems reasonable. How-
ever, it is unclear why the network would perform better on 
inconsistent sentences, with which it is less familiar, than on 
consistent sentences whose pattern it has just learned.  

Altmann and Dienes (1999) used SRNs with an extra en-
coding layer between the input and hidden layers. Unlike 
some models, this one does not require any questionable 
pre-training and is performing the habituation task. On the 
negative side, Marcus (1999b) reports that only when some-
what unconventional correlation and distance measures are 
used can the network discriminate between consistent and 
inconsistent sentences. It would be more typical to measure 
error or relative output activation for such networks.  

Gasser and Colunga (1999) used a specially-designed net-
work with micro-relation units whose activations correlated 
with inputs from two different syntactic categories. Hard-
wired connections caused similar syllables to be synchro-
nized, producing low activations on the micro-relation units, 
and dissimilar syllables to be desynchronized, producing 
high activations on the micro-relation units. No pre-training 
was necessary, but the hardwiring of connection weights is 
of questionable psychological validity.   

Shastri and Chang (1999; Shastri, 1999) designed a struc-
tured connectionist model with explicit variable binding, im-
plemented by temporal synchrony of activations on units 
representing sequential position and other units represent-
ing arbitrary binary word features. The network learned to 
represent an ABA pattern by firing the first position unit 
synchronously with the third position unit. This network 
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would seem to generalize well to any novel sentences of 
three words, regardless of the particular features of the 
words used. But the network is extensively hand-built, and 
the critically important feedback signals about the position 
of words in a sentence are psychologically implausible.   

None of the foregoing reports of models include evidence 
on the course of habituation or provide predictions that 
could be tested with infants.  

Shultz (1999) used an encoder version of the cascade-
correlation algorithm with arbitrary analog coding of sylla-
bles. With an encoder network, the task is construed as 
word and sentence recognition. Besides covering the con-
sistency effect, these networks learned the training patterns 
with an exponential decrease in error and showed occasional 
reversals of preference that were found with the infants. Be-
cause the coding was arbitrary, however, it was not possible 
to simulate the detailed phonetic differences between Mar-
cus et al.'s (1999) Experiments 1 and 2.  

Our Model 
Here we present a simulation like that of Shultz (1999), but 
with phonetically realistic encoding of the input sentences 
using a continuous sonority scale . A successful result 
would suggest that such coding could be used by infants in 
their sentence processing. Sonority is the quality of vowel 
likeness, and can be defined by perceptual salience (Price, 
1980) or by openness of the vocal tract (Selkirk, 1984). The 
coding scheme is shown in Table 2. The specific numbers 
are somewhat arbitrary, but their ordering is based on pho-
nological work (Selkirk, 1984; Vroomen, van den Bosch, & de 
Gelder, 1998).  
 

Table 2: Sonority scale with examples in IPA. 
 

Phoneme category Examples Sonority 
low vowels  /a/  /æ/ 6 
mid vowels  /ε/  /e/  /o/  5 
high vowels  /I/  /i/  /U/  /u/ 4 
semi-vowels and laterals  /w/  /y/  /l/  -1 
nasals  /n/  /m/  -2 
voiced fricatives /z/  /v/ -3 
voiceless fricatives /s/  /f/  -4 
voiced stops /b/  /d/  /g/ -5 
voiceless stops /p/  /t/  /k/  -6 

 
Sonorities range from -6 to 6 in steps of 1, with a gap and 

change of sign between the consonants and vowels. Each 
word was coded on two units for the sonority of its conso-
nant and that of its vowel. This is similar to Negishi's (1999b) 
coding, except that we place consonants and vowels on a 
single scale, rather than on separate scales. We coded each 
sentence in the artificial language with six units, two for each 
one-syllable word. For example, the sentence ni la ni was 
coded as (-2 4 -1 6 -2 4).  

Our learning algorithm, cascade-correlation, grows during 
learning by recruiting new hidden units into the network as 

required to reduce error (Fahlman & Lebiere, 1990). Recruited 
hidden units are installed each on a separate layer, receiving 
input from the inputs and from existing hidden units. The 
candidate hidden unit that gets recruited is the one whose 
activations correlate best with current error. After recruiting 
a hidden unit, the network returns to the phase in which 
weights feeding the output units are adjusted to reduce er-
ror. An encoder option to cascade-correlation (Shultz, 1999) 
freezes direct input-output connections at 0 to prevent trivial 
solutions in which weights of about 1 are learned between 
each input unit and its corresponding output unit.  

The cascade-correlation algorithm has been used to simu-
late many other aspects of cognitive development, including 
the balance scale (Shultz, Mareschal, & Schmidt, 1994), con-
servation (Shultz, 1998), seriation (Mareschal & Shultz, 
1999), discrimination shift learning (Sirois & Shultz, 1998), 
pronoun semantics (Oshima-Takane, Takane, & Shultz, 
1999), and integration of velocity, time, and distance cues 
(Buckingham & Shultz, in press).  

In these models, network behavior becomes rule-like with 
learning, but knowledge is clearly not represented in rules 
and cognitive processing is definitely not accomplished by 
explicit variable binding and rule firing. Instead, rules are 
viewed as abstract, epi-phenomenal characterizations of 
processes occurring at the sub-symbolic level of unit activa-
tions and connection weights (Smolensky, 1988).  

There are several advantages of implementing rule-like be-
havior with neural processes, including the acquisition of 
psychologically realistic non-normative rules, integration of 
perceptual and cognitive phenomena, natural variation 
across problems and individuals, and achievement of the 
right degree of crispness in knowledge representations. In 
many cases, universally quantified rules are too crisp to 
model knowledge representations in children.  

Neurological justification for generative networks such as 
cascade-correlation is provided by recent findings on learn-
ing-driven neurogenesis and synaptogenesis throughout 
the lifespan (Quartz & Sejnowski, 1997). Although neuro-
genesis and neural migration may be too slow to account for 
learning within the time frame of the typical infant familiariza-
tion experiment, there is evidence that synaptogenesis can 
occur within seconds (Bolshakov, Golan, Kandel, & Siegel-
baum, 1997).  

Like most models of higher cognition, cascade-correlation 
is not a model of detailed neural circuits. Instead, it is an 
abstracted and simplified model that is partly inspired by 
neural principles. Individual units in cascade-correlation 
networks may correspond roughly to groups of biological 
neurons, and connection weights may correspond roughly 
to neural pathways.  

Results 
Mean network error on test patterns for the three experi-
ments is shown in Table 3. Main effects of consistency were 
significant at p < .0001. The results show more network error 



 

462 

 

to inconsistent test patterns than to consistent test patterns 
for each experiment. On the assumption that error represents 
a need for further cognitive processing, these results capture 
the infant data.  
 

Table 3: Mean error on test patterns. 
 

Expt. Patterns Consistent Inconsistent 
1 ABA v. ABB 8.2 14.5 
2 ABA v. ABB 13.1 15.8 
3 AAB v. ABB 12.9 15.3 

 
The proportion of networks showing a reversal of the 

consistency effect was .0667, which is close to the .0625 ob-
tained with infants.  

A plot of mean error over epochs for a representative net-
work from the ABB condition of Experiment 1 is shown in 
Figure 1. The first few epochs are omitted for clarity because 
error started so high, at around 350. Such plots reveal exp o-
nential decreases in error on the training patterns over time, 
similar to the shape of declining attention in infant familiari-
zation. The epochs at which hidden units are installed are 
shown with diamond shapes just above the training error. 
As in most cascade-correlation simulations, error decreases 
sharply after a hidden unit is recruited. After training, error is 
higher on inconsistent test patterns than on consistent test 
patterns.  
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 Figure 1: Error reduction in one network.  
 

Generalization tests show that the consistency effect ac-
tually grows larger with increasing distance from the training 
set, a prediction quite different than universally quantified 
rules would make.  

Network analysis revealed that hidden units used sonority 
sums of consonant and vowel to represent sonority varia-
tion first in the duplicated-word category and second in the 
single-word category. Networks decoded this hidden unit 

representation with virtually duplicate weights to outputs 
representing the duplicate-word category.  

Discussion 
Like other neural models, our model easily captures the con-
sistency effect. In contrast to alternate models of these data, 
ours has several features to recommend it. Our model does 
not require extensive pre-experiment experience (Christian-
sen & Curtin, 1999; Elman, 1999), extensive hand-wiring of 
networks (Gasser & Colunga, 1999; Shastri & Chang, 1999), 
external feedback signals not available in the stimuli (Elman, 
1999; Shastri & Chang, 1999), unusual interpretation of 
outputs (Altmann & Dienes, 1999), or explicit variable 
binding (Shastri & Chang, 1999). On grounds of theoretical 
parsimony, the more unsupported assumptions that a model 
requires the less plausible it becomes.  

Unlike some alternate models (Shastri & Chang, 1999; 
Shultz, 1999), our model uses a realistic coding of the stimuli. 
Like Negishi (1999b), we used an analog coding of inputs 
based on the manner in which the phonemes are produced. 
But our representation scheme is a bit more compact and 
uniform because we use a single sonority scale for both 
consonants and vowels, whereas he used two separate 
scales, one for place of consonant articulation and another 
for vowel height. Moreover, our use of hidden units with 
non-linear transfer functions ensures that any possible vari-
able binding at the input level is lost as activation is propa-
gated forward through the hidden layers.  

Our model is the only one so far to capture the other fea-
ture of the Marcus et al. (1999) infant data, the occasional 
reversal of preference for novel patterns. It is unclear how 
easily other models might be able to capture these reversals, 
but there are hints that it might be difficult for some models. 
Elman's (1999) model, for example, had such a strong consis-
tency effect that reversals of preference would be unlikely: 
mean activation to ABB sentences was 123 times higher than 
to ABA sentences. Likewise, the Shastri and Chang (1999) 
model learns a very strong representation of serial position. 
The correlation between weights to position nodes were 
.9993 for positions 1 and 3 in networks habituated to ABA 
sentences, and .9998 for positions 2 and 3 in networks ha-
bituated to ABB sentences. This rather crisp representation 
produced 3.4 times more error to inconsistent than to consis-
tent sentences in the ABA condition of Experiment 1, which 
would seem to preclude reversals.  

Although it is not known why infants show occasional re-
versals, our simulations show that they can be a natural part 
learning. With limited exposure, as in both the psychological 
experiments and our simulations, exceptions naturally occur. 
This is a parsimonious explanation of reversals because it 
does not require assumptions of any extraneous processes.  

In summary, our model might be currently preferred be-
cause it covers more of the infant data, with less pre-
experimental experience, less network design, and more real-
istic stimulus coding than alternate models. It also uses a 
general learning algorithm that has been applied success-
fully to several other phenomena in cognitive development.  
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With so many successful neural models of the consis-
tency effect, there is no question that ordinary, unstructured 
neural networks can cover these data. The modeling shows 
that some of the functionality of symbolic rules and variable 
binding can be constructed from sub-symbolic processes 
without having to be explicitly built in. The time is now ripe 
to generate and test predictions from these alternate models.  
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