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Abstract 

A fundamental issue in cognitive science is whether human cognitive processing is better 
explained by symbolic rules or by sub-symbolic neural networks. A recent study of infant 
familiarization to sentences in an artificial language seems to have produced data that can only 
be explained by symbolic rule learning and not by unstructured neural networks (Marcus, 
Vijayan, Bandi Rao, & Vishton, 1999). Here we present successful unstructured neural network 
simulations of the infant data, showing that these data do not uniquely support a rule-based 
account. In contrast to other simulations of these data, these simulations cover more aspects of 
the data with fewer assumptions about prior knowledge and training, using a more realistic 
coding scheme based on sonority of phonemes. The networks show exponential decreases in 
attention to a repeated sentence pattern, more recovery to novel sentences inconsistent with the 
familiar pattern than to novel sentences consistent with the familiar pattern, occasional 
familiarity preferences, more recovery to consistent novel sentences than to familiarized 
sentences, and extrapolative generalization outside the range of the training patterns. A variety of 
predictions suggest the utility of the model in guiding future psychological work. The evidence, 
from these and other simulations, supports the view that unstructured neural networks can 
account for the existing infant data.  
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One of the most fundamental issues in contemporary cognitive science concerns the appropriate 
level of theoretical analysis of human cognition. Is human cognition a symbolic rule-based 
system or a sub-symbolic neural network system? Symbolic rules are if-then propositions that 
typically contain variables that can be bound to values (Anderson & Lebiere, 1998; Newell, 
1990). For example, “If the goal is to use an English verb that describes the past, then add the 
suffix -ed to the stem of the verb.” The key variable in this rule is verb, which can be bound to 
any of a very large number of English verbs. In contrast, artificial neural networks perform 
computations that are roughly inspired by brain processes. These computational characteristics 
include modulation of neuronal activity due to summation of excitatory and inhibitory impulses, 
modification of synaptic connections due to learning, and layers of neuronal connectivity (Hertz, 
Krogh, & Palmer, 1991). Such networks have been shown, for instance, to be capable of 
simulating not only the rule-like adding of suffixes to verb stems but also the exceptions found in 
irregular English verbs (Plunkett & Marchman, 1993, 1996).  

A recent study of infant familiarization to sentences in an artificial language is portrayed 
as having struck a damaging blow to the neural network view by presenting data that can only be 
explained by rules and variables (Marcus et al., 1999). In that study, 7-month-old infants 
attended longer to sentences with unfamiliar syntactic structures than to sentences with familiar 
syntactic structures. A variety of experimental controls and some unsuccessful neural network 
models allowed the authors to conclude that ordinary, unstructured neural networks cannot 
simulate these results and that infants by default must possess a rule-learning capability that is 
not available to such neural networks. A companion article suggested that rule learning, because 
it was demonstrated in infants so young, may be an innately provided capacity of the human 
mind distinct from associative learning mechanisms like those in neural networks (Pinker, 1999).  

The Marcus et al. (1999) claims were interesting because if they were true, they could 
trigger a retreat from otherwise promising neural approaches. A standard way to decide between 
alternative theories in cognitive science is to implement computational models to determine 
which model captures the data in the most precise, principled, and parsimonious fashion. In this 
article, we present neural network simulations of the key features of the Marcus et al. 
experiments, showing that their infant data do not uniquely support a rule-based account.  

We begin the article with a brief review of the psychological evidence and we summarize 
a rule-based interpretation of that evidence. We then discuss current psychological and neural 
network interpretations of familiarization phenomena before reviewing existing models of the 
Marcus et al. (1999) data and presenting our new simulations. As well as covering the infant data 
on differential recovery of attention, the simulations are extended to study generalization abilities 
and to determine the nature of the knowledge learned by the networks. We develop predictions 
for new psychological research. Finally, we address the issue of whether the infant data require a 
symbolic rule-based explanation in view of the many successful unstructured neural network 
simulations.  

PSYCHOLOGICAL EVIDENCE 

Marcus et al. (1999) reported three experiments in which 7-month-old infants were familiarized 
to three-word sentences in an artificial language and then tested on novel sentences that were 
either consistent or inconsistent with the familiar pattern. The design of these experiments is 
shown in Table 1. In Experiment 1, infants were familiarized to sentences with either an ABA 
pattern (e.g., ga ti ga or li na li) or an ABB pattern (e.g., ga ti ti or li na na). In each case, there 
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were 16 of these sentences, created by combining four A-category words (ga, li, ni, and ta) with 
four B-category words (ti, na, gi, and la). After infants became familiar with a sentence pattern, 
they were presented with two novel sentences that were either consistent or inconsistent with the 
familiar pattern. For infants familiar with the ABA pattern, the inconsistent patterns were of the 
ABB form. For infants familiar with the ABB pattern, the inconsistent patterns were of the ABA 
form. The novel A-category syllables were wo and de; the novel B-category words were fe and 
ko.  

Table 1 

Design of Marcus et al.'s (1999) Experiments 
Procedure Experiments 1 and 2 Experiment 3 

 Condition 1 Condition 2 Condition 1 Condition 2 
Familiarize ABA ABB ABB AAB 
Consistent ABA ABB ABB AAB 

Inconsistent ABB ABA AAB ABB 

Note. A and B refer to two different categories of monosyllabic nonsense words. From “Infant 
familiarization to artificial sentences: Rule-like behavior without explicit rules and variables.” 
By T. R. Shultz and A. C. Bale. In L. R. Gleitman & A. K. Joshi (Eds.), Proceedings of the 
Twenty-Second Annual Conference of the Cognitive Science Society (p. 459), 2000. Mahwah, NJ: 
Erlbaum. Copyright 2000 by the Cognitive Science Society, Inc. Adapted by permission. 

The dependent measure in the test phase of these experiments was looking time. If the 
infant looked at a flashing light to the left or right, a test sentence was played from a speaker 
situated near that light. Each test sentence was played repeatedly until the infant either looked 
away or until 15 sec elapsed. Infants attended more to inconsistent novel sentences than to 
consistent novel sentences, indicating that they were sensitive to differences between the two 
types of sentences.  

Experiment 2 had exactly the same structure except that the words were chosen more 
carefully so that phoneme sequences were different in the familiarization and test patterns. 
Experiment 3 involved the same A and B categories of words as did Experiment 2 but employed 
contrastive syntactic patterns that each duplicated a consecutive word: AAB versus ABB. The 
idea of Experiment 3 was to rule out the possibility that infants may have used the presence or 
absence of consecutively duplicated words to distinguish syntactic types. For example, ABB 
sentences had consecutively duplicated words (the second B word is consecutively duplicated), 
but ABA sentences did not. Consequently in Experiment 3, both sentence types had 
consecutively duplicated words.  

Infants in all three experiments attended more to inconsistent than to consistent novel 
sentences. The issue addressed in our article concerns the proper theoretical account of this 
syntactic processing. Is this processing based on rules and variables or on the mechanisms 
employed in unstructured neural networks, namely unit activations and connection weights?  

A RULE-BASED INTERPRETATION 

Marcus et al. (1999) argued that these simple grammars could not be learned by statistical 
methods common to standard neural networks. In particular, they considered sensitivity to 
transitional probabilities, discrepancies from stored sequences, and counting event frequencies. 
Transitional probabilities would not work because the transitional probabilities for novel words 
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would be 0. Noting discrepancies from stored sequences would not work because both consistent 
and inconsistent test sentences differ from the familiar sentences. Counting the numbers of 
consecutively duplicated words would work for Experiments 1 and 2 but not for Experiment 3, in 
which both sentence types had consecutively duplicated words. Marcus et al. also tried some 
neural network simulations using Simple Recurrent Networks (SRN) pioneered by Elman 
(1990). Details of these unsuccessful simulations were not provided, but Marcus et al. suggested 
the basic problem was that the network coding techniques employed did not permit 
generalization to novel words.  

Instead, Marcus et al. (1999) claimed that a rule-based model could cover their data: "We 
propose that a system that could account for our results is one in which infants extract algebra-
like rules that represent relationships between placeholders (variables) such as 'the first item X is 
the same as the third item Y' " (p. 79). This example rule was presumably designed by Marcus et 
al. to account for sentences with an ABA pattern.  

Marcus et al. (1999) did not report an implementation of a rule-based model to account 
for the infants' gradual familiarization with sentence patterns or an analysis of how rule learning 
may be used to compute familiarity. In computer simulations, such explicit rules are usually 
processed with so-called production system programs that (a) match rule conditions against the 
facts in a working memory buffer, (b) select a rule whose conditions are satisfied, and (c) fire 
that rule, thus producing fresh conclusions or actions (Anderson & Lebiere, 1998; Newell, 1990). 
A production system model of the Marcus et al. data has not yet been reported. It is critical in 
such rule-based processing systems that, if variables are used, all variable bindings are preserved 
and accessible to further computation, a criterion that is not met by standard neural networks.  

Marcus et al. (1999) suggested that their infant data may be accounted for by so-called 
structured neural networks that implement explicit rules and variables in a neural style:  

The problem is not with neural networks per se but with the kinds of neural networks that are currently 
popular. These networks eschew explicit representations of variables and relations between variables; in 
contrast, some less widely discussed neural networks with a very different architecture do incorporate such 
machinery and thus might form the basis for learning mechanisms that could account for our data (pp. 79-
80).  

Later we review structured network models of this type that capture the basics of the Marcus et 
al. data.  

PSYCHOLOGICAL THEORY OF FAMILIARIZATION 

Familiarization techniques like those used by Marcus et al. (1999) have often been termed 
habituation, with the term dishabituation applied to the recovery of attention to novel stimuli. A 
dominant psychological analysis of habituation assumes that infants gradually construct 
representational categories for stimuli that they encounter (Cohen, 1973; Sokolov, 1963). Infants 
tend to ignore stimuli that they have built categories for, while concentrating on stimuli that are 
relatively novel. This seems adaptive in encouraging infants to learn about the world. The 
technique of familiarizing infants with a type of stimulus during an experimental session and 
testing their reactions to stimulus changes has enabled dozens of discoveries of perceptual and 
cognitive abilities in young infants over the past 30 years (e.g., Cohen, 1979; Haith, 1990; Oakes 
& Cohen, 1990; Quinn & Eimas, 1996).  

Such habituation and dishabituation phenomena are often discussed in terms of 
recognition memory. If there is substantial recovery of attention to a novel test stimulus, then it is 
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viewed as being novel. However, if there is little or no recovery of attention to a test stimulus, 
then it has been recognized as a member of a familiar category.  

The course of familiarization is typically characterized by an exponential decrease in 
attention and processing. The decrease is gradual but starts at a fast rate that slows as the 
asymptote of no attention is approached. The decrease in attention is gradual because building 
representations takes time and effort for relatively naive infants. The slowing of the decrease is a 
natural consequence of the fact that attention typically starts at a high level and is bounded by 
zero attention at asymptote. Apparent deviations from this exponential decrease in attention may 
result from cutting off the familiarization phase before a stimulus category is fully formed.  

NEURAL APPROACHES TO FAMILIARIZATION 

Neural network techniques for simulating familiarization have been available for some time 
(Kohonen, 1988), but it is only recently that they have been applied to infant experiments. So-
called encoder neural networks that learn to reproduce their inputs on their output units are 
capable of simulating familiarization and novelty effects in human infants (Mareschal & French, 
1997). Relations among stimulus features are abstracted in hidden unit representations as 
connection weights are adjusted. The accuracy of these hidden unit representations is tested by 
expanding them onto the output units. Discrepancy between output and input representations is 
measured as network error. Stimuli that produce little or no error are effectively recognized as 
familiar. Stimuli that produce large error can be considered novel and deserving of further 
processing via weight adjustment. If there are fewer hidden units than input or output units, the 
encoder network learns to abstract a compact representation of the problem on its hidden units. 
Such abstractions enable construction of prototypes, generalization to novel inputs, and pattern 
completion (Hertz et al., 1991). Unlike earlier neural approaches to habituation (Kohonen, 1988), 
encoder networks can cope with nonlinear relations in the stimulus patterns and are not restricted 
to novelty detection. That is, they indicate not only whether a stimulus is novel but also its 
expected qualities.  

A fundamental assumption in this modeling of familiarization with encoder networks is 
that interest reflects network error. A link between error and focus of learning is natural for 
neural networks for several reasons. First, neural networks learn through adjustment of their 
connection weights. Second, the sizes of weight changes are proportional to the first derivative 
(slope) of the function relating weight to error. Third, because these slopes are themselves 
proportional to error, weight change is proportional to error: the larger the error, the greater the 
weight change. Thus, networks have a natural tendency to focus learning on the largest sources 
of error in the training patterns. The psychological analog to this would be a tendency for greater 
focus on stimulus patterns that produce more error, namely those patterns that are least familiar.  

PREVIOUS NEURAL NETWORK MODELS 

There are currently eight alternative computational models of the Marcus et al. (1999) data, all of 
them connectionist models, presumably attracted by the challenge that ordinary connectionist 
models would be unable to simulate these data. Each of the eight models is able to distinguish or 
represent the difference between consistent and inconsistent sentences, which was the basic finding 
of the Marcus et al. experiments. Because complete information about some of these models is not 
yet available, we only briefly summarize each model here. All but two of the eight models are 
conventional, unstructured connectionist models without explicit rules and variables. Four of these 
unstructured models use the SRN architecture, construing the task of the network to be one of 
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predicting the next word or phoneme in the sentence when given a word or phoneme as input. 
SRNs are feed-forward networks with recurrent connections from the hidden units back to the 
input units. These recurrent weights allow a network to process sequential stimuli, such as 
sentences, by implementing a short-term memory for just-processed information.  

Negishi (1999a, 1999b) used an SRN without hidden units. Each word is coded for both 
place of articulation of the consonant and vowel height. The strength of this model is that it has no 
hand-wired assumptions nor does it need any preexperimental experience to cover the Marcus et 
al. (1999) results. Marcus (1999a) suggested that this network implements a form of variable 
binding by using continuous values on the input units that are transmitted directly to the output 
units. However, this is a highly idiosyncratic interpretation of variable binding. There is no direct 
implementation of symbolic rules in Negishi’s (1999b) network; there are only learnable 
connection weights and transitory unit activations. The computational style is clearly that of 
ordinary, unstructured neural networks.  

Elman (1999) used an SRN with hidden units that encoded each word using binary 
phonetic features. The network was pretrained to distinguish whether each word differed from a 
previous word. This pretraining was motivated by a criticism that the SRNs used by Marcus et al. 
(1999) failed to simulate the infant data because they lacked normal phonemic experience 
(Seidenberg & Elman, 1999). However, it is unclear whether the type of pretraining used by Elman 
(1999) is psychologically realistic. Although 7-month-olds have experience with phonemes, it is 
not established that they receive explicit information about phonemic sameness and difference. 
Also, the task of this network was one of discrimination rather than the infants’ task of habituation. 

Christiansen and Curtin (1999) also used a pretrained SRN, but in this case the network 
was pretrained on word segmentation. Using binary phonological features for the inputs and 
outputs, the task of the network was to predict the identity and stress value of the next phoneme 
given a phoneme marked for stress and word boundary information as input. Then the network was 
trained on the Marcus et al. (1999) habituation sentences. When presented with the test sentences, 
the network was better at predicting phonemes occurring in inconsistent sentences than in 
consistent sentences. Although the network distinguished inconsistent from consistent test 
sentences, it is unclear why it would perform better on inconsistent ones.  

The last of the four SRN models is that of Altmann and Dienes (1999). Their model did not 
require any pretraining and did simulate a habituation task rather than a discrimination task. 
However, Marcus (1999b) criticized this model for using somewhat unconventional correlation 
and distance measures to demonstrate that the network distinguishes between consistent and 
inconsistent sentences. If the prediction of the network is measured by the most active unit, as is 
relatively common, Marcus (1999b) claims that the network does not actually learn the training 
sentences but rather oscillates between the two grammars.  

Gasser and Colunga (1999) simulated the Marcus et al. (1999) data using a specially-
designed network with microrelation units. Connections were handwired in this network to 
manipulate input activations. As a result, similar syllables are synchronized in the network, 
which causes low activations on the microrelation units; dissimilar syllables are desynchronized 
in the network, which causes high activations on the microrelation units. This network requires 
no pretraining to achieve success on the habituation task, but the hand-wired use of temporal 
synchrony may be construed as implementing a form of explicit variable binding.  
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Shastri and Chang (1999; Shastri, 1999) designed a structured connectionist model that 
implemented explicit variable binding. This network had units representing sequential positions 
of words in three-word sentences and it coded the words with arbitrary binary features. Using 
explicit external feedback on word positions for three-word sentences, the network learned, for 
example, to represent the ABA pattern by firing the first position unit synchronously with the 
third position unit. Although this network generalizes well to any novel three-word sentences, it 
is extensively handbuilt and requires unrealistic feedback signals about the positions of words in 
a sentence.  

Sirois, Buckingham, and Shultz (2000) applied a simple auto-associator network model 
to the Marcus et al. (1999) data. An auto-associator consists of a single layer of interconnected 
units, allowing internal circulation of unit activations over multiple time cycles. After learning 
the habituation sentences, these networks required more processing cycles to learn inconsistent 
than consistent test sentences. This model requires no handwiring of weights and no pretraining, 
and the mapping of processing cycles to recovery from habituation seems particularly natural. 
Furthermore, occasional reversals of preference were found as in the infant data. Because the 
auto-associator does not use hidden units, it would appear to be limited to learning only linearly 
separable patterns.  

The final simulation is that of Shultz (1999), which modeled the habituation data with an 
encoder version of the cascade-correlation algorithm. There was an arbitrary analog coding of 
syllables. As in the model of Sirois et al. (2000), the task of the network was construed as one of 
recognizing whole three-word sentences. After habituating to the training sentences, the 
networks produced less error when processing consistent sentences than inconsistent sentences. 
As well as successfully simulating the Marcus et al. (1999) data, the networks demonstrated an 
exponential decrease in error during training, as is customary in infant habituation, and showed 
occasional reversals of preference as found with the infants in the Marcus et al. experiments. 
However, the use of arbitrary analog coding is not psychologically realistic. Also the nature of 
the coding made it impossible to simulate the detailed phonetic differences in Marcus et al.’s 
(1999) Experiment 1 versus Experiments 2 and 3. 

At a minimum, the foregoing models provide existence proofs that connectionist 
networks can cover the Marcus et al. (1999) infant data. Moreover, six of the eight models use 
conventional unstructured networks, showing that symbolic rules with bound variables are not 
required.  

PROPOSED MODEL 

Our work here offers a simulation like that of Shultz (1999), but with phonetically realistic 
encoding of the input sentences.1 If successful, it would suggest that analog coding could 
actually be used by infants on this artificial grammar task. The new coding scheme uses a 
continuous sonority scale. Sonority is the notion of vowel likeness. Our scale capitalizes on three 
interesting features of sonority: that some vowels are more vowellike than others, that even 
consonants vary in their similarity to vowels, and that there are semivowels in the gray area 
between vowels and consonants.  

Learning Algorithm 

                                                 
1 A preliminary report of this simulation was presented in Shultz and Bale (2000).  
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Following Shultz (1999), we used an encoder version of the cascade-correlation learning 
algorithm. Cascade-correlation is a generative algorithm for learning from examples in feed-
forward neural networks (Fahlman & Lebiere, 1990). As with other generative algorithms, 
cascade-correlation constructs its own network topology as it learns by recruiting new hidden 
units as needed, thus effectively searching in topology space as well as in weight space for a 
solution. Topology space is the space of possible network topologies, ordinarily searched by 
hand by modelers using static networks. Weight space is the space of different patterns of 
network weights, ordinarily searched automatically by a learning algorithm except in the case of 
hand-designed weights. As noted, unlike the more standard, back-propagation networks with 
designed and static topologies, cascade-correlation networks grow as well as learn (Fahlman & 
Lebiere, 1990). They grow during so-called input phases by recruiting new hidden units into the 
network as required to reduce error. New hidden units are recruited one at a time and installed 
each on a separate layer, receiving input from the input units and from any existing hidden units. 
The candidate hidden unit that gets recruited is the one whose activations correlate most highly 
with the current error of the network. After recruiting a new unit, the network returns to the so-
called output phase in which weights feeding the output units are adjusted to reduce error. See 
Appendix 1 at http://www.infancyarchives.com for further explanation of cascade-correlation 
and the encoder option.  

Some neurological justification for generative networks such as cascade-correlation is 
provided by recent findings on learning-driven neurogenesis and synaptogenesis throughout the 
lifespan (Eriksson et al., 1998; Gould, Tanapat, Hastings, & Shors, 1999; Kempermann, Kuhn, & 
Gage, 1997; Quartz & Sejnowski, 1997). Neurogenesis and neural migration may be too slow to 
account for learning within the time frame of the typical infant familiarization experiment, but 
synaptogenesis can occur within seconds (Bolshakov, Golan, Kandel, & Siegelbaum, 1997). 
Although cascade correlation is in the abstract neurologically plausible, like most cognitive 
models it does not provide a detailed model of neural circuits. Also, like all other neural network 
learning algorithms, it uses some mathematical shortcuts for purely neural processes.  

 Cascade-correlation has been used to simulate many aspects of cognitive development in 
older children, including the balance scale (Shultz, Mareschal, & Schmidt, 1994); conservation 
(Shultz, 1998); seriation (Mareschal & Shultz, 1999); pronoun semantics (Oshima-Takane, 
Takane, & Shultz, 1999); discrimination shift learning (Sirois & Shultz, 1998); and integration of 
velocity, time, and distance cues (Buckingham & Shultz, 2000). In these models, network 
behavior becomes rule-like with learning but knowledge is not represented in rules and cognitive 
processing is not accomplished by explicit variable binding and rule firing. Rules are instead 
viewed as abstract, epiphenomenal characterizations of processes at the subsymbolic level of unit 
activations and connection weights (Smolensky, 1988). Among the advantages of implementing 
rule-like behavior with neural processes are acquisition of psychologically realistic nonnormative 
rules (Buckingham & Shultz, 2000), integration of perceptual and cognitive phenomena 
(Mareschal & Shultz, 1999; Shultz, 1998; Shultz et al., 1994), achievement of the right degree of 
crispness in knowledge representations (Shultz, 1999), and natural variation across problems and 
individuals (cf. any of the cascade-correlation simulations).  

 An encoder option to cascade-correlation (Shultz, 1999) freezes direct input-output 
connections at 0 to prevent trivial solutions in which weights of about 1 are learned between each 
input unit and its corresponding output unit. Such trivial solutions solve an encoder problem very 
quickly in the sense of error-free performance but tend not to develop interesting knowledge 
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representations that could enable completion of partial patterns. Again, with an encoder network 
the task is construed as learning to recognize words and sentences.  

 In short, we use cascade-correlation because it learns deeply and quickly with a minimal-
sized network that then generalizes well. It has also been used in many of our other simulations 
of development and the fact that it grows is consistent with neurological findings of 
synaptogenesis. Furthermore, we don’t need to explore topology space to handdesign the 
networks; the algorithm does this automatically by constructing networks just large enough to 
solve the task. Finally, cascade-correlation can be used in encoder mode, which makes it suitable 
for simulating habituation.  

Coding Scheme 
We employed a coding scheme with a continuous sonority scale inspired by a tradition of work 
in phonology (Vroomen, van den Bosch, & de Gelder, 1998). Sonority can be informally defined 
as the quality of vowel likeness. More formally, there are three different definitions. Sonority can 
be defined perceptually through specifications of saliency (Price, 1980). It can be defined via 
articulation by measuring the openness of the vocal tract (Selkirk, 1984). Or it can be defined as 
an epiphenomenon of a feature based system (Clements, 1990). Regardless of the choice of 
definition, the functional effects of sonority are well documented in terms of syllabification 
(Clements, 1990; Jespersen, 1922; Harris, 1983). The choice of definition has no particular effect 
on the performance of our simulations. 

The coding scheme for the phonemes making up the one-syllable words in the infant 
experiments is shown in Table 2. The specific numbers used to represent sonority in our coding 
scheme are somewhat arbitrary, but the hierarchy is based on work by Vroomen et al. (1998), 
who in turn based their sonority hierarchy on that of Selkirk (1984).  

Table 2 

Phoneme Sonority Scale 
Phoneme category Examples Sonority 
low vowels /a/  /æ/ 6 
mid vowels /ε/  /e/  /o/  /ɔ/ 5 
high vowels /I/  /i/  /U/  /u/ 4 
semi-vowels and laterals /w/  /y/  /l/ -1 
nasals /n/  /m/  / ŋ / -2 
voiced fricatives /z/  /ʒ/  /v/ -3 
voiceless fricatives /s/  /ʃ/  /f/ -4 
voiced stops /b/  /d/  /g/ -5 
voiceless stops /p/  /t/  /k/ -6 

Note. Example phonemes are represented in International Phonetic Alphabet. From “Infant 
familiarization to artificial sentences: Rule-like behavior without explicit rules and variables.” 
By T. R. Shultz and A. C. Bale. In L. R. Gleitman & A. K. Joshi (Eds.), Proceedings of the 
Twenty-Second Annual Conference of the Cognitive Science Society (p. 461), 2000. Mahwah, NJ: 
Erlbaum. Copyright 2000 by the Cognitive Science Society, Inc. Adapted by permission.  
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As seen in Table 2, our sonorities range from -6 to 6 in steps of 1, with a substantial gap 
and change of sign between the major categories of consonants and vowels. Syllabified 
consonants (syllabic L, N, and R) were not used in the Marcus et al. (1999) experiments. It is 
assumed that these syllabified consonants have a sonority value that bridge the consonant-vowel 
distinction; that is, they have a sonority value between semivowels and high vowels. Each word 
was coded on two units for the sonority of its consonant and the sonority of its vowel. This is 
similar to Negishi's (1999b) coding except that consonants and vowels are placed on a single 
scale rather than on separate scales. In that sense, our coding scheme is a bit more parsimonious 
than Negishi's (1999b). We coded each sentence in the artificial language with six units, two for 
each one-syllable word. For example, the sentence ga ti ga was coded as (-5 6 -6 4 -5 6).  

Our coding scheme for phonemes is deliberately simple and may eventually need 
expanding. For example, using a one-dimensional sonority scale entails that no coding 
distinctions are made between phonemes of the same sonority. An example of overlap would be 
ba (an A word) and ga (a B word), both having a sonority representation of (-5 6). Sonority 
values for all the words used in our simulations of the three experiments are provided in Table 3.  

Table 3 

Sonority Values for Words used in Simulations of Experiments 1-3 
Experiment Category Word Consonant Vowel 
1 Train Aa ga -5.0 6.0 
  li -1.0 4.0 
  ni -2.0 4.0 
  ta -6.0 6.0 
 Train Ba ti -6.0 4.0 
  na -2.0 6.0 
  gi -5.0 4.0 
  la -1.0 6.0 
 Test Ab wo -1.0 5.0 
  de -5.0 5.0 
 Test Bb fe -4.0 5.0 
  ko -6.0 5.0 
2 and 3 Train Aa le -1.0 5.0 
  wi -1.0 4.0 
  ji -3.0 4.0 
  de -5.0 5.0 
 Train Ba di -5.0 4.0 
  je -3.0 5.0 
  li -1.0 4.0 
  we -1.0 5.0 
 Test Ab ba -5.0 6.0 
  ko -6.0 5.0 
 Test Bb po -6.0 5.0 
  ga -5.0 6.0 
aAll four training words from the A category were combined with all four training words from 
the B category to create 16 training sentences in each condition of each experiment. bThe first of 
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the A test words was combined with the first of the B test words to form one test sentence; the 
second of the A test words was combined with the second of the B test words to form another 
test sentence in each condition of each experiment. 

Parameters 
All cascade-correlation parameters were Fahlman's (1991) default values with these exceptions. 
Score threshold, the tolerated difference between target and actual outputs, was raised from 0.4 
to 0.8 to reduce the crispness of the knowledge representations. Training continued until all 
output units produced activations within score threshold of their targets. The parameters for input 
patience and output patience were set to 1 rather than the default of 8. As noted earlier, cascade-
correlation alternates between two phases – output phase and input phase. During output phases, 
connection weights entering output units are adjusted to reduce error. During input phases, 
connection weights entering candidate hidden units are adjusted to increase the correlation 
between network error and activations on the candidates. The two patience parameters represent 
the number of epochs allowed to pass with little increase in error reduction or correlation, 
respectively, before shifting phase. An epoch is a presentation of all the training patterns. 
Patience was reduced because performance did not improve much after it failed to improve on a 
single epoch. Additional computational and mathematical details about cascade-correlation can 
be found in Appendix 1 (http://www.infancyarchives.com) and in previous papers (e.g., Fahlman 
& Lebiere, 1990; Shultz et al., 1994).  

Eight networks were run in each condition of the three experiments. Each network, 
starting with its own randomly determined connection weights, including those initial weights 
used for candidate hidden units, corresponds to a unique infant in the Marcus et al. (1999) 
experiments. Output units had linear activation functions to enable their approximation of real 
numbers; hidden units had sigmoid activation functions.  

Experimental Design 
All sentences and experimental designs were identical to those used with the Marcus et al. (1999) 
infants (see Table 1). In the simulation of Experiment 1, networks were familiarized to ABA 
sentences and then tested on sentences with novel words that were either consistent (ABA) or 
inconsistent (ABB). In another condition, familiarization was to ABB sentences, with novel 
ABB sentences as consistent and novel ABA sentences as inconsistent. Experiment 2 employed 
the same syntactic patterns, but the words were chosen more carefully so that phoneme 
sequences were different in the familiarization and test patterns. Experiment 3 used the same A 
and B categories of words as did Experiment 2, but employed contrastive syntactic patterns that 
each duplicated a consecutive word: AAB versus ABB. For each experiment, network error on 
test patterns was subjected to a mixed, repeated measures ANOVA in which familiarization 
condition served as a between-network factor and consistency of test pattern served as a repeated 
measure.  

Results 
Mean network error on test patterns for simulations of the three experiments is shown in Table 4, 
along with F and p values for the main effect of consistency of the test pattern. These results 
indicate more network error to inconsistent test patterns than to consistent test patterns for each 
experiment. With error representing the need for further cognitive processing, these results 
mirror the infant results of Marcus et al. (1999).  
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Table 4 

Mean Network Error on Test Patterns for Simulations of Three Experiments 
Experiment Patterns Consistent Inconsistent F(1, 14) p< 
1 ABA vs. ABB 8.2 14.5 74 .0001 
2 ABA vs. ABB 13.1 15.8 26 .0001 
3 AAB vs. ABB 12.9 15.3 52 .0001 

Note. A and B refer to two different categories of monosyllabic nonsense words. From “Infant 
familiarization to artificial sentences: Rule-like behavior without explicit rules and variables.” 
By T. R. Shultz and A. C. Bale. In L. R. Gleitman & A. K. Joshi (Eds.), Proceedings of the 
Twenty-Second Annual Conference of the Cognitive Science Society (p. 462), 2000. Mahwah, NJ: 
Erlbaum. Copyright 2000 by the Cognitive Science Society, Inc. Adapted by permission. 

 Mean and standard deviation of required epochs and hidden units recruited are presented 
for each condition of each experiment in Table 5. It is not clear how to match the epochs that 
networks require to learn with trials in infant experiments because it is not known how much 
processing infants do on each trial and how that can be calibrated with network processing. 
Cascade-correlation generally learns rather fast compared to many neural network algorithms, 
and this is reflected in the relatively small number of epochs required.  

Table 5 

Mean and Standard Deviation of Epochs and Hidden Units in Simulations of Three Experiments 
Experiment Condition Epochs Hidden units 
  Mean SD Mean SD 
1 ABA 52 26 2.6 1.1 
 ABB 46 24 2.4 1.1 
2 ABA 101 26 4.9 1.1 
 ABB 90 29 4.4 1.4 
3 AAB 83 18 4.4 0.9 
 ABB 91 32 4.8 1.8 

A plot of mean error results over output-phase epochs for one representative network is 
presented in Figure 1. The first three epochs are omitted from this plot for clarity because error 
started so high, at around 380. There is an approximate exponential decrease in error on the 
training patterns over time, much like the shape of declining attention in infant familiarization 
experiments. After complete success with the training patterns, the consistent test patterns 
likewise show rather little error, but the inconsistent test patterns show considerable error 
recovery, as in typical infant studies. The points at which hidden units are recruited into the 
network are marked with diamonds just above the training errors. In cascade-correlation 
learning, error typically decreases sharply after a new hidden unit is recruited. Because error on 
input-phase epochs does not change, they are usually excluded from such plots.  
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Figure 1. Mean error over consecutive output epochs for a network in the ABA condition of the 
simulation of Experiment 1. 

To investigate the shape of the error reduction curve for this network, the mean training 
error was fit with linear and exponential functions, both with and without inclusion of the 
previous (third) epoch. Results of these data fits are plotted in Figure 2, along with the best-
fitting function and the R2 value, or amount of variance accounted for by the best fitting function. 
Without the third epoch included, the data are fit about equally well with linear (Figure 2a) or 
exponential (Figure 2b) functions. However, with the previous (third) epoch included, an 
exponential fit (Figure 2d) is much better than a linear fit (Figure 2c). Inclusion of even earlier 
epochs (first and second) further worsens a linear fit. Thus, the overall shape of the error 
reduction is exponential. Other networks produce essentially the same results.  
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a. Linear fit b. Exponential fit 
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c. Linear fit including previous epoch d. Exponential fit including previous epoch  

y = -2.03x + 30.442
R2 = 0.5447
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Figure 2. Linear and exponential fits to the training curve of Figure 1, with and without inclusion 
of the previous epoch. 

Discussion 
Our network model succeeds in capturing both the basics of Marcus et al.'s (1999) infant 
experiments (more recovery of attention to inconsistent novel patterns than to consistent novel 
patterns) and the typical exponential decrease in attention during familiarization. The model 
captures these phenomena without the explicit rule and variable technique that was claimed by 
Marcus et al. to be required. As with other unstructured neural models, this shows that at least 
some of the functionality of symbolic rules and variable binding can be constructed from 
subsymbolic processes without having to be assumed and explicitly built in by the modeler.  

REVERSALS OF PREFERENCE 

An interesting feature of the Marcus et al. (1999) results was that a small proportion of infants 
actually showed a reversal of the general preference trend in attending to test patterns. In other 
words, rather than attending more to inconsistent test patterns, these exceptional infants attended 
more to consistent patterns. Increasing the score-threshold parameter to 0.8 made network 
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learning sloppy enough to bring several simulated infants close to a reversal in the simulations 
just reported. However, none of them actually showed a reversal. The previous simulation using 
arbitrary analog coding with cascade-correlation encoder networks with a similarly loose score-
threshold setting showed a small number of reversals (Shultz, 1999).  

To determine whether our model would show similar reversals, we repeated the 
simulations just reported but with 20 rather than 8 networks in each of the two conditions of each 
of the three experiments. All parameter settings remained the same. The idea was to provide a 
better opportunity for these low probability reversals to occur, merely by increasing the number 
of observations.  

Results 
The proportions of networks showing a reversal of the attention trend were 2/40, 4/40, and 2/40 
in simulations of Experiments 1, 2, and 3, respectively, yielding an overall proportion of .0667 
reversals. All these reversals were very slight. This simulated proportion of reversals is 
extremely close to that obtained by Marcus et al. (1999). They reported reversal proportions of 
1/16, 1/16, and 0/16 infants in Experiments 1, 2, and 3, respectively, yielding an overall 
proportion of .0417.  

Discussion 
It is not presently clear what produces reversals of preference in infants in habituation 
experiments. Nonetheless, the simulated reversals found here are interesting in that they suggest 
that such reversals could be a natural part of the learning of empirical regularities. When 
exposure to these regularities is limited, as it was in both the psychological experiments and the 
simulations, exceptions will naturally occur. This is a theoretically parsimonious explanation of 
reversals because it does not require assumptions of any extraneous processes such as lack of 
attention or fussiness on the part of the infants. Symbolic rule-based models may have difficulty 
capturing such reversals in any natural way if their rules are as crisp as the example rule given by 
Marcus et al. (1999): "The first item X is the same as the third item Y" (p. 79).  

COMPARISON OF TRAINING ERROR TO CONSISTENT TEST ERROR 

Figure 1 suggests that generalization to the consistent syntactic patterns is not perfect. At least 
for this single network, error per pattern was lower for training patterns at the end of training 
than it was for the consistent test patterns. To test whether this trend was statistically reliable, we 
ran eight networks in each of the two conditions of each experiment, recording the last training 
error as well as error on the consistent test patterns. We divided each error by the number of 
patterns on which it was based, 16 training patterns and two consistent test patterns.  

Results 
In each of the three experiments, the difference between training error and consistent test error 
was found to be statistically significant, p < .001. For example, for Experiment 1, the mean per-
pattern error was 0.48 for training patterns and 3.95 for consistent test patterns, F(1, 14) = 
113.68, p < .001.  

Further experimentation revealed that manipulating how deeply the networks are allowed 
to learn modulates the size of this effect. For example, allowing networks to learn for only 30 
epochs in Experiment 1 produced per-pattern error means of 6.01 for training patterns and 6.75 
for consistent test patterns, F(1, 14) = 2.95, p = .108, a non-significant difference. In this case, 
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there was still a reliable difference between consistent and inconsistent test error (M = 10.32), 
F(1, 14) = 36.89, p < .001.  

Discussion 
The fact that networks do not generalize perfectly to consistent test patterns underscores an 
important difference between unstructured neural networks and symbolic rules with variables. A 
symbolic rule with variables would presumably predict perfect generalization to consistent test 
patterns even with novel tokens. That is, the symbolic approach would predict that per-pattern 
error on consistent test patterns would be as low as per-pattern error on training patterns. If a rule 
is truly abstract and contains symbolic variables, then it should apply equally well regardless of 
the particular tokens that the variable is bound to. In contrast, our unstructured neural networks, 
because of their continuous representations and approximate computation, notice the difference 
created by novel tokens and show more error to them, even in a familiar pattern, than to the 
tokens used in training.  

 Many habituation experiments, including that of Marcus et al. (1999), because of 
procedure changes between habituation and test phases, do not afford an unambiguous 
comparison between performance on habituation and test items. However, a cursory examination 
of a number of habituation experiments in the literature that appeared to retain the same 
procedure throughout habituation and testing revealed considerable variability on the comparison 
of interest. In some cases, it appears that generalization performance can be as good as training 
performance, whereas in other cases it appears that even the test items with the best 
generalization performance elicit more attention than the habituated items. Based on our 
simulations, it is reasonable to assume that this variability reflects differences in depth of 
learning and similarity between training and test items. In any case, our model predicts more 
attention to syntactically consistent sentences with novel words than to habituation sentences, at 
least when the habituation sentences are learned to a sufficient depth.  

EXTRAPOLATION OUTSIDE THE TRAINING RANGE 

Neural networks must generalize well to be taken seriously as cognitive models. If they merely 
memorize relations between input and output patterns, which they may tend to do if provided 
with too much computational power (too many hidden units), then they tend not to generalize 
very well. On the other hand, if neural networks have insufficient computational power (too few 
hidden units), then they may not be able to learn a particular task. The trick then in designing 
static neural networks is to predict the minimum number of hidden units required to learn a task. 
A lean but sufficiently powerful network will typically generalize well to patterns not used in 
training.  

 Cascade-correlation removes some of the uncertainty and mystery about network design 
by starting networks with no hidden units and gradually building up computational power as 
needed to learn a problem. This ensures that networks have only as much power as needed. 
Coverage of the Marcus et al. (1999) data on preference for inconsistent over consistent novel 
patterns shows that cascade-correlation networks indeed generalize well within the range of the 
training patterns. Such generalization within the training range is known as interpolation. 
Although neural networks are often good at interpolation, their ability to extrapolate outside the 
training range has sometimes been questioned (Marcus, 1998; Pinker, 1997).  

Method 
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To determine the extrapolation capacity of our networks, we repeated the simulation of Marcus 
et al.'s (1999) Experiment 1 with a different set of test patterns. The new test patterns for the A- 
and B-category words are shown in Table 6. Recall that consonants used in training ranged from 
-6 to -1 in sonority and that vowels used in training ranged from 4 to 6 in sonority. Test patterns 
for this simulation were either inside the training range (by a distance of 0.5 from the extreme 
values), outside but close to the extremes of the training range (by a distance of 0.5 from the 
extreme values), or farther outside the extremes of the training range (by a distance of 1.0 from 
the extreme values).  

Table 6 

Test Patterns for Evaluating Extrapolation in the Simulation of Experiment 1 
Distance from 
training range 

Category A Category B 

 Consonant Vowel Consonant Vowel
Inside -5.5 5.5 -1.5 4.5
Close -6.5 6.5 -0.5 3.5
Far -7.0 7.0 0.0 3.0

 Eight networks were familiarized to ABA sentences and eight others were familiarized to 
ABB sentences as in our original simulation of Experiment 1. All parameters remained the same.  

Results 
Error on the test patterns after familiarization was subjected to a repeated measures ANOVA in 
which familiarization condition (ABA vs. ABB) served as a between-network factor and 
consistency (consistent vs. inconsistent) and distance (inside, close, far) served as repeated 
measures. There were main effects of consistency, F(1, 14) = 80, p < .001, and distance F(2, 28) 
= 527, p < .001, and an interaction between them, F(2, 28) = 32, p < .001. Mean error for the 
consistency by distance interaction is shown in Figure 3. The simple main effect of consistency 
was significant (p < .001) at each level of distance.  
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Figure 3. Mean error on consistent and inconsistent test patterns at various distances from the 
training range for networks familiarized to ABA sentences. 

Discussion 
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Error increased with distance from the training patterns, as expected. The networks generalized 
better within the range that they were trained on. Also as expected, inconsistent patterns 
generated more error than did consistent patterns. What is perhaps more counterintuitive is that 
the consistency effect grew a bit larger with increasing distance from the training patterns. Thus, 
there is substantial extrapolation ability in these networks.  

 Moreover, these extrapolation results would appear to generate predictions that stand in 
sharp contrast to those expected from a rule-based approach. In contrast to the two main effects 
and interaction generated by our networks, a rule-based approach would presumably predict a 
single main effect for consistency. A universally quantified rule would mark the distinction 
between consistent and inconsistent patterns in a manner that disregarded any main or interactive 
effects of distance from the training range. Thus, if stimuli outside of the training range could be 
found, an appropriately designed infant experiment on extrapolation outside the habituation 
range could constitute a critical test of rule-based and connectionist theories.  

KNOWLEDGE REPRESENTATION ANALYSIS 

It is important to understand how successful neural network models represent their knowledge of 
the task they are learning. This can provide insights into how the networks solve a problem, 
suggestions for how the simulated participants may be representing this problem, and predictions 
for future simulations or psychological study. Detailed examination of knowledge 
representations and problem-solving strategies is considerably easier with artificial neural 
networks than with children, although even networks can be somewhat challenging to analyze.  

In general, networks can be analyzed by examining unit activations, connection weights, 
or contributions, which are products of sending-unit activations and connection weights. Patterns 
of unit activations represent momentary changes in the active memory of a network, whereas 
patterns of connection weights represent the network's long-term knowledge of a problem. 
Activations on output units reveal network responses to particular stimuli, whereas activations on 
hidden units reveal active-memory network knowledge representations of particular stimuli. 
Contributions are products of sending-unit activations and connection weights entering output 
units (Sanger, 1989), thus taking account of both active and long-term knowledge as it is 
summarized at the level of network output.  

Because these knowledge representation analyses are lengthy and technical, they are 
stored in Appendix 2 at http://www.infancyarchives.com. Results of the knowledge 
representation analyses can be summarized as follows:  

1. Networks learn to encode syllables as a linear combination of consonant and vowel sonority.  

2. Because networks try to reduce as much error as possible, the first recruited hidden unit 
learns to encode the duplicate word and the second recruited hidden unit learns to encode the 
single word in each three-word sentence.  

3. Bias weights learn to encode the distinction between consonants and vowels.  

4. Networks learn to decode duplicate words with very similar sets of weights to the output 
units that represent the duplicate words, although this simple strategy fails when the network 
is exposed to more than one syntactic pattern. With multiple syntactic patterns, networks are 
forced to learn more complex representations, at least some of which can be identified by 
contribution analysis.  
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LEARNING DUPLICATE VERSUS SINGLE WORDS 

The knowledge representation analyses of networks learning one sentence pattern predict that 
these networks would learn duplicate-word categories before single-word categories. Connection 
weights to outputs representing duplicate words grow large before connection weights to outputs 
representing single words. Components representing variation in sonority of duplicate words 
appear in principle component analyses of contributions before components representing 
variation in sonority of single words. finally, activity in the first hidden unit reflects variation in 
sonority of the duplicate-word category, whereas activity in the second hidden unit reflects 
variation in sonority of the single-word category. This simulation tests the prediction that 
networks learn to recognize the duplicate word before the single word in these three-word 
sentences.  

Method  
To test this prediction within the model, we ran a few networks in each condition of each 
experiment while recording network error for each output unit at the end of each output phase 
and at the end of training. Mean error was computed for the A words and B words separately.  

Results 
Figure 4 plots the mean error to A- and B-category words in two networks, one trained on ABA 
sentences and the other on ABB sentences, after recruiting one and two hidden units. These 
particular networks are from Experiment 1. After adjusting to one hidden unit, the network 
trained on ABA sentences had mastered the duplicate A words, but still showed considerable 
error on the B words. Similarly, the network trained on ABB sentences, after adjusting to one 
hidden unit, had mastered the duplicate B words, but not the A words. After training, with two 
hidden units, both networks showed the expected mastery of both word categories.  
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Figure 4. Mean error to A- and B-category words in two networks, one trained on ABA 
sentences and the other on ABB sentences from Experiment 1, after recruiting one and two 
hidden units. This confirms that networks learn duplicated words before single words. 

Discussion 
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This pattern of results, which is representative of all of the networks that we examined, verifies 
the prediction that networks learn the duplicate-word category before the single-word category 
within whatever sentence type they are exposed to. This is natural for artificial neural networks 
because although their learning tries to deal with all error at once, the largest error has the largest 
effect on weight adjustments. As such, this pattern of results would very likely hold for 
conventional static network models as well as the current generative networks. The tendency to 
learn duplicate-word categories before single-word categories may be somewhat difficult to test 
with infants, but appears to be a strong, natural prediction of neural network models.  

NATURE OF NETWORK ERROR ON TEST PATTERNS 

Given that duplicate words tend to be abstracted into a single representation, it is reasonable to 
ask whether networks process a whole sentence or simply process the single word and one 
instance of the duplicate word. To answer this and also to understand the nature of network error 
on test patterns better, we ran eight networks in each condition of the simulations of Experiments 
1 and 3. Activations produced on output units when processing test patterns were recorded after 
the familiarization phase.  

Results 
Plots of target and actual sonority sums for three syllables on two kinds of test sentences from a 
representative network familiarized to the ABB pattern in the simulation of Experiment 3 are 
shown in Figure 5. Discrepancy between actual sonority sums and the corresponding target 
sonority sums enables visual detection of the principal sources of error.  
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Figure 5. Target and actual sonority sums on two kinds of test sentences from a representative 
network familiarized to the ABB pattern in the simulation of Experiment 3. 

For the network whose results are shown in Figure 5, actual sonority sums on the 
consistent, ABB test patterns are quite close to their ABB targets. In this particular test sentence, 
the sonority sum of the A word exceeds that of the B word. When tested on the inconsistent, 
AAB test sentence, there is a sizeable discrepancy on the second syllable. It is as though the 
network expected an ABB pattern, but encountered an AAB pattern and detected the difference. 
In this experiment then, most of the test error is associated with the second word in each 
inconsistent three-word sentence. In contrast, for the simulation of Experiment 1, most of the 
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error is associated with the third word of inconsistent test sentences because the contrast in test 
patterns is between ABA and ABB, which differ only on the third word.  

Discussion 
All the 16 networks tested in each of these two experiments show similar error patterns. That is 
to say that most of the error a network arises on the syllable that is unexpectedly different from 
the familiarized pattern. Networks are essentially correct on every word except the word that 
deviates from the expected syntax. This pattern underscores that networks are processing the 
whole sentence even though the duplicate words are largely redundant in the knowledge 
representations of the networks as revealed by the knowledge representation analysis. It also 
verifies that error occurs where it should occur if networks recognize a syntactic pattern; that is, 
error is concentrated on the unexpected word category and positio 

PREDICTING AN IMPOSSIBLE DISCRIMINATION: A THOUGHT SIMULATION 

Our model can be used to design sentences for which there would be no difference between 
consistent and inconsistent test patterns, essentially because it would be impossible to distinguish 
the A and B categories. To illustrate this, consider the actual test sentences that were used, 
presented with their consonant and vowel sonority values in Table 7. Because of the overlap in 
sonority values, it is somewhat remarkable that networks were able to distinguish between ABA 
and ABB sentences. The words ba and ga have identical sonority values as do the words po and 
ko. Despite this overlap, each test sentence is unique because of the particular interactions 
between syntactic patterns and categories.  

Table 7 

Test Sentences and Sonorities used in Experiment 2 
Pattern Word 1 Word 2 Word 3 
ABA 1 ba (-5 6) po (-6 5) ba (-5 6) 
ABA 2 ko (-6 5) ga (-5 6) ko (-6 5) 
ABB 1 ba (-5 6) po (-6 5) po (-6 5) 
ABB 2 ko (-6 5) ga (-5 6) ga (-5 6) 

Note. A and B refer to two different categories of monosyllabic nonsense words.  

We can make the task much more difficult merely by interchanging the words po and ga 
in these sentences, as illustrated in Table 8. With this change, the first ABA sentence is identical 
to the first ABB sentence, and the second ABA sentence is identical to the second ABB sentence, 
in terms of sonority. Thus, there would be no way for networks to distinguish consistent from 
inconsistent sentences on sonority alone. We call this a thought simulation, because there is no 
need to actually run it. As with a thought experiment, just thinking about this hypothetical 
simulation is sufficient to see that the consistent and inconsistent tests would be indistinguishable 
to the networks. In this case, the sonority coding provides insufficient information to distinguish 
the two syntactic test patterns. It would, of course, be possible to design training sentences with 
these same characteristics, in which case the two training conditions (e.g., ABA vs. ABB) would 
produce indistinguishable test results.  
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Table 8 

Some Difficult-to-discriminate Test Sentences and Sonorities Created by Interchanging the 
Words po and ga in Table 7 

Pattern Word 1 Word 2 Word 3 
ABA 1 ba (-5 6) ga (-5 6) ba (-5 6) 
ABA 2 ko (-6 5) po (-6 5) ko (-6 5) 
ABB 1 ba (-5 6) ga (-5 6) ga (-5 6) 
ABB 2 ko (-6 5) po (-6 5) po (-6 5) 

Note. A and B refer to two different categories of monosyllabic nonsense words.  

If infants in similar experiments produced similar results, this would provide strong 
support for our model. In contrast, if infants showed as much recovery to inconsistent patterns as 
they did in the original Marcus et al. (1999) experiments, then our coding scheme would be 
called into question. If the infant results were somewhere in between these two possibilities, that 
is, less of a difference but still a difference, it might be reasonable to make our sonority scale a 
bit more discriminating. This may be done by adding phonetically motivated scale levels to 
distinguish, for example, ba from ga and ko from po. Simulations with a more differentiated 
scale would probably show an intermediate level of discrimination between the sentence types, 
just as the hypothetical infants may.  

Another possibility is that phonemes could be coded with binary phonetic features as well 
as sonority. This could happen either in parallel (at the input level) or in serial, with sonority 
values being computed from binary phonetic features. Such additional binary information about 
phonemes may be exploited to distinguish between syntactic categories and thus syntactic 
patterns. Note that this prediction concerns the relative difficulty of discriminating syntactic 
patterns of sentences, not perception of phonemes.  

GENERAL DISCUSSION 

As with several alternative simulations, these results show that an unstructured neural network 
model without symbolic rules can simulate infant familiarization and novelty results. Like 
infants, our networks gradually ignored a repeated syntactic form and recovered interest to an 
inconsistent novel form but not to a consistent novel form, assuming that network error 
corresponds to a need for further processing. Thus, the infant results of Marcus et al. (1999) do 
not uniquely require a symbolic rule-based account. The argument that these infant data suggest 
an innate rule-learning capacity (Pinker, 1999) is at best premature.  

Including our present study, there are now at least nine different models of the Marcus et 
al. (1999) data set, ironically making it one of the most modeled in psychology. All of these 
models are connectionist, and only two of the nine use explicit variable binding (Gasser & 
Colunga, 1999); Shastri & Chang, 1999). None of these models use explicit rules along with 
explicit variable binding, as would be characteristic of symbolic production systems (Anderson 
& Lebiere, 1998; Newell, 1990). There is consequently no question that the initial claims of 
Marcus et al. (1999) were overstated and that it is possible for even unstructured neural networks 
to capture these data. Explicit rules and variables are clearly not needed for a coherent theoretical 
account of the infant data.  
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Assuming that issue to be settled, it becomes of greater importance to consider which of 
the current models offers the best account of these data given that the models are all somewhat 
different. In contrast to alternative models of the Marcus et al. (1999) data, our model has several 
features to recommend it. Our model does not require extensive preexperiment experience 
(Christiansen & Curtin, 1999; Elman, 1999), extensive hand-wiring of networks (Gasser & 
Colunga, 1999; Shastri & Chang, 1999), external feedback signals not available in the stimuli 
(Elman, 1999; Shastri & Chang, 1999), unusual interpretation of outputs (Altmann & Dienes, 
1999), or explicit variable binding (Shastri & Chang, 1999). On grounds of theoretical 
parsimony, the more unsupported assumptions that a model requires the less plausible it 
becomes. A reasonable criterion for assessing competing models is the ease and naturalness with 
which a data set can be covered.  

Unlike some alternative models (Shastri & Chang, 1999; Shultz, 1999; Sirois et al., 
2000), our model uses realistic coding of the stimuli. Like Negishi's (1999b) model, ours uses an 
analog coding of inputs based on the manner in which the phonemes are produced. As noted, our 
representation of the sentences is a bit more compact and uniform than Negishi's (1999b) 
because we use a single sonority scale for both consonants and vowels, whereas he used two 
separate scales, one for place of consonant articulation and another for vowel height. Although 
some models work fine on familiarization to a single sentence pattern such as ABA, they would 
likely have difficulty learning two patterns simultaneously, such as ABA and ABB (Negishi, 
1999b; Sirois et al., 2000). Such difficulty would stem from a lack of nonlinear hidden units. 
Learning simultaneous, nonorthogonal sentence patterns constitutes a realistic extension of the 
Marcus et al. (1999) experiments and was shown to be feasible within our present model.  

Our model and those of Shultz (1999) and Sirois et al. (2000) are the only ones so far to 
capture the other established feature of the Marcus et al. (1999) infant data: the occasional 
reversal of preference for novel patterns. Just over four percent of their infants and six percent of 
our networks showed a preference for inconsistent patterns. It is difficult to comment on how 
easily the other six models may be able to capture these reversals in some natural fashion. 
However, there are hints that it may be relatively difficult for some models. The Elman (1999) 
model, for example, showed such a strong consistency effect that occasional reversals of 
preference seem unlikely: mean activation to ABB sentences was 123 times higher than to ABA 
sentences. Similarly, the Shastri and Chang (1999) model learns such a powerful representation 
of serial position of words that reversals would be unlikely to occur. The correlation between 
weights to position nodes were .9993 for positions 1 and 3 in networks habituated to ABA 
sentences and .9998 for positions 2 and 3 in networks habituated to ABB sentences. This rather 
crisp representation resulted, for example, in 3.4 times more error to inconsistent than to 
consistent sentences in the ABA condition of Experiment 1. Although the mean error differences 
in Negishi's (1999b) model were more in line with ours and with those of the infants tested by 
Marcus et al. (1999), no reversals of preference were reported. All of this is not to claim that 
these alternative models are incapable of matching the proportion of preference reversals found 
with infants, just that they do not presently do so.  

In summary, our model may be currently preferred because it covers more of the infant 
data, with less preexperimental experience, less network design, and more realistic stimulus 
coding than alternative models. It also uses a general learning algorithm that has been applied 
successfully to several other phenomena in cognitive development. Of course, things can change 
quickly in the modeling literature, and an even better model may be just around the corner.  
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The power of our model (and those of Shultz, 1999 and Sirois et al., 2000) to cover the 
infant data probably derives from construing the task as one of recognizing whole sentences. The 
task of predicting the next word in a sentence, used in several of the alternative neural models, is 
a difficult one and not necessarily the primary task that humans face when listening to language. 
Because there is successful coverage of the basic consistency effect even with binary coding, 
with both cascade-correlation (Shultz, 1999) and auto-associator (Sirois et al., 2000) algorithms, 
it is clear that analog coding is not absolutely required. However, we prefer to use analog coding, 
in this and some other simulation domains, because it typically makes for smaller, easier to 
understand networks and strong generalization. 

On the assumption that reduction of network error represents declining need for attention 
and processing, plots of error reduction over time confirmed that our networks performed like 
the infants that they were designed to simulate. There was an exponential decrease in error 
followed by more recovery to inconsistent than to consistent novel patterns. It is not clear how 
symbolic rule-based models would be able to capture this pattern of data because many rule-
based algorithms learn their rules in a single trial when presented with appropriate information 
(e.g., Anderson & Lebiere, 1998; Newell, 1990). However, for familiarization experiments such 
learning would have to be gradual with decreasing exponential shape. The model of Shultz 
(1999) also showed this exponential shape. Whether the other seven alternative connectionist 
models would show this pattern of habituation remains to be seen.  

Unlike hypothetical, symbolic rule-based models, our model shows more error to 
(interest in) consistent novel patterns than training patterns. Because this effect reflects the 
continuous representations acquired in unstructured neural network learning, it would probably 
occur in other neural network models as well. It is as if the networks notice a change in tokens 
used within a familiar syntactic structure and respond with correspondingly greater interest.  

Our networks generalized not only to novel sentences within the range of the training 
patterns but also to novel sentences outside of the training range. That is, the networks not only 
interpolated, they also extrapolated. Contrary to some expressed misgivings (e.g., Marcus, 1998; 
Pinker, 1997), this shows that neural networks are not merely memorizing associations between 
input and output patterns but are abstracting functions relating inputs to outputs. These abstract 
functions enable simulation of understanding and generalization by neural networks. It is true 
that networks learn to associate output patterns with input patterns, but in doing so they also 
build abstract functions capable of converting inputs to outputs. This kind of abstraction occurs 
as long as the networks are somewhat underpowered, which is typically the case for generative 
networks such as cascade-correlation.  

It was argued that neural networks may be able to learn abstractions on hidden units 
(McClelland & Plaut, 1999) that would enable generalization to the novel patterns of the Marcus 
et al. (1999) experiments. Our extrapolation simulations coupled with our knowledge 
representation analyses demonstrate that this is indeed the case. Networks generalized outside 
the range of stimuli seen in training by developing internal representations of sonority variation 
in two syntactic categories of words. These internal representations allowed networks to 
recognize syntactic differences in sentences containing words with sonorities outside the training 
range. The test sentences used by Marcus et al. in fact fell within the sonority range of their 
training sentences, although with novel combinations of sonority values not used in training (see 
Table 3). Our extrapolation simulation provides evidence of even more impressive generalization 
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than seen in the Marcus et al. infants because the simulated test sonority values themselves, not 
only their consonant-vowel combinations, were novel (see Table 6).  

The extrapolation pattern was for error to increase with distance from the training range 
and with inconsistency of the test patterns and for the consistency effect to increase with 
distance. Because a rule-based approach predicts a consistency effect unaffected by distance, it 
may be possible to design a critical experiment with infants whose results could distinguish 
between the two theoretical approaches.  

The fact that error increases with distance from the training range suggests that words are 
not compared by an equality operator (which would have the same error regardless of the amount 
of the input). Instead, networks compare words with a similarity operator that is sensitive to the 
quantities of sonority values. This represents a major difference between symbolic and sub-
symbolic accounts.  

Analysis of the knowledge representations acquired by our cascade-correlation networks 
during the familiarization phase revealed the nature of the function that was abstracted. Hidden 
units used sonority variation in the phonemes of the sentence to represent the sonority variation 
first of the duplicated-word category and second of the single-word category. This representation 
is more compact and abstract than that in the inputs because it utilizes the redundancy created by 
the duplicated word. The network then decodes this hidden unit representation by learning output 
weights that reproduce the sonority values of the sentence onto output-unit activations. This 
decoding task is simplified by using very similar weights to outputs representing the duplicate-
word category. However, extensions to networks learning to recognize two syntactic forms 
simultaneously (e.g., ABA and ABB) indicate that networks do not always rely on simple 
weight-duplication strategies.  

In several respects, our knowledge representation analyses were clarified by using 
sonority sums (vowel sonority plus consonant sonority), or equivalently, sonority differences 
(vowel sonority minus consonant sonority). As compared to raw sonorities, using sonority sums 
or differences enabled better separation of component scores of sentences in the PCA of network 
contributions and stronger linear functions relating sonority to hidden unit activation. No more 
direct evidence of network summing or subtracting sonorities could be found, although such 
processes would not be out of the question when it is recalled that network units sum their 
weighted inputs.  

It is interesting that networks learn to parse syllables by grouping together two phonemes 
into one representation of a word or syllable. In this way a network seems to form syllables from 
phonemes. Although the use of sonority sums has little justification within the psychological 
literature, the use of sonority differences does. The difference between the onset consonant and 
the vowel of a syllable can be interpreted as a calculation of sonority slope (or change). 
Assuming an arbitrary distance of 1 unit, vowel sonority minus the consonant sonority equals 
sonority slope. It has been argued that sonority slope can be used to detect syllable boundaries or 
word boundaries (Vroomen et al., 1998). Sonority differences and sonority sums are essentially 
similar calculations in that they are both linear operations.  

It is sometimes possible to relate network knowledge representations to demonstrated or 
predicted representations in humans (Shultz, 1998; Sirois & Shultz, 1998). Perhaps the 
knowledge representations discovered in our networks could be used to guide the study of 
knowledge representations in infants.  
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Despite the fact that duplicated words were efficiently represented once on a single 
dimension, it was also the case that networks processed the entire three-word sentence. The 
relevant evidence comes from the finding that error was concentrated in the single, duplicated 
word that was inconsistent with the familiarized pattern. There was very little error on the other 
two words of the sentence. Because the position of this error-prone word varies with condition 
and test pattern, each of the three words of each sentence was processed.  

Because there are at least seven unstructured neural network methods that cover the 
Marcus et al. (1999) data, there is no demonstrated need for explicit rules and variables in 
accounting for these data. Whatever functional power is required can be built through 
subsymbolic learning. It may be the case that some computation in humans is based on explicit 
symbolic rules, but the Marcus et al. data do not prove this claim as it applies to infants hearing 
artificial grammars. 

It would be a mistake to conclude that the unstructured connectionist models of the 
Marcus et al. (1999) data show that infant cognition and language are not rule like. To the 
contrary, these unstructured connectionist models continue to show that systematic rule-like 
behavior can be implemented without starting with explicitly formulated symbolic rules and 
variables and the machinery to process them. Within this framework of unstructured 
connectionism, computational mechanisms are brain-like units and connections, not symbolic 
rules and variables. That our network analyses relied on complex statistics and graphics 
underscores the fact that the networks do not compute by matching, selecting, and firing explicit 
rules. Merely stating a rule to describe how such a network operates would be a very abstract 
characterization of its behavior, not a mechanistic explanation of how it functions. In this sense, 
rules may be more in the heads of psychological theorists than in the heads of their participants, 
more epiphenomenal than computational. The subsymbolic approach has the advantage of 
showing how brains may be able to implement rule-like behavior. As well, it generates 
predictions that can be quite different than those generated by models that begin with 
symbolically explicit rules and variables. The graduated patterns of dishabituation to 
syntactically consistent sentences with novel words and of extrapolation outside the training 
range stand as two examples of these differentiating predictions.  

The idea that the Marcus et al. (1999) habituation data can be accounted for by 
unstructured connectionist models is analogous to other recent critiques of possibly overly rich 
interpretations of infant habituation data (Bogartz, Shinskey, & Speaker, 1997; Fischer & Bidell, 
1991; Haith, 1998). These critics argue that lower-level perceptual interpretations of 
dishabituation differences must be examined before abstract conceptualizations such as 
hypotheses and theories and emotional reactions such as surprise can be attributed to young 
infants. Similarly, we believe that subsymbolic neural accounts must be examined before 
symbolic rules can be attributed to young infants.  

In contrast to alternative models, we have generated a variety of predictions for future 
psychological research: exponential habituation of attention, more attention to consistent test 
patterns than to well-habituated patterns, larger consistency effects with increasing distance from 
the training range, ability to learn multiple syntactic forms simultaneously, relative difficulty 
distinguishing sentence types when words have similar sonorities, earlier learning of a duplicate-
word category than a single-word category, and the use of particular knowledge representations. 
Such predictions are potentially useful when computational modeling outpaces the original 
psychological research, as has happened here. Because these initial psychological data are so 
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easy to capture with a variety of structured and unstructured connectionist techniques, and 
perhaps symbolic techniques (although that still needs to be demonstrated), it becomes important 
to collect new infant data to adjudicate among the alternative models. Differential model 
predictions could play a useful role in guiding future psychological research by suggesting 
critical experiments to distinguish between models. It is likely that existing and future models 
will need to adapt to new psychological findings.  

It may be interesting to further explore recurrent networks on these tasks. Recurrent 
networks cycle activation from hidden or output units back into the input layer, thus 
implementing a sort of working memory for processing temporal sequences (Hertz et al., 1991). 
Nonrecurrent networks like ours and recurrent networks can both learn to solve problems with a 
temporal component. The main difference between the two is a trading of space for time in the 
input coding (Hertz et al.). Recurrent networks process inputs in sequence over time, allowing 
for sequences of indeterminate length. Nonrecurrent networks represent inputs on different units 
simultaneously. There is a recurrent version of cascade-correlation that could be tried on 
sentence familiarization problems. An advantage of recurrent algorithms is their ability to deal 
with sequential input of indefinite and varying length. Because the Marcus et al. (1999) 
sentences had a fixed length and were separated by a substantial temporal gap, it is not clear that 
recurrent networks are required to simulate the resulting phenomena. However, recurrent 
networks would presumably be required to deal with experiments having continuous speech 
streams and sentences of indefinite length. It may be interesting to see whether recurrent 
networks could learn when the task is to recognize a sentence pattern, as in our model, instead of 
learning to predict the next word or syllable, as has been relatively common with recurrent 
networks so far.  

An issue that our model does not address is the tendency noted in some studies for infants 
to prefer familiar rather than novel stimuli. Generally, such familiarity preferences occur in 
younger infants, with more complex stimuli and with shorter exposure times (Hunter & Ames, 
1988). Such familiarity preferences have also been found in grammar learning tasks, similar to 
the one used in the Marcus et al. (1999) experiments (Gomez & Gerken, 1999). It is difficult to 
see how an error-reduction model such as ours could account for familiarity if it is assumed that 
interest is a simple linear function of error. As noted, Christiansen and Curtin (1999) obtained a 
familiarity preference with their back-propagation model of the Marcus et al. data, but the 
computational basis for this effect remains obscure and it does not fit the Marcus et al. data, 
which showed primarily a novelty preference. Likewise, the occasional reversals noted in our 
model do not count as a systematic familiarity preference as has been found in some infant 
studies. Ultimately, what may be needed to capture systematic familiarity preferences is a model 
that views interest as a more complex function of error. Until error is brought down to near 
asymptote, interest may remain relatively high and even increase, producing a familiarity 
preference. But as error nears asymptote, a novelty preference occurs. For now, familiarity 
preference remains an open and interesting problem.  

Our research can be viewed as part of stream of challenges that have been posed to 
connectionism and responses to those challenges. Over the past dozen years, there have been a 
number of claims about what connectionist models cannot do, mainly by researchers committed 
to the symbolic computational paradigm. A list of such claims periodically grows as challenges 
are made and then shrinks as challenges are met. In general, this dialog has been healthy for 
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cognitive science because it has focused connectionists' attention on issues important to others 
and prodded them to either explore or extend the computational power of neural networks.  

ACKNOWLEDGMENTS 

This research was supported by a grant from the Natural Sciences and Engineering Research 
Council of Canada. This work has benefited from comments from David Buckingham, Jacques 
Katz, Yuriko Oshima-Takane, Sylvain Sirois, and Yoshio Takane, as well as from the Editor and 
anonymous reviewers.  

REFERENCES 

Altmann, G. T. M., & Dienes, Z. (1999). Rule learning by seven-month-old infants and neural 
networks. Science, 284, 875.  

Anderson, J. R., & Lebiere, C. (1998). Atomic components of thought. Hillsdale, NJ: Erlbaum.  

Bolshakov, V. Y., Golan, H., Kandel, E. R., & Siegelbaum, S. A. (1997). Recruitment of new 
sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 
synapses in the hippocampus. Neuron, 19, 635–651. 

Bogartz, R. S., Shinskey, J. L., & Speaker, C. J. (1997). Interpreting infant looking: The event set 
X event set design. Developmental Psychology, 33, 408-422.  

Buckingham, D., & Shultz, T. R. (2000). The developmental course of distance, time, and 
velocity concepts: A generative connectionist model. Journal of Cognition and Development, 
1, 305-345.  

Christiansen, M. H., & Curtin, S. L. (1999). The power of statistical learning: No need for 
algebraic rules. Proceedings of the Twenty-first Annual Conference of the Cognitive Science 
Society (pp. 114-119). Mahwah, NJ: Erlbaum. 

Clements, G. N. (1990). The role of the sonority cycle in core syllabification. In J. Kingston & 
M. Beckmann (Eds.), Papers in laboratory phonology 1 (pp. 282-333). Cambridge: 
Cambridge University Press.  

Cohen, L. B. (1973). A two-process model of infant visual attention. Merrill-Palmer Quarterly, 
19, 157-180.  

Cohen, L. B. (1979). Our developing knowledge of infant perception and cognition. American 
Psychologist, 34, 894-899.  

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-211. 

Elman, J. L. (1999). Generalization, rules, and neural networks: A simulation of Marcus et al. 
[Online]. Retrieved April 27, 1999 from the World Wide Web: 
http//www.crl.ucsd.edu/~elman/Papers/MVRVsim.html 

Eriksson, P. S., Perfilieva, E., Bjork- Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., 
& Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 
1313-1317.  

Fahlman, S. E. (1991). Common Lisp implementation of cascade-correlation learning algorithm 
[Computer program]. Pittsburgh, PA: Carnegie Mellon University, School of Computer 
Science.  



FAMILIARIZATION TO ARTIFICIAL SENTENCES     29 

 

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In D. S. 
Touretzky (Ed.), Advances in Neural Information Processing Systems 2 (pp. 524-532). Los 
Altos, CA: Morgan Kaufmann.  

Fischer, K. W., & Bidell, T. R. (1991). Constraining nativist inferences about cognitive 
capacities. In S. Carey & R. Gelman (Eds.), The epigenesis of mind: Essays on biology and 
cognition (pp. 199-235). Hillsdale, NJ: Erlbaum.  

Gasser, M., & Colunga, E. (1999). Babies, variables, and connectionist networks. Proceedings of 
the Twenty-first Annual conference of the Cognitive Science Society (p. 794). Mahwah, NJ: 
Erlbaum. 

Gomez, R. L., & Gerken, L. A. (1999). Artificial grammar learning by 1-year-olds leads to 
specific and abstract knowledge. Cognition, 70, 109-135.  

Gould, E., Tanapat, P., Hastings, N. B., & Shors, T. J. (1999). Neurogenesis in adulthood: A 
possible role in learning. Trends in Cognitive Sciences, 3, 186-192. 

Haith, M. M. (1990). Progress in the understanding of sensory and perceptual processes in early 
infancy. Merrill-Palmer Quarterly, 36, 1-26.  

Haith, M. M. (1998). Who put the cog in infant cognition? Is rich interpretation too costly? 
Infant Behavior and Development, 21, 167-179.  

Harris, J. (1983). Syllable structure and stress in Spanish: A non-linear analysis. Linguistic 
Inquiry Monograph 8. Cambridge, MA: MIT Press. 

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural computation. 
Reading, MA: Addison Wesley.  

Hunter, M. A., & Ames, E. W. (1988). A multifactor model of infant preferences for novel and 
familiar stimuli. In C. Rovee-Collier & L. P. Lipsitt (Eds.), Advances in infancy research 
(Vol. 5, pp. 69-95). Norwood, NJ: Ablex.  

Jespersen, O. (1922). Language, its nature and origin. New York: Holt.  

Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997, April 3). More hippocampal neurons in 
adult mice living in an enriched environment. Nature, 386, 493-495.  

Kohonen, T. (1988). Self-organization and associative memory (2nd edition). New York: 
Springer-Verlag. 

Marcus, G. F. (1998). Rethinking eliminative connectionism. Cognitive Psychology, 37, 243-
282. 

Marcus, G. F. (1999a, April 16). Do infants learn grammar with algebra or statistics? Science, 
284, 433. 

Marcus, G. F. (1999b, May 7). Response: Rule learning by seven-month-old infants and neural 
networks. Science, 284, 875. 

Marcus, G. F., Vijayan, S., Bandi Rao, S., & Vishton, P. M. (1999, January 1). Rule learning by 
seven-month-old infants. Science, 283, 77-80. 



FAMILIARIZATION TO ARTIFICIAL SENTENCES     30 

 

Mareschal, D., & French, R. M. (1997). A connectionist account of interference effects in early 
infant memory and categorization. In Proceedings of the 19th annual conference of the 
Cognitive Science Society (pp. 484-489). Mahwah, NJ: LEA. 

Mareschal, D., & Shultz, T. R. (1999). Development of children's seriation: A connectionist 
approach. Connection Science, 11, 149-186.  

McClelland, J. L., & Plaut, D. C. (1999). Does generalization in infant learning implicate 
abstract algebra-like rules? Trends in Cognitive Sciences, 3, 166–168.  

Negishi, M. (1999a, April 16). Do infants learn grammar with algebra or statistics? Science, 284, 
433.  

Negishi, M. (1999b). Rule learning by seven-month-old infants and by a simple-recurrent-
network [Online]. Retrieved April 16 from the World Wide Web: http://www.cns-
web.bu.edu/pub/mnx/sci.html 

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.  

Oakes, L. M., & Cohen, L. B. (1990). Infant perception of a causal event. Cognitive 
Development, 5, 193-207.  

Oshima-Takane, Y., Takane, Y., & Shultz, T. R. (1999). The learning of first and second 
pronouns in English: Network models and analysis. Journal of Child Language, 26, 545-575. 

Pinker, S. (1997). How the mind works. New York: Norton.  

Pinker, S. (1999, January 1). Out of the minds of babes. Science, 283, 40-41.  

Plunkett, K., & Marchman, V. (1993). From rote learning to system building: Acquiring verb 
morphology in children and connectionist nets. Cognition, 48, 21-69.  

Plunkett, K., & Marchman, V. (1996). Learning from a connectionist model of the acquisition of 
the English past tense. Cognition, 61, 299-308.  

Price, P.J. (1980). Sonority and syllabicity: Acoustic correlates of perception. Phonetica, 37, 
327-343. 

Quartz, S. R, & Sejnowski, T. J. (1997). The neural basis of cognitive development: A 
constructivist manifesto. Behavioural and Brain Sciences, 20, 537-596. 

Quinn, P. C., & Eimas, P. D. (1996). Perceptual organization and categorization in young 
infants. Advances in Infancy Research, 10, 1-36.  

Sanger, D. (1989). Contribution analysis: A technique for assigning responsibilities to hidden 
units in connectionist networks. Connection Science, 1, 115-138.  

Seidenberg, M. S., & Elman, J. L. (1999, April 16). Do infants learn grammar with algebra or 
statistics? Science, 284, 433. 

Selkirk, E. O. (1984). On the major class features and syllable theory. In M. Aronoff & R.T. 
Oehrle (Eds.), Language sound structure (pp. 107-136). Cambridge, MA: MIT Press. 

Shastri, L. (1999, September 10). Infants learning algebraic rules. Science, 285, 1673.  



FAMILIARIZATION TO ARTIFICIAL SENTENCES     31 

 

Shastri, L., & Chang, S. (1999). A spatiotemporal connectionist model of algebraic rule-learning. 
TR-99-011. International Computer Science Institute, Berkeley, CA. [Online]. Retrieved 
September 10, 1999 from the World Wide Web: www.icsi.berkeley.edu/~shastri/babytalk 

Shultz, T. R. (1998). A computational analysis of conservation. Developmental Science, 1, 103-
126.  

Shultz, T. R. (1999). Rule learning by habituation can be simulated in neural networks. 
Proceedings of the Twenty-first Annual Conference of the Cognitive Science Society (pp. 
665-670). Mahwah, NJ: Erlbaum.  

Shultz, T. R., & Bale, A. C. (2000). Infant familiarization to artificial sentences: Rule-like 
behavior without explicit rules and variables. Proceedings of the Twenty-second Annual 
Conference of the Cognitive Science Society (pp. 459-463). Mahwah, NJ: Erlbaum. 

Shultz, T. R., Mareschal, D., & Schmidt, W. C. (1994). Modeling cognitive development on 
balance scale phenomena. Machine Learning, 16, 57-86. 

Sirois, S., Buckingham, D., & Shultz, T. R. (2000). Artificial grammar learning by infants: An 
auto-associator perspective. Developmental Science, 4, 442-456. 

Sirois, S., & Shultz, T. R. (1998). Neural network modeling of developmental effects in 
discrimination shifts. Journal of Experimental Child Psychology, 71, 235-274. 

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain 
Sciences, 11, 1-74. 

Sokolov, E. N. (1963). Perception and the conditioned reflex. New York: Pergamon.  

Vroomen, J., van den Bosch, A., & de Gelder, B. (1998). A connectionist model for bootstrap 
learning of syllabic structure. Language and Cognitive Processes, 13, 193-220. 


