
69 

  

Abstract—We study three types of learning with Bayesian 

agent-based modeling. First, we show that previous results 

obtained from learning chains can be generalized to a more 

realistic lattice world involving multiple social interactions. 

Learning based on the passing of posterior probabilities 

converges to the truth more quickly and reliably than does 

learning based on imitation and sampling from the environment; 

and the latter method gets closer to the truth than does pure 

imitation. The passing of posterior probability distributions can 

be viewed as teaching by explanation, and as an implementation 

of the cultural ratchet, which allows rapid progress without 

backsliding. We also show that evolution selects these learning 

strategies in proportion to their success. However, if the 

environment changes very rapidly, evolution favors the imitation-

plus-reinforcement strategy over the more sophisticated posterior 

passing. Implications for developmental robotics, human 

uniqueness, and interactions between learning and evolution are 

discussed. 

 
Index Terms—Agent-based modeling, Bayesian learning, 

cultural ratchet, evolution.  

I. INTRODUCTION 

he division between humans and other animals has often 

been framed in terms of communication. What separates 

humans from animal social groups may be cultural 

transmission, and the fidelity with which it allows information 

to be transmitted between individuals [1]. Sophisticated human 

communication, seemingly unavailable to other species, 

creates a ratchet effect, whereby the perpetuation of existing 

knowledge prevents backsliding and new discoveries enable 

further refinement. This allows individuals to benefit not only 

from their own experience, but also from the cumulative 

knowledge of countless peers and ancestors. In short, the 

wheel or the light bulb need only be invented once, and most 

revisions are likely to be improvements. The effectiveness of 

such learning strategies has implications for other domains as 

well. For instance, robots that are designed to learn from 

humans or each other may also benefit from an emphasis on 

theory learning and transmission, as opposed to the sharing of 

low-level data. 
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Here we present computer simulations that extend previous 

research on learning strategies in simple linear chains to a 

more complex two-dimensional lattice structure. We find that 

more sophisticated strategies lead to more effective learning, 

and are selected by evolution in most cases, although a simpler 

strategy is favored if the environment changes too rapidly.  

A. Cultural Transmission and Other Social Learning 

Human cultural transmission stands apart from other social 

learning methods by being closely tied to the concept of a 

theory of mind [1]. In other kinds of social learning, an animal 

acquires information that is in some way influenced by the 

social environment. This can be as simple as a child following 

its parent to a food source. Cultural transmission differs in that 

it involves some attempt at grasping or adopting another’s 

perspective. To amend the previous example, the parent might 

draw the child’s attention to the fact that the food source is in 

close proximity to water. In this latter case, it is not simply the 

idea that food is here that is conveyed; it is also the 

understanding that such food can be found near water, and 

there are good causal reasons for that association. In other 

words, cultural transmission involves not just the 

communication of environmental data, but also of a theory 

which can be used to predict it [2]. The ratchet effect is 

therefore an exercise in theory-building, which relies on a 

deeper understanding of the problem in question to make 

gradual and beneficial changes to that understanding. 

Fortunately, these ideas have proven amenable to both 

mathematical and empirical analysis. In particular, agent-based 

modeling and psychological experimentation support the 

notion that cultural transmission is unique in enabling the 

ratchet effect [3]. Like humans, the Bayesian agents employed 

in these simulations are rational in that they attempt to 

maximize their performance on the task that they are assigned. 

B. A Previous Agent-Based Model 

Bayes’ rule is a mathematical formulation intended to 

capture how probabilities change with new data. Each agent 

adopts what can be thought of as a theory of the world. In 

actuality, this is a set of probabilities p(h) which describe the 

extent to which a series of hypotheses h ∈ H are thought to be 

true. As new data d are acquired, the probability of a given 

hypothesis may change. For instance, consider an agent whose 

task is to predict whether or not it will rain tomorrow. The 

hypotheses h1 and h2 may be characterized as it will rain 

tomorrow and it will not rain tomorrow, respectively. The 

agent may begin by assuming that rain is highly unlikely: the 

p(h1) value it assigns is low, and p(h2) is high. But what 
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happens if it does end up raining the next day? On the basis of 

this one day of experience, the assumption that rain is highly 

unlikely becomes implausible. The agent thus updates its p(h1) 

to a higher value, its p(h2) to a lower value, and it becomes 

more likely to predict rain in the future.  

Formally, Bayes’ rule is written as 
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where p(h|d) is the probability of a hypothesis h given data d. 

This is referred to as the posterior probability, and it varies 

directly with the likelihood of the data given the hypothesis 

p(d|h) and the prior probability of that hypothesis p(h). 

Intuitively, the more the data and the hypothesis disagree, the 

less credible the hypothesis becomes. The denominator is 

simply a normalizing term, which ensures that the sum of the 

posterior probabilities remains constant.  

In this earlier work, a chain of Bayesian agents was tasked 

with solving a function approximation problem [3]. An agent 

would begin with some set of p(h) values that comprise a prior 

theory about the function, and then interact with its 

predecessor using Bayes’ rule. This process would then be 

repeated, with the successor acting as the predecessor for the 

next agent in the chain.  

These chains of agents were divided into three conditions, 

each of which used a distinct learning strategy. The chain 

process was initialized by allowing the first agent to sample 

data directly from the environment, which produced data in 

accordance with the true hypothesis h*. All agents also shared 

a prior distribution – a default p(h) value for each hypothesis 

h. This can be thought of as a set of innate dispositions or prior 

assumptions about the problem, and is common to all agents.  

C. Imitation 

The pure iterated learning model was used to represent the 

simplest form of social learning: imitation. Here, the only data 

available to the i
th

 agent is the behavior of its predecessor. In 

terms of Bayes’ rule, the probability that an agent assigns to a 

hypothesis is updated during an interaction using  

 ( ) ( ) ( )iiiii hphdpdhp || ∝  (2) 

where p(di|hi) is the likelihood of the data produced by the 

predecessor given the hypothesis, and p(hi) is the prior 

probability of that hypothesis. Such an interaction is akin to a 

child observing where its parent searches for food. Because no 

new environmental data is ever collected, the probability 

assigned to any hypothesis p(h|d) asymptotically approaches 

the prior p(h).  

While each agent learns something by observing its 

predecessor, the chain of agents ultimately falls back on its 

innate assumptions to fill in the blanks, since those provide the 

most consistent information. Given enough repetitions of this 

process, each agent’s behavior becomes indistinguishable from 

that of an agent following its intuitions without reference to 

any external data. As in the popular telephone game, whatever 

knowledge was acquired from the environment by the first 

agent in the chain is rapidly lost. 

D. Imitation-plus-Reinforcement 

A slight improvement to the previous learning method is the 

mixed data strategy, here called imitation-plus-reinforcement. 

In this case, every interaction with an agent’s predecessor is 

augmented by data from the environment. An intuitive 

example might be a child not only observing where its parent 

searches for food, but also finding some food on its own. In 

Bayesian terms, an interaction updates the probability an agent 

ascribes to a hypothesis using   

 ( ) ( ) ( ) ( )iiiiiiii hphdphdpddhp ||,| **
∝  (3) 

where the new term p(di*|hi) is the likelihood of the data 

produced by the environment given the hypothesis. Although 

each agent learns something from the environment as well as 

from its predecessor, this learning still builds upon the agent’s 

innate assumptions. More formally, while new data d and d* 

are obtained during each interaction, p(h) remains constant, 

making this agent chain incapable of cumulative cultural 

evolution. Instead, the prior’s strong influence ensures that the 

average probability assigned to each hypothesis p(h|d) 

approaches ∑d* p(h|d*) p(d*|h*), a point between the prior and 

the correct value.  

In short, the behavior of an imitation-plus-reinforcement 

agent is a combination of its predecessor’s behavior, its own 

sampling of the environment, and its own predispositions. 

Over time, the latter two factors become dominant, and each 

agent’s behavior asymptotically approaches that of a naïve 

Bayesian agent which has sampled the environment once. The 

entire process leads to agents which are about as 

knowledgeable as the first agent in the chain.  

E. Posterior Passing 

The final learning strategy employed was called posterior 

passing. This was intended to represent cultural transmission. 

In addition to information from the predecessor and the 

environment, the agent also adopts its predecessor’s posterior 

distribution as its prior. In effect, an agent’s innate 

assumptions about the problem are supplanted by the previous 

agent’s theory of the world. The probability of a hypothesis is 

thus determined by   

 ( ) ( ) ( ) ( )11
** |||,| −−∝ iiiiiiiii dhphdphdpddhp  (4) 

where p(hi-1|di-1) is the preceding agent’s posterior probability. 

Intuitively, an agent no longer learns from scratch, but rather 

from where its predecessor left off.  

This is akin to possessing a theory of mind, and might again 

be exemplified by a parent leading a child to a food source and 

then calling attention to the fact that water is nearby. Not only 

does the child learn where the food is, but also that, in the 

parent’s estimation, water predicts food. Thus, a sort of food-

search theory is transmitted from parent to child. This faithful 

preservation and gradual improvement of knowledge yields a 

ratchet effect, with the probability assigned to each incorrect 

hypothesis asymptotically approaching 0, and the probability 

assigned to the true hypothesis asymptotically approaching 1. 

A posterior-passing agent’s learning is a combination of its 

predecessor’s behavior and understanding of the problem, and 
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its own sampling of the environment. Given enough time, each 

agent’s knowledge becomes entirely consistent with the true 

state of the world. In other words, the agent chain solves the 

problem. Such a cultural ratchet effect relies on a rather 

sophisticated and powerful style of communication.  

F. Some New Questions 

Again, these chain phenomena were demonstrated in both 

simulations and psychological experimentation [3]. The results 

opened the door to additional, closely-related questions. For 

instance, although an agent chain is a useful abstraction, such a 

model of social interaction is also quite unrealistic. Because 

social learning is rarely as simple as a series of one-to-one 

interactions comprising a linear chain, it is reasonable to ask 

whether these results would generalize to a multidimensional 

lattice where agents are able to interact with multiple 

predecessors. We were also interested in how agents adopting 

different learning strategies would behave if they were 

intermixed and then exposed to evolutionary forces. If an 

agent’s ability to solve the assigned problem determines 

reproductive fitness, then which learning strategy would be 

favored, and to what extent? Moreover, how would a rapidly 

or slowly changing environment upset this balance? In short, 

using Bayesian agent-based modeling, we sought to analyze 

these three learning strategies in an evolutionary context. 

II. METHODS 

A. The Problem 

In our simulations, Bayesian agents are faced with the 

problem of choosing a location to search for food. There are 

four locations L1-L4, only one of which can be searched. At 

each time step, three incorrect locations contain a modest 

amount of food, while one correct location L* contains an 

abundance of food. An agent’s theory of the world is the set of 

probabilities it assigns to four hypotheses h1-h4, each of which 

corresponds to one of the locations. Any given hypothesis hi 

may be characterized as stating that location Li probably has 

the most food. More formally, a hypothesis hi assigns a 

probability of 0.55 to Li = L* and a probability of 0.15 to Lj = 

L*, for each j ≠ i. At any given time step, L* is determined by 

sampling one of the four hypotheses. The sampled hypothesis 

is called the true hypothesis h*. Any agent assigning a 

probability p(h*) of 1 to the correct hypothesis, and a 

probability p(h) of 0 to every other hypothesis can be said to 

have solved the problem, and to possess a perfect theory. In 

our simulations, h1 was always the correct hypothesis. The sole 

exception was in cases where the true hypothesis was dynamic, 

and thus subject to regular change. 

B. The Method 

An agent decides which location to search for food via a 

two-stage process. First, it selects a hypothesis. The 

probability of a hypothesis being adopted is directly 

proportional to how probable the agent believes that 

hypothesis to be. Next, the selected hypothesis is sampled to 

determine which location will actually be searched. For 

instance, if an agent assigns p(h1) a value of 0.9, then there is a 

0.9 probability that h1 will be selected as that agent’s 

hypothesis. If h1 is in fact selected, then the agent has a 0.55 

chance of searching L1 and a 0.15 chance of searching each of 

the other three locations. 

Upon its creation, each agent is assigned a set of prior 

probabilities, with p(h1) = p(h2) = p(h3) = p(h4) = 0.25. That is 

to say, agents are innately predisposed to find each hypothesis 

to be equally probable. 

C. Learning 

Each simulation begins with all agents sampling the 

environment using Bayes’ rule. At every subsequent time step, 

each agent is replaced by a successor, which interacts with its 

predecessors prior to being placed. Every such interaction is 

multidirectional and involves both the agent’s immediate 

predecessor (parent) and all four of that predecessor’s von 

Neumann neighbors. Each agent interacts only once, though 

this interaction yields an average of the five posteriors that 

would have resulted from interacting with each predecessor 

individually. This process permits an agent to integrate 

information from multiple sources without allowing the order 

of interactions to marginalize any of those influences. In effect, 

every agent’s knowledge is molded by a small and localized 

community, with each of the five predecessors contributing 

equally. The precise nature of an interaction is determined by 

the agent’s learning strategy. Imitators acquire only behavioral 

data, whereas imitation-plus-reinforcement agents add 

environmental data, and posterior-passing agents also take 

their predecessor’s theory as their prior. 

D. The World 

All simulations are conducted using a 48 by 48 torus filled 

with 2304 agents. A torus is equivalent to a lattice where each 

edge is connected to the corresponding edge on the opposite 

side. Represented three-dimensionally, this yields a donut-

shaped world. This configuration ensures that the world is 

continuous in all directions, giving each agent an equal number 

of neighbors – a common simplifying assumption in space-

based simulations [4]. Each model is populated with agents of 

the appropriate type, then iterated over 1000 time steps, with 

each step representing a new generation of agents. All 

reproduction is asexual. 

E. Evolution and Learning 

In our later models, biological evolution is simulated by 

making an agent’s reproductive success dependent on its 

ability to search the correct location. First, each agent is 

assigned a fitness value between 0 and 1. Then, for each 

position in the lattice, both the occupant and its von Neumann 

neighbors are considered. Of these five agents, one is 

randomly selected to create an offspring which will fill the 

current position at the next time step. The probability of being 

chosen is proportional to the agent’s fitness, meaning that if 

one neighbor has a fitness of 1.0 and another has a fitness of 
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0.5, then the former is twice as likely to produce an offspring 

in that location. As a result, each agent may potentially 

produce anywhere from 0 to 5 children. 

An agent’s fitness is determined by two factors. The first is 

the base fitness rate. This is the fitness value that each agent is 

created with, and is set to 0.5 in all cases. The other is whether 

or not the agent in question searches the correct location. If it 

does, it is rewarded by an increase in fitness of 0.5. These 

factors reflect the fact that even incorrect locations will yield a 

modicum of food and thus increase the potential for 

reproduction. Finding an overabundance by searching the 

correct location is highly advantageous however, and will 

double the agent’s reproductive odds. 

Note that a child will typically retain its parent’s learning 

strategy. Each strategy can be thought of as corresponding to a 

particular allele of the same gene. As such, there exists the 

possibility of mutation, whereby a child adopts a learning 

strategy that differs from that of its parent. In our evolutionary 

models, a mutation rate of 0.005 was fixed. 

III. RESULTS 

A. Moving to a Lattice 

Our first three simulations involved populating lattices with 

agents of a single type. We produced an imitation model, an 

imitation-plus-reinforcement model, and a posterior-passing 

model. Results in each case are averaged over 5000 

independent runs. 

In the imitation case, agents converged asymptotically on a 

theory of the world that matched their prior expectations. 

Specifically, each hypothesis’ posterior probability p(h|d) 

rapidly approached its prior probability p(h). This can be seen 

in Fig. 1, which shows the mean posterior probabilities as a 

function of time. 

 

 
Figure 1. Mean posterior probabilities p(h|d) with imitation learning. These 

agents’ theory of the world quickly converged to their prior expectations. The 

change in probabilities from time step 0 to time step 1 represents the 

initialization procedure, where agents sample the environment directly. 

 

In the case of the imitation-plus-reinforcement agents, all 

posterior probabilities p(h|d) approached ∑d* p(h|d*) p(d*|h*), 

a set of values which lie partway between the agents’ prior 

expectations and the truth. In other words, each agent’s 

behavior remained that of a naïve Bayesian agent sampling the 

environment for the first time, as shown in Fig. 2. 

 

 
Figure 2. Mean posterior probabilities p(h|d) with imitation-plus-

reinforcement. A theory partway between the agents’ prior expectations and 

the truth was maintained following the initial sampling of the environment. 

 

Finally, in the posterior passing case, agents gradually 

adopted the true hypothesis h* to the exclusion of all others. 

More formally, p(h*|d) approached 1, while p(h|d) for all 

other hypotheses trended towards 0. This is illustrated in 

Fig._3, where the mean posterior probability is plotted for the 

first 20 cycles. 

 

 
Figure 3. Mean posterior probabilities p(h|d) with posterior passing. These 

probabilities asymptotically approached their ideal values, signaling a correct 

solution. 

B. Evolution and Learning Interactions 

Rather than studying each learning strategy independently, 

our next model intermixed agents of all three types. Such 

heterogeneity in and of itself significantly influences an 

agent’s effectiveness. With access to the behavior of more 

knowledgeable agents, pure imitation becomes a considerably 

more successful strategy, allowing these agents to make 

genuine, though limited progress in solving the problem. 

Imitation-plus-reinforcement agents obtain similar benefits 

from interacting with their posterior-passing counterparts, 

whereas the posterior-passing agents’ efficacy suffers slightly, 

due to their exposure to peers whose theories are less accurate 

than their own. 

The original proportions of the three agent types were equal, 

and the initial spatial distribution was randomly determined. 

Finally, natural selection and evolution were introduced. 
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Unlike in our previous models, our interest here is the 

frequency of each learning strategy. By observing the changes 

in their relative proportions over time, we can see which 

strategy might be favored by evolution, and to what extent. To 

this end, the mean proportions of each agent type over 1000 

evolutionary cycles are plotted in Fig. 4. These results are 

averaged over 250 independent runs. 

 

 
Figure 4. Mean proportions of each agent type over 1000 cycles. Line 

thickness represents standard error. Posterior-passing agents quickly occupy 

the majority of the world. 

 

In order to probe the effects of a changing environment on 

evolutionary trends, our final model introduced a new 

parameter. The rate of change of the environment reflects the 

number of iterations that must pass before a new correct 

hypothesis h* is selected. We found that the shorter the period 

between such changes, the more successful imitation-plus-

reinforcement agents became relative to posterior-passing 

ones. This trend is illustrated in Fig. 5.  

 

 
Figure 5. Mean proportions of agents of each type, with standard error, after 

1000 cycles as a function of rate of environmental change. The faster the true 

hypothesis h* changes, the more successful imitation-plus-reinforcement 

agents become relative to posterior-passing ones. 

IV. DISCUSSION 

A. Summary of Results 

By employing Bayesian agent-based modeling, we showed 

that previous results with agent chain simulations of social 

learning generalize to a more complex and realistic two-

dimensional lattice. By intermixing agents of various types, we 

also obtained data suggesting that cultural transmission, as 

opposed to other, simpler social learning, is favored by 

evolution. This conclusion comes with a caveat however, since 

we also found that the more straightforward imitate-and-

sample strategy is superior under rapid environmental change. 

B. The Weakness of Pure Imitation  

Across our simulations, pure imitation proved to be an 

ineffective learning strategy. Merely copying the behavior of 

others is not enough to compete against peers with direct 

access to environmental data. The strength and consistency of 

the prior distribution ensures that these agents cannot converge 

on the correct hypothesis, even when interacting with more 

accurate agents. Simply put, imitation alone is too limited to 

allow mastery of this particular problem. 

C. Better Learning Strategies 

Of greater interest are the imitation-plus-reinforcement and 

posterior-passing strategies. Because their learning mechanism 

is so powerful, one might expect posterior-passing agents to 

easily dominate. However, our results suggest that this is not 

always the case. In most instances, the imitation-plus-

reinforcement agents’ ability to duplicate the behavior of their 

posterior-passing neighbors enables improved performance. 

Conversely, posterior-passing agents are somewhat impeded 

by their interactions with less knowledgeable agents, which 

further narrows the gap between these two strategies. 

Moreover, for very dynamic problems, a stronger learning 

mechanism can be a liability. If rapid environmental change 

modifies the rules according to which food is distributed, then 

the high fidelity with which a now-incorrect theory is 

transmitted will often leave an agent in a worse position than if 

it had no outside information at all. In such cases, the 

imitation-plus-reinforcement strategy is superior. Because their 

learning is shallower, these agents react more quickly to new 

environmental conditions. 

While the ratchet effect may lead to superior learning that 

even bystanders can benefit from, posterior passing is not a 

universally optimal strategy. In highly dynamic environments, 

adaptability offers an advantage. In such cases, complex 

problems are better approached with a more superficial 

understanding, which allows for both adequate behavior and 

faster recovery when that understanding fails. 

D. Should Developmental Robotics Consider Evolution? 

Developmental robotics is typically concerned with how a 

robot's control system changes through learning and 

development. Such concerns are usually seen as distinct from 

the sister subfield of evolutionary robotics, which employs 

populations of robots that evolve over time according to 

artificial natural selection and even genetic crossover [5].  

However, it is worth noting that biologists view 

development as the key link between genotype and phenotype 

and one of the most important challenges in contemporary 

biology [6]. If developmental robotics wants to know which 

abilities should be built into robots as a basis for future 
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learning and development, our results suggest that the role of 

evolution should not be ignored. In nature, learning strategies 

are complex, and do not arise in a vacuum. They probably 

evolve, and in turn affect the course of evolution by changing 

the environment in which natural selection occurs. For 

instance, as a social environment alters, previously mediocre 

learning strategies may become more effective, allowing 

exploitation of their other advantages. Paradoxically, 

intermixing stronger learners with weaker ones may thus lead 

to more resilient groups, despite the decline in individual 

ability. Though dissimilar from the machine learning concept 

of boosting [7] in that group performance is also diminished, 

such phenomena illustrate the surprising benefits of 

introducing theory sharing into a more biologically plausible 

heterogeneous population. Whether adopted exclusively, or 

within a small segment of a larger group, cultural transmission 

can be a powerful tool. 

One might also imagine that developmental robotics could 

potentially offer insights into how development links genotype 

to phenotype. It is often more effective to study evolution and 

learning in simulation experiments than in nature, from sparse 

evolutionary records. Like many aspects of robotics, such 

approaches will likely be more feasible in software than in 

physical robots, but this may well change in the future.  

E. What Was the Human Spark? 

Much recent effort has been directed to the question of what 

makes humans unique [8]. What was the evolutionary spark 

that set humans so far apart from other species? Along with 

others [1, 2, 8], we suggest that the ability to transmit 

information in a ratchet-like fashion is a reasonable candidate 

for such a spark. Until very recently, the cultural ratchet effect 

has been outside the realm of rigorous scientific study. Now, 

rather suddenly, we have a formal scientific treatment of the 

cultural ratchet [3], in the form of passing, from agent to agent, 

posterior probability distributions for hypotheses and theories 

that explain how phenomena in the world seem to work.  

Our research builds on this insight by studying cultural 

transmission in the context of spatial realism and natural 

selection. Here, evolution selects a social learning strategy 

based on posterior passing, except when the environment 

changes so rapidly that it is more efficient for many agents to 

get by with copying and sampling. Our results also offer 

insight into another aspect of posterior passing: its ability to 

indirectly benefit bystanders. 

Although other mammals conform to Bayes’ rule in 

conditioning experiments [9], it seems likely that the effective 

communication of theories would require a powerful and 

flexible language. So, there may well turn out to be a cluster of 

human abilities, involving social inclinations and skills, theory 

of mind, and language, that enable the cultural ratchet. 

Much more remains to be discovered about these 

phenomena. How robust are these effects and what parameter 

variations govern their appearance? Can the computation and 

passing of posterior probabilities be implemented in a more 

realistic way, perhaps with neural networks? To what extent 

can learning and development alter the course of evolution?  

F. Is Cultural Transmission Rational? 

Because Bayes’ rule can be mathematically derived, it is 

typically considered to be an optimal and rational solution to 

induction, inference, and learning [9]. However, concern has 

been raised about whether cognition is always so rational [10]. 

Now that our current results suggest that evolution generally 

favors Bayesian learning, a number of puzzling new questions 

emerge about rationality. 

Biological evolution itself is not particularly optimal in its 

solutions. It often produces pretty good contraptions, rather 

than excellent designs [11], and serious tradeoffs that, while 

enabling organisms to reproduce, eventually kill them [6]. 

Curious then that our simulations show that evolution favors a 

mathematically provable inference-and-learning device like 

Bayes’ rule. Perhaps significantly, such reasoning is not 

universally adopted by our agent population. 

Like other evolutionary simulations [12], ours does not 

actually create Bayes’ rule from scratch – rather it selects a 

designed Bayesian allele over other, less sophisticated, also-

designed alleles. Bayesian inference and learning in 

psychology simulations use this same select-from-available-

designs strategy [10]. More interesting simulations may 

eventually show us how evolution creates solutions out of less, 

and what role those solutions play within communities, as well 

as at the individual level. 

REFERENCES 

[1] M. Tomasello, A. Kruger, and H. Ratner, "Cultural learning," 

Behavioral and Brain Sciences, vol. 16, pp. 495-552, 1993. 

[2] R. Boyd and P. J. Richerson, "Rationality, imitation, and 

tradition," in Nonlinear dynamics and evolutionary economics, R. 

H. Day and P. Chen, Eds. Oxford: Oxford University Press, 1993. 

[3] A. Beppu and T. L. Griffiths, "Iterated learning and the cultural 

ratchet.," in Proceedings of the 31st Annual Conference of the 

Cognitive Science Society, N. A. Taatgen and H. v. Rijn, Eds. 

Austin, TX: Cognitive Science Society, 2009, pp. 2089-2094. 

[4] M. A. Nowak, Evolutionary dynamics. Cambridge, MA: Harvard 

University Press, 2006. 

[5] S. Nolfi and D. Floreano, Evolutionary robotics: The Biology, 

Intelligence, and Technology of Self-Organizing Machines. 

Cambridge, MA: MIT Press. 

[6] S. C. Stearns and R. F. Hoekstra, Evolution: an introduction. 

Oxford: Oxford University Press, 2005. 

[7] R. E. Schapire, "The boosting approach to machine learning: An 

overview," in MSRI Workshop on Nonlinear Estimation and 

Classification, 2001. 

[8] M. Tomasello, "How are humans unique?," in New York Times 

Magazine, 2008. 

[9] J. B. Tenenbaum, T. L. Griffiths, and C. Kemp, "Theory-based 

Bayesian models of inductive learning and reasoning," Trends in 

Cognitive Sciences, vol. 10, pp. 309-318, 2006. 

[10] T. R. Shultz, "The Bayesian revolution approaches psychological 

development," Developmental Science, vol. 10, pp. 357-364, 

2007. 

[11] S. J. Gould, The panda's thumb. New York: Norton, 1980. 

[12] T. R. Shultz, M. Hartshorn, and A. Kaznatcheev, "Why is 

ethnocentrism more common than humanitarianism?," in 

Proceedings of the 31st Annual Conference of the Cognitive 

Science Society, N. A. Taatgen and H. v. Rijn, Eds. Austin, TX: 

Cognitive Science Society, 2009, pp. 2100-2105. 

Montrey, M., & Shultz, T. R. (2010). Evolution of social learning strategies. Proceedings of the Ninth IEEE International 
Conference on Development and Learning (pp. 95-100). Ann Arbor, MI: IEEE. 




