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This article presents a novel computational framework for modeling cognitive develop-
ment. The new modeling paradigm provides a language with which to compare and
contrast radically different facets of children’s knowledge. Concepts from the study of
machine learning are used to explore the power of connectionist networks that construct
their own architectures during learning. These so-called generative algorithms are
shown to escape from Fodor’s (1980) critique of constructivist development. We de-
scribe one generative connectionist algorithm (cascade-correlation) in detail. We report
on the successful use of the algorithm to model cognitive development on balance scale
phenomena; seriation; the integration of velocity, time, and distance cues; prediction of
effect sizes from magnitudes of causal potencies and effect resistances; and the acquisi-
tion of English personal pronouns. The article demonstrates that computer models are
invaluable for illuminating otherwise obscure discussions.

Computational developmental psychology is at the crossroads of what may
at first appear to be two completely separate domains. Developmentalists
wonder at the relevance of a discipline that draws on the tools of machine
learning and computer science. How can computer models help to under-
stand the complexities of a child developing in the real world? What simi-
larities can there be between an infant exploring its new world and a
machine trying to master an artificially created environment? Similarly,
cognitive scientists and researchers in traditional artificial intelligence have
tended to ignore developmental issues. Adult thought processes are compli-
cated enough: Why should these problems be further clouded by the added
task of trying to understand how cognition develops?

This work was funded in part by a scholarship from the Fonds pour la Formation de
Chercheurs et I'aide 2 la Recherche (Quebec) and the Medical Research Council (UK),
awarded to Denis Mareschal, and by a grant from the Natural Sciences and Engineering
Research Council of Canada to Thomas R. Shultz. We thank David Buckingham, Jamie
Henderson, and Michael Thomas for comments on an earlier version of the article.

Correspondence and requests for reprints should be sent to: Denis Mareschal, Department
of Psychology, Exeter University, Washington Singer Laboratories, Perry Road, Exeter, EX4
4QG, UK. E-mail: dmaresch@singer.exeter.ac.uk.

571



572 Mareschal and Shultz

This article challenges both these views. Computational developmental
psychology is the product of a rich cross-fertilization. Nowhere is that more
evident than in the study of cognitive development. Like many others (e.g.,
Boden, 1980; Karmiloff-Smith, 1992; Mehler & Dupoux, 1994; Rutkowska,
1993), we believe that studying development is a necessary part of any
project that attempts to understand thinking. A developmental analysis
accounts for how one level of competence can lead to another level (Boden,
1982). This defines constraints that, rather than confusing the issues, prune
off sterile hypotheses and point to a smaller subset of plausible ones.

The value of computational modeling to the understanding of cognitive
development has also been argued for elsewhere (e.g., Boden, 1989; Klahr
& Wallace, 1976; Papert, 1963, 1980; Rutkowska, 1987; Shultz, 1991; Simon
& Halford, 1995). Computer modeling provides a means of testing hypothe-
ses over and above empirical work with children. Two clear advantages are
the ability to test the self-consistency of a theoretical framework and the
ability to work out the complex empirical implications of a given situation
(Lewandowsky, 1993). Trying to formulate a developmental theory precisely
enough to implement it as a computer program is in itself a learning expe-
rience because it forces the modeler to identify and evaluate the relevant
environmental dimensions of the problem as well as the nature of any innate
knowledge requirements.

Once a framework has been sufficiently refined, all the computer works
out are the implications of a specified set of starting conditions. Any incon-
sistencies are made immediately obvious. In this way, the robustness of the
framework’s underlying assumptions can be tested. Results of the simula-
tion can sometimes suggest empirical predictions to be evaluated with chil-
dren. A successful computational model can tie together a large body of
seemingly inconsistent data. This is often the case in developmental studies
that have seen a sharp increase in empirical evidence, but little in the form
of an overarching explanatory framework.

The primary purpose of this article is to present a novel framework for
modeling cognitive development across a large number of task domains. The
cascade-correlation generative connectionist algorithm (Fahlman & Le-
biere, 1990) was initially developed as a learning algorithm for applied
computer science purposes. However, we believe it is ideally suited for
investigating children’s cognitive development in natural domains. Learning
occurs not just through observation, but also through an increase in the
system’s representational resources. This has clear implications for cognitive
development.

The presentation of this new framework proceeds in two steps. First, we
present theoretical arguments delimiting the ability of these types of sys-
tems to learn novel concepts. Second, we review an extensive array of task
domains that have been successfully mastered by the learning algorithm.
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These practical implementations sometimes lead to empirical predictions
that have been or are being investigated. The appropriateness of the ap-
proach we are describing can also be evaluated by the resulting empirical
work with children. '

Perhaps the most immediate advance of the work reported here is that it
constitutes a specific mechanistic description of how cognitive development
can occur in the child. Most developmental research has focused on struc-
tural descriptions of a child’s competence at any particular time but has said
little about the underlying transition mechanisms (Beilin, 1994; Sternberg,
1981). This work attempts to redress that imbalance.

By applying a single mechanism to a wide range of well-established real
world problem-solving tasks (the balance scale problem; seriation tasks;
integration of velocity, time, and distance; and the identification of reference
in the use of personal pronouns), this work also provides the beginnings of
a unifying framework that embraces results across a number of divergent
task domains. Indeed, a comparison of the different parameter settings and
environmental biases required to complete the modeling exercises provides
a common language with which to compare and contrast development on
these tasks. Tasks that were designed to address radically different facets of
a child’s knowledge are seen to be intrinsically related in the way that
information is gathered and processed.

Finally, the nature of the cascade-correlation learning algorithm argues
for the plausibility of constructivist development. The models lend support
to the argument that a system can develop by building more powerful
representations out of previous representational structures. In its strongest
reading, this modeling paradigm serves to refute Fodor’s (1980) criticisms of
constructivist development. Constructivism has come under attack from
those more inclined toward nativism. They have argued that constructivism
is an implausible approach because it is impossible to increase the repre-
sentational power of any computational system (Bloom & Wynn, 1994;
Fodor, 1975, 1980). Moreover, recent infant studies scem to be pointing to
greater complexity in infant competence, suggesting that infants do possess
very complex concepts almost immediately (e.g., Baillargeon, 1993; Spelke,
1994). We maintain that there are valid reasons for sustaining a belief in the
constructivist hypothesis. Those reasons are supported and illustrated by
computer models that constitute explicit counterexamples to the noncon-
structivist positions.

A secondary purpose of this article (although no less important in our
minds) is to illustrate the role of computational modeling in any develop-
mental debate. Computational models can and do play a critical role in
evaluating debates arising from developmental theory. To illustrate this
point, we elaborate our arguments against the background of the debate
between constructivists (such as Piaget) and nativists (such as Fodor).
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Throughout the article, we discuss computational models that illustrate the
different theoretical positions, thereby providing a concrete vehicle for
evaluating those positions. Ultimately, we demonstrate that the computa-
tional approach is not as ominous as it may initially appear. It is well worth
the time investment of becoming familiar with the discourse and techniques
of the paradigm. Even very simple models can lead to unexpected results
and clarifications.

Throughout the article, we use results from machine learning theory.
These concepts are not just applicable to machines that learn, but to any
physical system that learns. In other words, the results reported here are also
applicable to human learning. The work developed by machine learning
theorists about the limitations of the learnable and the computational re-
sources required for learning have direct implications for the type of learn-
ing, the feasibility of learning, and the rate of learning in children. It is also
our belief that importing these concepts into the study of cognitive develop-
ment will inevitably result in a fertile source of future research and a better
elucidation of how children make sense of the world we live in.

AN ILLUSTRATIVE ISSUE: CONSTRUCTIVISM

Kant’s constructivist approach suggested a marriage between nativists and
empiricists (Russell, 1961; Scruton, 1982). Knowledge was seen as having
form and content. Content is acquired when interacting with the world.
Form is the initial organizational structure that humans are endowed with
at birth; it allows perceptual information to be cut up into meaningful
categories that thus permit learning about the world. Initial knowledge
includes an understanding of time, space, quantity, and causality. We con-
struct our understanding of the world as these forms acquire content.

Piaget followed in this constructivist tradition (e.g., Piatelli-Palmarini,
1980; Siegler, 1986). He claimed that the learning process was bootstrapped
by the innate presence of sensorimotor schemas. These are a form of knowl-
edge structure that fuse together perceptual and motor experience. Through
repetition, these structures are internalized and hierarchically integrated to
form the basis of a more powerful representational system. Thus, according
to Piaget, the child evolves through a series of progressively more powerful
representational systems.

These ideas continue to resound in the works of contemporary neo-
Piagetians (e.g., Case, 1985; Fischer, 1980; Fischer & Bidell, 1991) and even
in the works of theorists who are usually placed in opposition to Piaget (e.g.,
Gelman, 1991). Yet strong arguments have been voiced claiming that
Piaget’s theory of development is inadequate, if not impossible. Perhaps the
most striking of these objections is the paradox raised by Fodor (1980).
Fodor’s bottom line was that there is no known learning system that can



Generative Connectionist Networks 575

develop new, more powerful representations. This argument is still advanced
in the current literature (e.g., Bloom & Wynn, 1994).

Fodor’s argument relies on the idea that, in order for a new concept to be
learned, the organism must be able to represent it so as to learn its domain
of applicability. But if that concept can be represented, then the concept
must already be available to the organism. The corollary of this line of
argument is that only concepts that are somehow combinations of protocon-
cepts already available to the system can be learned. Thus, it is impossible
to increase one’s representational power. In a sense, learning just renders
explicit a conceptual system that was inherent from the beginning.! Clearly,
if Fodor’s argument holds, then constructivist development cannot exist.

To illustrate Fodor’s point, it is helpful to consider Drescher’s (1991)
computational model of infant sensorimotor development. Drescher picked
up where Piaget left off and suggested a precise mechanism by which
development could occur. The mechanism is implemented as part of a
simulated organism in a microworld. Knowledge is stored in the form of a
three-part action schema. The actions are fixed from the start and represent
motor primitives comparable to the abilities of an infant. The context and
result parts of the schema are progressively filled in as the organism discov-
ers contingencies in its environment through the execution of an action.
What is respectively stored in these registers is a summary of relevant
aspects of the world before and after the action has been carried out. The
context does not, therefore, describe a necessary set of conditions for the
action to be carried out. Rather, it describes a hypothetical state of the world
wherein if the action were to be carried out, the result part of the schema
would become a true description of the world. Hence, the organism acquires
knowledge in the form of counterfactual assertions that link environmental
context to actions and perceptual consequences.

Drescher (1991) split learning into the two subtasks of identifying the
relevant features and then identifying the necessary features for an event to
occur. This so called “marginal attribution” mechanism is based on detecting
significant changes in the probability of occurrence of an event. If the
probability of occurrence significantly changes from its base rate, then the
environmental context is deemed to be relevant. If several relevant contexts
or results are discovered, new sibling schemas are created, each schema
corresponding to a distinct context or result.

When an unreliable action schema is found to be locally consistent (in
that it gives rise to the same results for a brief period of time), a new

1This argument should not be confused with the trivial claim that all data-driven learning
systems are constrained by the raw sensory information they receive from the environment.
Fodor’s point is that the conceptual system will never increase in power from learning alone.
By default, therefore, any increase in power would be due to some as yet unspecified innate
mechanisms.
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synthetic token is created to represent the still unknown feature of the
environment that will make the schema reliable. These tokens pick out
aspects of the environment that are either independent of perception or that
the infant has not yet learned to coordinate in its perceptual and motor
schemas. The proliferation and linking of these synthetic tokens supposedly
leads to the emergence of a representation of external objects existing
independently of perception.

At first sight, the results of this modeling are encouraging. The organism
builds an intramodal network of sensory actions in each of the visual, tactile,
and proprioceptive modes by chaining together action schemas. Moreover,
it begins to construct intermodal schemas, thereby learning to coordinate
two different sensory modes. However, the system does not progress very
far along the Piagetian road of cognitive development (never quite reaching
the concept of object), and where it does succeed, it does not seem to have
been following the road map descibed by Piaget.

Even though the simulated micro-organism is endowed with a mecha-
nism for recombining its knowledge elements, it fails to generate a more
powerful representational system. In fact, it fails to generate a repre-
sentation of permanent objects precisely because it cannot increase its
representational power. Its knowledge remains bound to the perceptual
input. This is because it has no means (in its initial state) of representing
nonperceptually bound information. Even the synthetic items are perceptu-
ally bound in the sense that they are temporary fillers for a not fully
understood environmental context. These schemas are replaced by more
reliable perceptual schemas when they become available. Thus, the best that
this model could hope to achieve is to elaborate a complex network of
sensorimotor information. In the sections that follow, we describe a more
appropriate approach to modeling.

THE CONNECTIONIST MODELING APPROACH

The first step of any computational approach is to identify a set of modeling
tools appropriate for investigating the issue in question. In this case, connec-
tionist methods are the ideal tool for modeling the development of cognitive
processes because learning and development in connectionist networks
depend on both the internal state of the system and the external state of the
environment. Connectionist networks are profoundly interactivist in nature.
Hence, this paradigm argues for a renewed focus on interactive processes in
cognitive development (Bates & Elman, 1993; Karmiloff-Smith, 1993;
Plunkett & Sinha, 1992).

When first approaching connectionism, one may be a little put off by the
apparent complexities of its mathematical formalisms. The presentation in
this section is not meant to be rigorous, but rather, to give the reader a
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sufficient grasp of the paradigm to evaluate the arguments we present later
in the article. Interested readers may wish to consult Rumelhart and
McClelland (1986) or Hertz, Krogh, and Palmer (1991) for excellent intro-
ductions to the more formal aspects of connectionist modeling. The key
concept behind connectionist information processing is the idea of collec-
tive computation. The overall behavior of a network is not determined by
any single element in it. Instead, it is a holistic approach in which the
behavior of the network emerges as a result of the behavior of all its
constituent parts. An analogy that may help to visualize this process is to
think of a school of fish swimming in the sea. The overall undulation and
flow of the school cannot be attributed to the swimming patterns of any
single fish. It arises out of the complex interactions between all of the fish
in the school. Similarly, the computational results of a network arise out of
the complex interactions of the simple computations carried out by the
elements of the network. It is the changing global behavior of the network
that is taken to model the child’s development.

A network is made up of simple units (Figure 1a). Each unit attends to
the information being fed into it, and if it identifies a signal (that informa-
tion exceeds some critical amount), then it emits a signal as well. Otherwise,
the unit remains at its resting level of activation. The processing in any single
unit is independent of the processing carried out by its neighbors.

Information flows between the units along weighted communication
lines. It is the relative strengths of these weights that determine the global
behavior of the network. If the weights change, the behavior changes. As a
result, the network can adapt its behavior by changing its weights. Learning

Output units

Input units

a. b.

Figure 1. Two connectionist networks. Solid lines represent weighted communica-
tion lines and circles represent simple processing units. 1a shows a generic, unstruc-
tured network. 1b shows a network with six output, three hidden, and five input
units.
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in the network occurs by slowly changing the weights until the global
behavior has reached some desired state.

Suppose now that some of the units receive information from the envi-
ronment (input units) and other units send messages to the environment
(output units; Figure 1b). The network can then learn to interact with the
environment. More important, the units inside the network (hidden units)
process the information flowing from the input units. As a result, activation
across the hidden units collectively forms an internal re-representation of
input information. A straightforward extension of this idea is to consider a
network that is not actually interacting directly with the environment, but
that is a specific module inside a larger system. The labeling of the units
remains the same, but the input units now receive information from some
other module, and the output units now send information out to some other
module. The hidden units are now those units internal to the module across
which is formed a collective re-representation of the information having
entered the module. Moreover, there is no inherent reason why there cannot
be more than one layer of hidden units with complicated connectivity
between the layers. A large part of modeling with static connectionist net-
works (networks that have a fixed number of units and connections) is to
identify an appropriate architecture for the task being modeled. Note, fi-
nally, that because all weights in the network can be changed, the learning
of a task consists of learning an appropriate internal representation (adjust-
ing the weights between the input units and the hidden units) and learning
how to exploit that internal representation (adjusting the weights between
the hidden units and the output units).

In typical networks, the amount of input entering a hidden unit is com-
puted as the sum of the weighted activations of the units feeding into it:

X, =Xaw, €))
7

where X; is the net input to (hidden) unit j, g; is the activation of sending
unit j, and w;; is the connection weight between units i and j. The net input
to the hidden unit is then passed through a nonlinear squashing function:

-1 _
¥; = 05 )
where y; is the resulting activation of (hidden) unit i, e is the base of the
natural logarithm, and X is the net input to that same unit i given by
Equation 1.

The activation function described in Equation 2 and plotted in Figure 2
is typically called a sigmoid function. It describes how a single unit’s re-
sponse depends on the total amount of activation being fed into it. The
response is nonlinear; the activation of this unit is not proportional to the
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Figure 2. Plot of the sigmoid activation function in Equation 2. Units with such an
activation function remain off until their net input exceeds a threshold.

signal it is receiving. In fact, this response is very similar to a threshold
mechanism. When the net input is below a critical threshold zone, the unit
remains at its resting level. If the net input continues to increase, it eventu-
ally reaches a threshold zone in which very small changes in input produce
large changes in activation. Increasing the input even more (past the thresh-
old zone) leads to no further activation changes. Hence, the unit tends to be
either active or inactive. It is this quasibinary behavior of the unit that allows
it to recode (or re-represent at a microcomputational level) the information
fed into it. It is no longer possible to retrieve the exact nature of the input
from the unit’s activation level.

Connectionist networks with a fixed architecture (static connectionist
networks) have been used to model vocabulary growth in children
(Plunkett, Sinha, Moller, & Strandsby, 1992), performance on the balance
scale task (McClelland, 1995), and the development of object permanence
behaviors in infancy (Mareschal, Plunkett, & Harris, 1995). A full discussion
of the range of tasks that have been modeled with static connectionist
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networks, and their implications for child development, can be found else-
where (Elman, Bates, Karmiloff-Smith, Parisi, & Plunkett, 1996; Plunkett,
Karmiloff-Smith, Bates, Elman, & Johnson, in press).

REPRESENTATIONAL CAPACITY OF A NETWORK

Because information in a network is internally re-represented across the
hidden units, it seems intuitively plausible that the network’s repre-
sentational capacity is directly related to the number of hidden units it has.
A number of mathematical proofs exist that explore different networks’
abilities to represent certain relationships (e.g., Hornik, Stinchcombe, &
White, 1989). We focus on Cybenko’s (1989) proof because of its straightfor-
ward geometric interpretation. Cybenko’s theorem states that a particular
neural network architecture can be used to approximate arbitrarily well
almost any input to output mapping (the underlying function must be
bounded, i.e., all of its values must be finite). The proof of this theorem is
rather involved, but essentially boils down to the following argument.

First, this theorem is limited to feedforward networks with a single layer
of hidden units (e.g., Figure 1b). The weights in the network can take on any
positive or negative value. The activation of the input units is determined by
the input stimulus. The activation of each hidden unit is determined by a
nonlinear monotonic function of its input and resting threshold. An example
of such a function is the sigmoid function (Figure 2), but many others also
satisfy the requirements of the theorem. The activation of an output unit is
simply the weighted sum of the activation leading into it. Each output unit
is superimposing scaled responses from the hidden units that fire in different
areas of the input domain according to their threshold and the sign of the
weights leading into them from the input units.

The threshold determines the midpoint at which there is a transition
between the low state and the high state in the unit’s activation. In Figure 2,
the threshold is equal to 0. Modifications in the threshold result in moving
the activation curve in Figure 2 back and forth along the input axis, thereby
changing the total amount of weighted input required to invert the unit’s
state. Note that changing the sign of the threshold and the weights from the
input units results in swapping the areas of the input domain that corre-
spond to a high state with those that correspond to a low state (e.g., +0.5 in
the negative input region and —0.5 in the positive input region for the
function in Figure 2). In this case, the threshold would now determine a
transition from a high state to a low state of activity.

What Cybenko (1989) did was to show that such a system can approxi-
mate any response function at the outputs arbitrarily well, simply by increas-
ing the number of hidden units. That is, any response can be produced at a
particular output unit by superimposing a sufficient number of finely bal-
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anced sigmoid functions. Figure 3 shows how this can be done. The curve in
Figure 3a represents the response function to be approximated. Curves 3b
through 3d show three sigmoid functions implemented by three successive
hidden units. Finally, the curve in Figure 3e shows the result when those in
3b, 3¢, and 3d are added together (by an output unit) with the appropriate
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Figure 3. Approximation of a response function by superposition of sigmoid func-
tions. The curves in b, ¢, and d are added to give an approximation (¢) to the target
function (a).
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scaling weights. Clearly, the sum is not exactly the same as the target func-
tion, but finer detail could be obtained by adding in more sigmoid functions.

A network is limited in the number of functions it can implement, and
the precision with which it can implement them, by the number of hidden
units available to it. In the rest of this article, we discuss a special class of
networks called generative connectionist networks. These networks in-
crease their number of hidden units during learning. From what we have
seen, it is clear that networks that increase the number of hidden units
during learning increase their representational capacity during learning.
This has direct implications for modeling cognitive development.

LEARNING REFORMULATED

Fodor’s (1980) argument about the impossibility of constructivism suggests
the need for a precise formulation of what is learnable—that is, a precise
formulation of what constitutes learning so that the limits of what can be
learned by a particular method can be defined. Within the domain of ma-
chine learning, Valiant (1984a,1984b) presented a framework that explicitly
addresses the acquisition of concepts. His learnability theory tries to estab-
lish the limits of the learnable. Learning itself is taken only to be the gradual
self-driven acquisition of new knowledge.

Valiant (1984a, 1984b) argued that the study of learning involves identi-
fying a learning procedure and investigating the class of concepts that the
procedure can learn within a feasible time. For computational reasons,
Valiant suggested that a feasible time scale is polynomial time. The number
of time steps required to learn a concept is some polynomial function of the
parameters in the learning procedure. That is, the time required to learn a
concept is a finite sum of higher order terms of a parameter in the learning
procedure (e.g..time = 2 + 3n + 5n2 + n3, where n is the number of weights
in a network). This can be contrasted with the longer exponential time in
which the number of time steps is some exponential function of the parame-
ters. One advantage of limiting ourselves to studying concepts learned in
polynomial time is the property of additivity. If two separate concepts can
be learned, each in polynomial time, then learning some combination of
these concepts can also be learned (in polynomial time) because adding
together the time requirements for each step still produces a polynomial
function of the parameters in the learning procedure. In other words, if it is
possible to learn all the separate parts of a task in a feasible time, then it is
also possible to learn the whole task in feasible time.

Valiant’s (1984a, 1984b) second idea was to consider only probabilistic
learning procedures. Learning happens through experience with examples
of a concept. The examples are encountered according to some probability
distribution determined by the environment. A teacher provides a signal
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specifying whether a particular encounter is an example of the concept.
However, the teacher’s information does not have to be perfect. It can be
erroneous on a small proportion of examples. Under these conditions, Val-
iant presented a mathematical proof showing that such learning procedures
are able to acquire a concept that has a high probability of closely approxi-
mating a target concept. This is sometimes referred to as Probably Approxi-
mately Correct (PAC) learning.

His formal proof assumed that the world is represented by a set of
features with binary values (e.g., present or absent). A system is then said to
have learned a concept if it can recognize almost all the examples of the
concept in the environment (i.e., it has implemented an appropriate re-
sponse function). An exemplar is described by a critical finite set of features
(common to all exemplars) as well as an unlimited number of irrelevant
features. Learning a concept consists in identifying the relevant and ignoring
the irrelevant features of the concept. Learning is feasible because only the
values of the relevant features have to be attended to.

The probabilistic formulation of learning makes it possible to define
highly convergent learning. An exhaustive search of the universe is not
required. This distinguishes the approach from the traditional machine
learning ones in which concepts are induced from insufficient information.

In summary, the core of Valiant’s work implies that feasible learning must
occur within reasonable temporal bounds and is probabilistic in that it can
always misclassify examples of a concept. At the end of learning, there is a
high probability that the concept learned is approximately the target con-
cept.

GENERATIVE ALGORITHMS CAN LEARN ANY
LEARNABLE RELATIONSHIP

As noted earlier, connectionist networks with a single layer of hidden units
can approximate arbitrarily well any input to output relationship given
enough hidden units (Cybenko, 1989). In terms of learning, a problem arises
because the more units there are in the network, the more weights there are
in the network and, hence, the longer it takes to find an appropriate solution
(if one can be found). In other words, although it can be shown theoretically
that there exists a network that can reproduce any desired behavior, it is not
clear that this network can be found or that the behavior can be learned by
the network in feasible time.

Baum (1989) showed that by limiting our interests to input-output rela-
tionships that are learnable in polynomial time (as in Valiant’s framework),
it is always possible to find a connectionist network that will learn any such
relationship. The structure of his argument is simple, although the details
involve complex principles of graph theory. The first part of the argument is
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to show that any representation of a target relationship produced by any
learning algorithm can also be implemented by a connectionist network in
polynomial time. In other words, if a solution can be found by any means
available, then that solution can be implemented as a neural network in
polynomial time. Call this the implementation step. The second part of the
argument makes use of Valiant’s definition of learnable: Learnable concepts
are those concepts learnable in polynomial time. Although we may not
know how to learn the concept, we know that a procedure exists for learning
the concept. Call this the learning step. It follows that any learnable concept
can be acquired by a network that first uses an appropriate algorithm (the
learning step) and then maps the resulting solution onto a corresponding
network architecture (the implementation step). Because both steps in this
process occur in polynomial time, their sum also occurs in polynomial time
(cf. the foregoing additivity property in the description of polynomial time).
Hence, the procedure made up of these two steps will satisfy Valiant’s time
requirement.

This awkward procedure is not the most natural way of training a net-
work, but it does show that there exists at least one way for a neural network
to learn any learnable relationship. The key is that the procedure has to be
able to construct an appropriate architecture. In this broad sense, the family
of generative neural networks defines a class of universal learners capable
of learning any learnable concept (by Valiant’s criteria). Baum’s work pro-
vides an existence proof but it does not point to a specific learning mecha-
nism.

GENERATIVE ALGORITHMS ESCAPE FODOR’S PARADOX

In light of these arguments, Quartz (1993) suggested that generative connec-
tionist algorithms afford a means of escaping from Fodor’s paradox. Clearly,
because a network’s representational power increases as the number of
hidden units increases, generative algorithms increase their representational
power through learning. There are functions that cannot be implemented by
a smaller network but can be implemented by one containing additional
units.2

Before moving on, we must point out two caveats to Quartz’s argument.
First, real implementations have limited resources. As a result, networks

21t could be argued that for Fodor, a system is fixed, such that the network at time (f) with
(n) hidden units is not the same system as the network at time (¢t+?) with (n+1) hidden units.
However, such a static definition of a system is very unlike biological systems. Moreover, this
cannot be said of generative networks with a fixed total number of potential units to recruit in
reserve. These units are part of the system even before they are installed, but do not contribute
to computations carried out by the system. Hence, the system still develops through periods of
increased computational power as the units are brought into the network.
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cannot continue adding hidden units indefinitely and therefore do have an
upper bound to the complexity of the concepts they can learn. In this
restricted sense, the set of achievable concepts is determined at the onset of
learning.

Secondly, Molenaar (1986) suggested that even static networks can es-
cape from Fodor’s paradox if a different measure of representational power
is used. To understand Molenaar’s suggestion requires a bit of a conceptual
side-step. The key idea is that he is not discussing the power of feedforward
networks as we have done so far. Rather, he is interested in describing the
behavior of self-organizing networks of the type described by Grossberg
(1982). These networks resemble the unstructured networks in Figure 1la.
Activation flows in all directions rather than only forward. Structured oscil-
lations can arise from the complex interactions of the units in these net-
works. Molenaar pointed out that these cycling patterns can arise and be
modified as part of the learning process (i.e., as a result of small changes in
the weights of the network). This, according to Molenaar, is a form of
development in static networks that can escape Fodor’s paradox.

The learning theory arguments described in the previous sections are all
encouraging as to the potential power of generative algorithms, but they
leave unanswered the question of a precise mechanism. In short, they pro-
vide a framework in which to deal with learning but reveal little about real
world applications of that learning. To answer the question of how these
ideas bear on the development of children’s cognitive skills, specific mecha-
nisms must be proposed, explored, and tested. Hence, we turn now to the
description of a specific generative algorithm: cascade-correlation.

THE CASCADE-CORRELATION ALGORITHM

Cascade-correlation is a generative learning algorithm for connectionist
networks (Fahlman & Lebiere, 1990). Like other generative algorithms,
cascade-correlation constructs its own network topology during learning by
adding new hidden units. There are two alternating, recurrent phases in
cascade-correlation: an output phase in which the connection weights going
into output units are adjusted in order to reduce the network’s performance
error and an input phase in which new hidden units are selected and in-
stalled in the network. The name cascade-correlation stems from the way
that new hidden units are recruited and installed. In the input phase, the
candidate hidden unit whose activations come to correlate best with the
network’s current error is selected for installation. Selected hidden units are
installed into the network in a kind of cascade, such that each new hidden
unit receives input from the input units and from any previous hidden units.

In this section, we provide a reasonably detailed description of the cas-
cade-correlation algorithm. The level of detail illustrates the nature of the
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precision with which one can specify the mechanisms involved in develop-
ment. Details are discussed in terms of unit activations, the output phase, the
input phase, and weight adjustment.

Computing Unit Activation

When a pattern of input activation is presented on the input units of a
cascade-correlation net, that activation is passed forward to any hidden
units and eventually to the output units. Effectively, each hidden and output
unit examines its inputs and decides how active it is going to be. These
properties are characteristic of many real neurons and can be computation-
ally critical for the successful operation of artificial neural nets such as those
created by the cascade-correlation algorithm. In most cases, hidden and
output units have sigmoid activation functions, as described in Equation 2.

There is an option in cascade-correlation for output units to have linear
activation functions. A linear activation function would mean that the net
input to a receiving unit, as given in Equation 1, is directly translated into
the receiving unit’s activation. Such a linear activation function would be
useful for output units that need to represent quantitative, as opposed to
qualitative, values. The idea is to predict the amount of the output instead
of whether the output is present or absent.

Unless otherwise specified, all our cascade-correlation models use hid-
den and output units with sigmoid activation functions. Occasionally, when
learning quantitative rather than qualitative functions, they employ output
units with linear activation functions.

The Output Phase

The output phase of cascade-correlation is characterized by adjusting the
output-side weights of input and hidden units in order to reduce the net-
work’s error. The output-side weights are those connection weights leading
into output units. The network’s error is computed as the discrepancy be-
tween the network’s predictions and what actually occurs in the environ-
ment. The network’s prediction is specified by a pattern of activation across
the output units. The actual environmental result is given by a target pattern
of activation across the output units. More formally, error (E) is

E= ;%(Aop— TOP)Z ©)

where Ao, is the computed activation of output unit o on pattern p and T,,
is the target activation for that unit on that pattern. A pattern is a particular
pair of input and output activation values. A set of many such pattern pairs
defines the learning environment of a cascade-correlation model.

The cascade-correlation algorithm tries to improve a network’s predictive
ability by minimizing E. This is done by adjusting all of the output-side con-
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nection weights. The method for such minimization is discussed later in more
detail (see the Weight Adjustment section). For now, notice that the informa-
tion that drives learning is more than just a binary reinforcement signal of
right or wrong. Like many other feedback-driven connectionist algorithms,
cascade-correlation requires the presentation of a fully specified target,in the
form of the complete, required pattern of activations across the output units.
In many cases of cognitive development, the assumption of the availability of
such full information is warranted. The target (7)) represents the way the en-
vironment actually appears to the child. The output activation (A,) repre-
sents the child’s prediction of what the environment would look like, for
example, after some transformation is applied. Learning is then a matter of
minimizing the absolute discrepancy between expectations and outcomes.

A cascade-correlation network begins life as a set (whose number is speci-
fied by the modeler) of only input units and output units initially connected
with randomly chosen weights (Figure 4a). Error reduction through weight

Figure 4. Three generic cascade-correlation nets. Input units are at the bottom,
output units at the top. Modifiable connections are represented by dashed lines and
nonmodifiable connections are represented by solid lines. 5a and 5c represent out-
put phases in which only output-side weights are being adjusted. Sb represents an
input phase in which two candidate hidden units are being trained and evaluated for
their ability to detect network error.



588 Mareschal and Shultz

adjustment proceeds until either E stagnates or some specified number of ep-
ochs pass without the problem having been learned. An epoch is a sweep
through all of the input—output training patterns. At this point, because E is
no longer being reduced, or if too much time has elapsed without the algo-
rithm having learned to solve the problem, there is a shift to the input phase to
increase the net’s representational power by recruiting a new hidden unit.

The Input Phase

During the input phase, connection weights leading into the output units are
temporarily frozen so that they can no longer change (cf. Figure 4b). An arbi-
trary number (eight, by default) of candidate hidden units are connected with
random weights from the input units and any existing hidden units. The
weights leading to each candidate unit (input weights) are then adjusted to
maximize the absolute value of the modified correlation (C) between the ac-
tivation of that unit and the error at the output units, across all patterns:

33l tea(e)
23 (e e))

where A, is the activation of the candidate hidden unit for pattern p, <h>
is the mean activation of the candidate hidden unit for all training patterns,
e,p is the error at output o for training pattern p, and <e,> is the mean error
at output o for all the training patterns.

Input training continues until C stagnates or a specified maximum number
of epochs has elapsed. At this point, the candidate unit with the largest C is
installed into the network, and all other candidate units are discarded. The
input weights to the newly installed hidden unit are then frozen so that they
can no longer change, and the new hidden unit is allowed to send output to all
of the output units. The algorithm returns to the output phase with the added
power of a new hidden unit that is particularly good at detecting the net-
work’s current error. Note that, thanks to the correlation training mechanism
of the candidate hidden units, the new unit has been specifically trained to
encode (or internally re-represent) some feature of the input (the environ-
ment) that still leads to error in the network’s performance.

“

Weight Adjustment

Both input and output phases require that connection weights be adjusted.
In the input phase, this weight adjustment is in the service of maximizing the
correlations between candidate hidden unit activations and the residual
network error. In the output phase, the weight adjustment is in the service
of minimizing network error. The weight adjustment algorithm is the same
in both phases of cascade-correlation. It is called quickprop (Fahlman,
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1988), because it is much quicker than back-propagation (the conventional
technique for training multilayered static networks). The main reason for
the added speed is that quickprop uses second- as well as first-order infor-
mation to adjust weights. An overview of quickprop is provided here in the
context of error minimization.

The network’s error, given in Equation 3, can be viewed as a function of
each weight in the network. The assumption is that there is an optimal value
for each weight in order to minimize error. That is, the weight cannot be
either too large or too small for the error to be minimized. It is assumed that
in the neighborhood of the current weight value the function approximates
a parabola with arms opening upward (Figure 5). A parabola, like any
function, is at a minimum (or maximum) when its first derivative is 0. The
exact shape of the function in Figure 5 is unknown, but the slope at any
particular value of X; for sigmoid units may be computed as:

_0E _0dEJdA dx _ (7 _ -

slope S =34 ax 3w (T — A)(05 — A)A)a, )
where A is a computed output activation, T is the corresponding target out-
put activation, and g; is the activation of sending unit j.3 If Equation 5 com-
putes a negative slope (corresponding to a downward slope), then we know
that the weight is too small and we must increase the weight to continue re-
ducing error. But if Equation 5 computes a positive slope (corresponding to
an upward slope) then we know that the weight is too large and must be de-
creased to continue reducing error (see Figure 5). The amount of weight
change is proportional to the slope, so the magnitude of the weight change is
larger on a steeper slope than on a smaller slope. A general problem with us-
ing only slope information, however, is that we do not know exactly how big a
weight change to make. If the slope is changing rapidly, then we should be
cautious and not rely too much on the current measurement of the slope.
Conversely, if the slope is not changing or is changing very slowly, then we can
be more confident that the current measurement of the slope is repre-
sentative of that region of the weight space. When being cautious it is more
appropriate to make small weight changes, whereas when being confidentitis
more appropriate to make large weight changes.

Fahlman’s (1988) solution in quickprop was to supplement first-order
slope information with the second derivative of error with respect to weight,
also known as curvature. Curvature is an index of how fast slope changes
with respect to changes in weight. The more the curvature, the faster the
slope changes as weight changes. Curvature can be estimated as

3An advantage of using sigmoid (and asigmoid, and hyperbolic tangent) activation func-
tions, as opposed to other nonlinear activation furictions, is that their slopes can usually be
expressed as a simple combination of the original activation function.
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Figure 5. A hypothetical curve relating network error to the size of a connection
weight. The learning algorithm tries to find a set of optimal-sized connection weights
to minimize network error.

c=—2 ©)
W, — W,
where c is curvature of the error function, s; is the slope at Time 1, s, is the
slope at Time 2, w; is the weight at Time 1, and w, is the weight at Time 2,
and where Time 1 and Time 2 are two consecutive steps in time. In simple
words, the quickprop algorithm uses the slopes and weights of the error
function at two separate epochs, the current epoch and the previous to
estimate curvature; that is, curvature is estimated as the amount of slope
change per weight change.
The weight adjustment is then computed as

S _ s, (w,— wy) )
c 5= 8,
where Aw is the connection weight adjustment, s, is the current slope, and ¢
is curvature as defined in Equation 6. In other words, weight adjustment is
a direct function of slope and an inverse function of curvature. As in the
back-propagation algorithm, we increase weight when the slope is negative
and decrease weight when the slope is positive, and we make a larger weight
change on a steeper slope. But we now also make a larger weight change

dw =



Generative Connectionist Networks 591

with a smaller curvature and a smaller weight change when the curvature is
large. A steep slope signals that we are not yet near the error minimum. A
smaller slope signals that we should make a small weight change because we
may be approaching the error minimum. In either case, slope is scaled by the
curvature. The more such derivative information that we have about the
error function, the more rapidly we can alter weights to reach the minimum
error. This presentation of quickprop is still somewhat simplified. There are
complications to deal with the first epoch of weight change and other
computational considerations (see Fahlman, 1988, for more detail).

A PSYCHOLOGICAL INTERPRETATION OF
CASCADE-CORRELATION

How are these mathematics and this computational machinery related to
psychological processing and cognitive development? One way to answer
this question is to compare cascade-correlation with what is perhaps the
most prominent psychological model of cognitive development, Piaget’s
(1977) adaptational model. Piaget held that the child develops cognitively
by adapting to the environment. Piaget further specified that adaptation has
two contrasting poles: assimilation and accommodation. In assimilation, the
child transforms external information so that it fits into her or his existing
knowledge structures. In accommodation, the child transforms her or his
internal knowledge structures so that they fit external information. Both
assimilation and accommodation are supposed to occur to some degree in
every cognitive encounter, but there are times when one aspect dominates
over the other. Often they occur in recurring phases, for example, attempted
assimilation, accommodation, and successful assimilation. Assimilation and
accommodation have long been considered interesting ideas about cogni-
tive development, but their operation was never adequately specified in
Piagetian theory (Boden, 1980, 1982).

We have argued that assimilation corresponds to a situation in which a
network more or less successfully generalizes to patterns it has not been
trained on (Shultz, Schmidt, Buckingham, & Mareschal, 1995). This happens
when the novel patterns are sufficiently similar to patterns that the network
has already learned. The contrasting process of accommodation corre-
sponds to the network having to alter its underlying structure by recruiting
new hidden units. Such underlying structural changes provide the net with
representational power that it previously lacked, allowing it to represent
and process novel patterns without error.

We also argued that cascade-correlation provides a way to think about
the intermediate process of assimilative learning, which Piaget had no way
of conceptualizing (Shultz et al., 1995). Assimilative learning would presum-
ably occur when the child learns new material without undergoing drastic
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cognitive change. Not every piece of learning should require a qualitative
structural change or increase in representational power. In cascade-correla-
tion, assimilative learning would occur through the process of quantitative
adjustment of connection weights, as it occurs in the output phase, without
the recruitment of any new hidden units.

Because these processes have a precise mathematical and computational
interpretation in cascade-correlation, they are now sufficiently specified
that they can be investigated more thoroughly and systematically than in the
past.

CASCADE-CORRELATION MODELS OF COGNITIVE
DEVELOPMENT

We turn next to a brief review of some cascade-correlation models of
cognitive development. A detailed description of the dynamics of the net-
works within the different task domains can be found in the articles dedi-
cated to each of the models. Successful models have so far included balance
scale phenomena; seriation; the integration of velocity, time, and distance
cues; prediction of effect sizes from the magnitudes of causal potencies and
effect resistances; and acquisition of English personal pronouns.

Balance Scale

In the balance scale task, a child is presented with a rigid beam on which a
number of pegs have been placed at different distances to the left and right
of a fulcrum. The experimenter places some number of equally valued
weights on a peg on the left side and on a peg on the right side. The child’s
task is to predict what will happen when supporting blocks are removed.
Will the scale tip to the left, to the right, or will it balance?

Siegler (1976, 1981) found that children progress through four distinct
rule-based stages on this task between the ages of 5 and 17 years of age.
Children in Stage 1 predict outcomes on the basis of how many weights have
been placed on each side. In Stage 2, children continue to use weight
information and begin to use distance information when the two sides have
equal weights. By Stage 3, they are using weight and distance about equally,
but become confused when one side has greater weight and the other side
has greater distance. In the final Stage 4, children perform correctly on a
wide range of balance scale problems, suggesting to some that they may be
using the so-called torque rule. The torque on one side is product of weight
and distance. The torque rule would involve computing and comparing the
torques on each side of the fulcrum.

The four-stage sequence of performance on the balance scale has been
simulated in cascade-correlation nets, as has the so-called torque difference
effect (Ferretti & Butterfield, 1986), wherein balance scale problems with
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large torque differences are easier for children to solve than problems with
small torque differences (Shultz, Mareschal, & Schmidt, 1994; Shultz &
Schmidt, 1991). The torque difference is the absolute difference between the
torque on one side and the torque on the other side.

These cascade-correlation networks were trained to solve balance scale
problems with five weights and five pegs on each side of the fulcrum. Of the
625 possible balance scale problems of that size, 100 were randomly selected
for the initial training set. Balance scale problems were described on the
input units in terms of the number and position of the weights on each side
of the fulcrum. The behavior of the scale (tip left, tip right, or balance) was
described as targets for the output units. There was a strong bias in the
training set in favor of so-called equal distance problems in which the
weights were placed at equal distances from the fulcrum, but with varying
numbers of weights. This reflects the assumption that, although children
have many experiences in lifting different numbers of objects, and noticing
that more objects create more torque, they have relatively little experience
at placing objects at differing distances from a fulcrum (McClelland, 1989).
In each epoch of training a new balance scale problem was randomly
selected, with the same bias toward equal distance problems, and added to
the training set. This reflects the assumption that children gradually encoun-
ter more instances of the problem being learned.

Diagnosis of network behavior mimicked the way such diagnosis is done
with children, by examining the pattern of performance across six different
types of balance scale problems (Siegler, 1976, 1981). These test problems
were selected independently from the training problems and were balanced
for torque difference so as to provide a clearer diagnosis of rule following.

Previous models of balance scale performance had failed to capture Stage
4 and did not attempt the torque difference effect. Indeed, the torque differ-
ence effect seems particularly awkward for symbolic rule-based models of
the balance scale because such rules are typically sensitive to the direction of
weight and distance differences but not to their amounts (Langley, 1987;
Newell, 1990; however, see Schmidt and Ling, 1996, for a possible solution to
this problem). Even a connectionist model of the balance scale failed to
reach a stable Stage 4 level of performance (McClelland, 1989), and it is
noteworthy that this model involved a static, rather than a dynamically
generated, network topology. McClelland’s static network model is able to
capture the torque difference effect, but it does require hidden units segre-
gated for weight versus distance information in order to capture the proper
stage progressions (McClelland, 1995; Schmidt & Shultz, 1991).

Seriation
The four stages of development on Piaget’s (1965) seriation task have also
been simulated with cascade-correlation nets (Mareschal & Shultz, 1993). In
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the seriation task, the child is asked to sort by length a set of sticks of
different lengths that are arranged in a random fashion. In Stage 1, children
move the sticks about randomly or seem unable to make any move. In Stage
2, children sort a few sticks, but seem unable to complete the entire array.
By Stage 3, they achieve a complete sort by a trial and error process, where
moves often have to be corrected. Finally, in Stage 4, children complete a
full sort without errors, by using a systematic procedure such as moving the
smallest out of order stick to its correct position.

The seriation simulations also managed to capture well-known percep-
tual effects on seriation tasks such as the tendency for seriation difficulty to
increase with decreases in size differences among the sticks (Elkind, 1964;
Kingma, 1984). A novel prediction was generated when it was discovered
that cascade-correlation nets did better with more disordered arrays. This
prediction was subsequently confirmed with young children, who were
found to also have relatively more difficulty choosing a move when the
array became less disordered (Mareschal & Shultz, 1996).

Modular networks were required to learn to seriate and to capture the
relevant psychological phenomena. One cascade-correlation nét was
trained to select the stick to be moved, and another cascade-correlation net
was trained to insert the stick in its correct position. Both modules received
the same input, namely the current configuration of the array of sticks.
Current positions of the different length sticks were coded on the input
units. The position of the stick to be moved was coded on the output units
of the which module, and the position to which a stick should be moved was
coded on the output units of the where module.

The networks were trained and tested on arrays of six different lengths.
Small biases in the training set toward smaller and nearly ordered arrays
produced the best results. It is reasonable to assume that smaller arrays are
more likely to occur in the child’s environment than large arrays, and that
nearly ordered arrays are more likely to elicit an attempt to finish the sort
than are highly disordered arrays. During testing, after an array was pre-
sented to the network and a move computed and executed, the resulting
new array was presented as input. Sorting continued in this way until the
sort was completed or a move was repeated. This corresponds to the child
doing a sort on the table, rather than in his or her head. In other words, it is
not necessary for the child to remember the position of each stick; it is only
necessary to look at the current array and make a move and to keep doing
this until the sort is finished. Seriation stages in the networks were diag-
nosed just as they are with children.

Rule-based models have had much worse luck capturing seriation phe-
nomena. They did succeed in modeling the systematic nature of seriation
performance at each of the four stages, but did not manage transitions
between stages, perceptual effects, or the variation typical of children’s
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seriation performance (e.g., Baylor, Gascon, Lemoyne, & Pothier, 1973;
Young, 1976).

Velocity, Time, and Distance

Cascade-correlation nets have also simulated rule-based stages in the inte-
gration of velocity, time, and distance information (Buckingham & Shultz,
1994). In classical physics, velocity = distance/time. Thus, distance 15 veloc-
ity X time,and time = distance/velocity. Given the task of learning to predict
one dimension (e.g., velocity) from knowledge of the other two (e.g., time and
distance), nets typically progressed through an identity stage (e.g., velocity =
distance), followed by an additive stage (e.g., velocity = distance + time),
and finally the correct multiplicative stage (e.g., velocity = distance/time).
Many of these stages have been found with children (Wilkening, 1981), and
others remain as predictions for future psychological research, for example,
an additive stage in distance inferences, an identity stage in time inferences,
and a multiplicative stage in velocity inferences. The model also predicts con-
tinuous improvement in inferences within any given stage.

This was a case in which the networks used a single output unit with a
linear activation function, because the idea was to estimate the amount of
the unknown dimension, say, velccity. Five different levels of velocity, time,
and distance were used. Input units coded the amounts on two of these
dimensions, and the target value of the third, unknown dimension was coded
on the output unit. No biases in the training patterns were required to
capture these stages. Interestingly, static back-propagation networks could
not capture this stage progression (Buckingham & Shultz, 1995). Either
these static nets had insufficient computational power (in terms of number
of hidden units) to reach the final multiplicative stage or too much power to
capture the intermediate additive stage. It would appear that, at least in this
case, the need to pass through periods of more limited representational
power, as opposed to having immediate access to full representational
power, may be critical when modeling children’s cognitive development.

Effect Size

A linear output unit was also used in simulations of the prediction of effect
sizes from the magnitudes of causal potencies and effect resistances (Shultz
et al., 1995). Predicting the magnitude of a physical effect often requires
integration of information on the potency of the cause and the resistance to
the effect’s occurrence. In some cases, potency and resistance are combined
by subtraction and in other cases by division. A number of psychological
regularities have been found on such tasks (Zelazo & Shultz, 1989). As they
mature, children show an increase in the number of levels of potency and
resistance used and a gradual convergence on the correct integration rule.
They also acquire the subtraction rule before the division rule and tempo-
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rarily overgeneralize subtraction to division problems. All of these phenom-
ena were captured by cascade-correlation nets (Shultz et al., 1995). Prob-
lems were created by combining six levels of potency with six levels of
resistance using either subtraction or division rules, as in the psychological
research. Potency, resistance, and rule type were coded on the input units
and effect size was coded on the output unit. The psychological regularities
were captured with a variety of different input coding techniques. In addi-
tion, the networks generalized well when trained on a randomly selected
two thirds of the problems and tested on the remaining one third.

Personal Pronouns

In addition to capturing these phenomena involving the child’s under-
standing of physical events, cascade-correlation nets have been successfully
applied to the acquisition of English personal pronouns. Many children
acquire these pronouns without notable errors, whereas others show persist-
ent reversal errors in which they refer to themselves as you and to others as
me. The presence of such reversal errors is related to the lack of opportunity
to overhear speech that is not addressed directly to the child.

All of these regularities were simulated with cascade-correlation nets
(Shultz, Buckingham, & Oshima-Takane, 1994). The nets were trained to
predict the correct pronoun as output given input information on the
speaker, the addressee, and the referent. In effect, the nets succeeded in
learning the correct semantic rules underlying pronoun use, namely that a
first person pronoun refers to the person using it and a second person
pronoun refers to the person who is addressed when it is used. The nets also
showed sensitivity to the type of speech in the training patterns, such that
acquisition could be relatively error-free in the case of a predominance of
nonaddressed speech or characterized by persistent reversal errors in the
case of a predominance of directly addressed speech. Errorless generaliza-
tion was particularly evident when the network could overhear speech
involving a number of other people, say an aunt and uncle in addition to the
parents (Takane, Oshima-Takane, & Shultz, 1995).

These networks were trained in two phases, mimicking the way that pro-
noun interventions were done with young children, in the form of the so-
called me-you game (Oshima-Takane, 1988). In the first phase, the network
was exposed to speech uttered by parents. For example, the mother might ad-
dress the child, point to herself, and say “me.” Or, the mother might address
the father, point to the father, and say “you.” The former is an example of
speech addressed directly to the child; the latter an example of speech over-
heard by the child. This first phase of training was typically biased in favor of
different amounts of addressed or overheard speech. In the second phase, it
was the network’s turn to speak, in simulation of a child playing the me-you
game. The question was how long the network would take to learn correct
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pronoun use when addressing other people, as a function of the amount of ad-
dressee or overheard speech it had experienced in Phase 1.

Why These Simulations Work

The basis for rule-like behavior in cascade-correlation nets, as found in all
of these simulations, is the ability of these nets to extract statistical regulari-
ties from the learning environment. These include simple linear regularities
as well as more complex nonlinear regularities. Simple linear regularities
included the use of weight information on the balance scale; identity rules
in the integration of velocity, time, and distance cues; the subtraction rule in
predicting effect size; and mere imitation of pronoun use resulting in rever-
sal errors. More complex nonlinear regularities that required the recruit-
ment of hidden units included the torque rule on the balance scale; correct
ratio rules in integrating velocity, time, and distance cues; and the correct
semantic rules for personal pronouns.

Learning of rule-like behaviors in psychologically realistic stage se-
quences is a matter of both domain specific factors like environmental bias
and task modularization, as well as domain general factors like a summative
activation rule (see Equation 1) and the recruitment of hidden units. Follow-
ing Flavell (1971), we consider stages to refer to periods of qualitatively
distinct behaviors organized in a more or less invariant sequence (Shultz,
1991). Environmental bias favoring equal distance problems forced balance
scale nets to focus on weight information to the temporary exclusion of
distance information. Modular nets were required for generating seriation
phenomena. Use of an activation rule that sums the inputs to units was
important in producing early additive rules on the balance scale, velocity,
time, and distance judgements, and effect size predictions. Recruitment of
hidden units was important in eventually moving on to nonlinear rules, such
as the torque rule on the balance scale; the correct ratio rules in integrating
velocity, time, and distance cues; and the normative semantic rules for
personal pronouns. Note that domain general features are those that would
be common to all cascade-correlation models.

Perceptual effects reflect the continuous nature of network computations
in tasks where quantitatively described items are being mapped to a quali-
tative comparison. In such cases, different sources of quantitative informa-
tion must be compressed to reach a qualitative decision. Whenever the
relevant quantitative inputs are large and clear, the qualitative decision is
easier. This characterizes the torque difference effect on the balance scale
and stick size differences in seriation.

An attraction of cascade-correlation is that it provides a means of mod-
eling both qualitative and quantitative changes in processing mechanisms
during development. The respective roles of these two modes of develop-
ment is a critical question in contemporary developmental debates (Keil,
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1990). Static connectionist models provide only quantitative change in the
underlying processing mechanisms (McClelland, 1989), whereas most rule-
based models provide only qualitative change in the underlying processing
mechanisms (van Geert, 1991). Cascade-correlation provides a means of
evaluating the need for either type of development and the interactions that
may arise between them. Learning through the modification of the output
weights corresponds to an underlying quantitative change in processing
mechanisms. The network is integrating new information within an existing
knowledge structure. Hidden unit recruitment corresponds to a qualitative
change in processing mechanisms. The resulting network is computationally
more powerful than it was before, capable of forming representations that
were previously impossible. Note that qualitative changes in behavior,
which are often used to mark stage transitions, can be due to either quanti-
tative adjustment of weights (as in the effect size and seriation simulations)
or qualitative increases in network power (as in the balance scale, veloc-
ity—time—distance, and pronoun simulations). The use of cascade-correlation
networks permits assessment of which sort of underlying change is respon-
sible for the surface changes in behavior.

We believe that it is this added developmental flexibility that has resulted
in cascade-correlation models surpassing the performance of static network
models. In the balance scale simulations, cascade-correlation did better than
static back-propagation networks in two respects: reaching and staying in
Stage 4, and not needing segregated weight and distance information in the
layer of hidden units (an extra, programmer-designed constraint). In the
velocity, time, and distance modeling, a wide range of back-propagation
networks failed to produce the same stages successfully modeled with cas-
cade-correlation. The back-propagation networks designed with too little
power were unable to reach to final multiplicative stages, whereas those
designed with too much power were unable to reach to final multiplicative
stages, whereas those designed with too much power were unable to capture
the intermediate additive stages. Only a progressive increase in power has
been capable of showing the appropriate developmental course. A similar
point in the realm of grammar learning was made by Elman (1993). In his
case, recurrent back-propagation nets had to either receive progressively
more complex sentences or grow in working memory capacity to learn an
English-like grammar.

All of these interpretations of cascade-correlation network behaviors are
more fully discussed elsewhere (Shultz et al., 1995).

CONCLUSION

In this article, we set out to illustrate the role of modeling in the study of
cognitive development, demonstrate that cascade-correlation is an appro-
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priate model of cognitive development, and to argue for the plausibility of
constructivism.

Modeling was shown to play the role of a thought experiment with which
to test and illustrate theories. Drescher (1991) tried to implement a con-
structivist mechanism for infant cognitive development, but the actual im-
plementation failed to generate novel concepts. Its failure could be directly
related to Fodor’s (1980) argument against the possibility of constructivism.
This model was a concrete example with which it became possible to pin-
point the potential shortcomings of a constructivist paradigm.

Cascade-correlation is a generative algorithm used for implementing
constructivist style development. Here, the model was used to illustrate the
effectiveness of Quartz’s (1993) argument at overcoming Fodor’s paradox.
By demonstrating its applicability in a diverse range of cognitive develop-
mental tasks, it is possible to explore the extent to which Quartz’s claims
constitute a general argument. We reported successful modeling results
pertaining to the development of problem solving, reasoning about the
physical world, and semantic development. The range of these successes
strongly supports Quartz’s claim that generative neural nets can escape
Fodor’s paradox by building more powerful representations.

We believe the models reported in this article provide strong support for
the claim that computational models enrich the study of cognitive develop-
ment. Indeed, the modeling work with cascade-correlation has led to a
number of novel findings concerning the interaction of perceptual features
and a child’s performance on a cognitive task (e.g., effect of disorder on the
seriation task, effect of torque-difference on the balance scale task). The
return to further empirical studies may result in new data that will need to
be incorporated in the model. Still different predictions may then arise.
Thus, the modeling—experimentation dialectic process constitutes a series of
ever better approximations.

Cascade-correlation not only accounts for behavioral data and percep-
tual effects, but it constitutes a working model of transition mechanisms in
cognitive development. Because of the inherent difficulties in studying tran-
sitions in development, only a small fraction of developmental research is
devoted to it (Sternberg, 1981). Our use of cascade-correlation is an attempt
to redress that imbalance by providing a rigorous account of transition. A
strong mechanistic reading of our models would suggest that there exist, in
the child’s cognitive architecture, direct analogies to the constituent ele-
ments of cascade-correlation. A weaker reading is one in which cascade-cor-
relation is seen only as an illustrative example taken from the family of
generative algorithms. The models can be interpreted on their own ground
or used to illustrate other developmental theories such as Piaget’s genetic
epistemology expressed in terms of assimilation and accommodation.

Throughout this article we have supported a constructivist approach to
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development. We chose to highlight this issue because it was a clear example
of the arguments we were presenting. Of course, the models we presented
do not guarantee that constructivist development occurs in children. What
they do show is that such development is possible and offer an avenue for
escaping Fodor’s paradox.

Although cascade-correlation reflects some of what we know about the
brain (cf. Quartz & Sejnowski, in press), it is important to understand that the
models are not meant as neural models of the corresponding high-level tasks.
Rather, they are models of how constraints on cognitive resources can guide
the developmental paths through which children evolve. Development is
driven by the interactions of the child with the environment, but is con-
strained by the child’s present representations and the mechanisms available
to the child for developing novel and more powerful representations.

Finally, applying Valiant’s framework to learning in both children and
generative connectionist networks focuses attention not simply on what can
be learned, but also on what cannot be learned. Different generative algo-
rithms differ in the types and order of relationships that they can or cannot
learn in feasible time. They all possess simple conceptual structures early in
learning, but only a few will develop an architecture that can learn a specified
complex conceptual structure. This suggests a means of comparing their rela-
tive adequacy as models of cognitive development. In terms of child develop-
ment, it suggests a shift in research away from the current trend of searching
for ever more precocious simplified conceptual representations and back to
an examination of concepts that cannot be assimilated at various ages.
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