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Conservation  

One of the most well studied phenomena in cognitive 
development is conservation. Conservation involves the 
belief in the continued equivalence of two physical quantities 
over a transformation that appears to alter one of them. An 
example of conservation presents a child with two identical 
rows of evenly spaced objects. Once the child agrees that the 
two rows have the same number of objects, the experimenter 
transforms one of the rows, e.g., by pushing its items closer 
together. Then the experimenter asks the child whether the 
two rows still have the same amount or whether one of them 
now has more. Piaget (1965) and other researchers found that 
children below about six years of age respond that one of the 
two rows, usually the longer row, now has more than the 
other. In contrast, children older than six years respond that 
the two rows still have equal amounts, i.e., they conserve the 
equivalence of the two amounts over the compressing 
transformation.  
 Despite the many empirical studies of conservation, the 
cognitive mechanisms underlying conservation acquisition 
remain obscure. One way to explore such cognitive 
mechanisms is with computer simulations in which the 
details of knowledge representations and processing 
mechanisms must be fully specified.  

Cascade-correlation 
A successful modeling algorithm for cognitive 
developmental phenomena is cascade-correlation. This is a 
generative algorithm for learning in feed-forward neural 
networks (Fahlman & Lebiere, 1990). It builds its own 
topology as it learns, by recruiting new hidden units into the 
network as it needs them. Such networks undergo not only 
quantitative adjustments in connection weights but also 
qualitative adjustments in network topology. There have 
been cascade-correlation models of balance scale 
phenomena, causal predictions of potency and resistance, 
seriation, integration of velocity, time, and distance cues, and 
acquisition of personal pronouns (Shultz, Schmidt, 
Buckingham, & Mareschal, 1995).  

Simulations 

Here I report on the simulation of five well known 
conservation phenomena with neural networks constructed 
by the cascade-correlation algorithm: (1) shift from 
nonconservation to conservation beliefs (acquisition effect), 
(2) emergence of correct conservation judgments for small 
quantities before larger quantities (problem size effect), (3) 

conservation of discrete quantities before continuous 
quantities (discrete advantage effect), (4) nonconservers' 
choice of the longer row as having more items than the 
shorter row (length bias effect), and (5) younger children 
conserving until they see the results of the transformation 
(screening effect).  

Training 

Networks were trained in an environment with very few 
constraints. Inputs described equivalence conservation 
problems in which rows of objects were described in terms 
of their perceptual characteristics, namely length and density. 
Target feedback supplied to the network concerned relative 
equality judgments comparing the two rows. 
Transformations included those that alter number (addition 
and subtraction) and those that preserve number (elongation 
and compression). Addition and subtraction transformations 
each altered a row by one item. Elongation and compression 
transformations decreased or increased the density of the row 
by one level, respectively. See Table 1 for some example 
transformations. In the standard rows, there were three levels 
of length, ranging from 2-6, and two levels of density, 
ranging from 2-4. Conservation experiments typically 
present only a few density levels but several levels of length. 
The quantities for numerical comparisons were computed as 
number = length x density. In this way, networks could learn 
about number from the perceptual characteristics of items 
arranged in rows with a constant within-row density.  

Testing  

A randomly selected 1/4 of the problems were excluded from 
training for use as test patterns. Most assessments were 
performed on test patterns rather than training patterns in 
order to insulate network performance from the particulars of 
training.  

Acquisition 

Networks learned the training problems and generalized well 
to the test problems, not merely memorizing the problems, 
but abstracting an underlying function.  

Problem Size 

Networks showed a problem size effect by performing better 
on problems in which the number of the smaller row was less 
than 9 than on problems in which the number of the smaller 
row was greater than 15. This was evident at all phases of 
training, except very early, where networks had not learned 
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enough, and very late, where networks had reached a ceiling 
of performance on all problem sizes. Problem size effects are 
pervasive in human quantitative judgments; simulations 
suggest that they result from an analog representation of 
number.  

Discrete Advantage 

The discrete advantage effect was captured by adding small 
amounts of random noise to outputs in the training and test 
patterns for continuous quantities, which are considered 
difficult to estimate accurately. It took longer for networks to 
learn with noisy than with noiseless outputs. Also, except 
early and late in training, networks performed worse on noisy 
than on noiseless problems. Thus, the networks were 
sensitive to noise, but not fatally so. The absence of a noise 
effect at the beginning of training reflects inability to solve 
either type of problem. The disappearance of the noise effect 
at the end of training reflects ceiling levels of performance.  

Length Bias 

The networks showed biases like those observed in children. 
They learned to use the dominant dimension of length, and 
then noticed the compensating dimension of density, before 
correctly integrating the two dimensions.  
 The initial length bias was due to learning that longer rows 
often have more items than shorter rows, particularly in 
addition and subtraction transformations when density is held 
constant. This explanation is consistent with the idea that 
very young children do not show a length bias because they 
have not yet learned that length is a correlate of number 
(Miller, Grabowski, & Heldmeyer, 1973). Length bias did 
not occur in an alternate environment in which length, rather 
than density, was held constant during transformations. 
These bias results underscore the tension between perception 
and cognition in conservation tasks. What the child knows 
(e.g., that a transformation does not change a quantity) 
appears to conflict with what she sees (e.g., that one row is 
longer, and thus seems more numerous than the other).  

Screening  

The screening effect refers to young children conserving only 
until they see the results of a transformation (Miller & 
Heldmeyer, 1975). As long as the effects of the 
transformation are screened from view, they conserve, but 
when the screen is removed, they revert to nonconservation. 
This was simulated by removing information about the 
appearance of the transformed row after it was transformed, 
causing more conservation early in training.  

Network Analysis 

To determine the roles of particular hidden units, information 
critical to perceptual and cognitive solutions was deleted 
from the test problems. Missing input critical to a perceptual 
solution involved the length and density of the post-
transformation row, whereas missing input critical to a 
cognitive solution involved the nature of the transformation. 
Analysis of errors caused by these deletions indicated that 
most hidden units played a role in either perceptual or 
cognitive solutions and a few of them played a role in both 
solution types.  

Conclusions 

These simulations captured a variety of effects in the 
conservation literature and supported the correlation-learning 
explanation of length bias. They achieved better and more 
comprehensive coverage of natural conservation phenomena 
than have previous simulations.  
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Transformation Length Density Row 
Pre-transformation 2 2 o   o   o   o 
Add 2.5 2 o   o   o   o   o 
Subtract 1.5 2 o   o   o   
Elongate 4 1 o      o      o      o 
Compress 1.33 3 o o o o 

 
Table 1: Example transformations. 


