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Abstract

This paper reviews a recent article suggesting that infants use a system of algebraic rules to learn an artificial grammar
(Marcus, Vijayan, Bandi Rao & Vishton, Rule learning by seven-month-old infants. Science, 183 (1999), 77-80). In
three reported experiments, infants exhibited increased responding to auditory strings that violated the pattern of
elements they were habituated to. We argue that a perceptual interpretation is more parsimonious, as well as more
consistent with a broad array of habituation data, and we report successful neural network simulations that implement
this lower-level interpretation. In the discussion, we discuss how our model relates to other habituation research, and how
it compares to other neural network models of habituation in general, and models of the Marcus et al. (1999) task

specifically.

Over the last 30 years the habituation paradigm has
become a widely used technique for investigating infant
cognition. Developmental psychologists initially used
the habituation paradigm to study sensory and percep-
tual processes in infants in much the same way as it had
been used in animal research (Clifton & Nelson, 1976;
Malcuit, Pomerleau & Lamarre, 1988). That is,
researchers focused on ‘the simplest form of learning’
(Thorpe, 1963). More recently, however, the habituation
paradigm has been used to suggest a broad range of
early conceptual abilities in infants.

In this paper, our focus is on a recent habituation study
suggesting that 7-month-old infants are capable of
grammar learning by means of a system of algebraic rules
(Marcus, Vijayan, Bandi Rao & Vishton, 1999). As an
alternative explanation, we propose a modality-indepen-
dent, feature-independent model of habituation that
implements lower-level processing. We focus on the Marcus
et al. (1999) report for two reasons. First, given the
landmark importance this study could have (Pinker, 1999),
it is worthy of further attention. Second, it reports that a
rule-based account is to be preferred, because one class of
neural networks fails to capture the data. We report neural
network simulations that do capture the data.

The paper is organized as follows. The first section
briefly discusses habituation as a tool for the investiga-
tion of high-level cognition. The procedure used by
Marcus and his colleagues (1999) is presented, their
interpretation is reviewed, and a simpler interpretation
of their data is offered. We then present the auto-
associator neural network as a potential model of infant
habituation, and report on simulations using such
networks that capture the infant data reported by
Marcus et al. (1999). In a general discussion, we present
our results in the context of alternative interpretations
and models.

Habituation: a brief introduction

The habituation paradigm was originally devised to
investigate the sensory and perceptual abilities of
organisms (Clifton & Nelson, 1976; Malcuit et al.,
1988; Haith, 1998) by repeatedly presenting a stimulus
(or set of stimuli) until there was a decrease of
behavioral response (such as heart-rate changes, galvan-
ic skin response changes, head turns, and/or visual
fixation). However, Sokolov’s theoretical interpretation
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of the decrease in responding provided developmental
psychologists with a unique tool to investigate pre-
verbal cognitive abilities (Clifton & Nelson, 1976;
Malcuit et al., 1988). Sokolov (1963) argued that, during
habituation, organisms build an internal schema of the
stimuli. Over trials, the discrepancy between this schema
and input decreases through learning, and thus the
organism stops responding to insignificant differences.
A novel stimulus, however, could produce renewed
responding (i.e. recovery) when there is perceived
discrepancy between that stimulus event and the
schema.!

A variation of Sokolov’s representational account of
habituation is often used to interpret the results of
habituation experiments designed to investigate cogni-
tive abilities in infants (e.g. Baillargeon, 1987; Spelke,
Breinlinger, Macomber & Jacobson, 1992; Wynn, 1992,
1995; Marcus et al., 1999). The basic tenet is that if
infants have particular conceptual knowledge they will
appreciate violations of this knowledge by attending
longer to unusual, inconsistent or impossible events
(Spelke, 1998). Therefore, in the test phase of habitua-
tion experiments, researchers can measure whether
infants exhibit differential attention to test events
violating the knowledge under investigation, compared
with equally novel and perceptually similar test events
that are consistent with this knowledge.

Using this approach, researchers have suggested that
infants have conceptual knowledge about object perma-
nence (Baillargeon, Spelke & Wasserman, 1985; Baillar-
geon, 1987), object properties such as solidity and
continuity (Spelke et al., 1992) and integer numbers
(Starkey, Spelke & Gelman, 1990; Wynn, 1992, 1995).
However, perceptual-level interpretations of the tasks
used to infer such conceptual knowledge have also been
proposed (Mareschal, Plunkett & Harris, 1995; Bogartz
et al., 1997; Mix, Levine & Huttenlocher, 1997,
Munakata, McClelland, Johnson & Siegler, 1997;
Cohen, 1998; Haith, 1998; Sirois et al., in preparation).
Furthermore, on the grounds of parsimony, Haith
(1998) argues that perceptual-level accounts based on
principles such as novelty, familiarity, salience and
discrepancy should be favored over conceptual-level
accounts if the former cannot be ruled out.

One question then is whether a perceptual-level
account of ‘rule learning in 7-month-old infants’

! Current interpretations of habituation such as information processing
approaches (e.g. Zelazo, 1988; Cohen, 1998) and perceptual processing
approaches (e.g. Bogartz, Shinskey & Speaker, 1997; Haith, 1998) are
similar to Sokolov’s (1963) representational account; they differ mainly
in their emphasis on specific processes (Sirois, Debbané & Zelazo, in
preparation).
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(Marcus et al., 1999) can be sustained. In the next
section, we review their study.

Abstract algebraic rules in infants reviewed

In Marcus et al’s (1999) first experiment, infants were
habituated to 16 three-syllable sentences that followed
either an ‘ABA’ or an ‘ABB’ grammar. Examples of
‘ABA’ sentences are ‘ga ti ga’ and ‘li na 1i’, and examples
of ‘ABB’ sentences are ‘ga ti ti’ and ‘li na na’. The 16
sentences were constructed by using four A syllables and
four B syliables, resulting in 16 combinations for each
grammar. A 250 ms pause was placed between syllables
within a sentence, and sentences were separated by 1 s
pauses.

In typical habituation experiments, an individual
stimulus event is presented repeatedly (or continuously,
depending on the nature of the stimuli) until the infant’s
attention has not been directed at the event for a specific
amount of time, or until the trial has exceeded some
duration criterion. The next stimulus event can then be
presented. Marcus and colleagues (1999), however, used
a procedure adapted from Saffran, Aslin and Newport
(1996) for the habituation (or familiarization) phase.
Their 16 sentences were used to create three consecutive
blocks of 16 habituation trials. Within a block, each
sentence appeared once, in a random position, and was
not repeatedly presented. There was no pause between
blocks except for the 1 s interval between all sentences.
As such, infants in this experiment heard a continuous
speech stream like ‘gatigalgalagallinalijtatital..
(where spaces identify 250 ms pauses and ‘|’ is the 1 s
pause between sentences) until the third block had been
completed. These sentences were played from both left
and right speakers simultaneously.

During the habituation phase, a yellow light flashed in
front of the infants in order to draw their attention.
When the number of prescribed trials was reached,
habituation was assumed and testing began.? Two
‘ABA’ and two ‘ABB’ sentences, each constructed with
novel syllables (i.e. syllables not used in the habituation
phase), served as test sentences. As such, both types of
test sentences were equally novel.

2 Familiarization procedures run the risk of providing infants with
insufficient training, or increasing variability in test results by leaving
infants at various stages of encoding at the end of the habituation
phase (Clifton & Nelson, 1976; Malcuit ef al., 1988). This concern may
not apply to Marcus et al. (1999), because they report the typical
novelty preference in the test phase of their experiments. Their results
would probably replicate in variants that actually measure habituation
and end training when habituation has been observed (Clifton &
Nelson, 1976).
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At the onset of a test trial, the central light flashed to
draw the infant’s attention. When the infant fixated on
this light, it was extinguished and one of the red side
lights began flashing. The test sentence would begin
playing from the corresponding left or right speaker
when the infant had turned toward the flashing light.
This test sentence was presented repeatedly until the
infant looked away from the flashing light, or until 15 s
had elapsed. Infants were presented with three blocks of
test sentences, with all four test sentences in random
order within each block. Because infants were habitu-
ated to either “ABA’ or ‘ABB’ sentences, half of the test
sentences were consistent and the other half were
inconsistent with the training grammar.

The resuits showed that looking times of infants were
longer for inconsistent sentences. The authors pointed
out that an interpretation based on transitional prob-
abilities (e.g. Saffran et al., 1996) cannot account for
these data. Transitional probabilities (i.e. the probability
that a given syllable follows another one) could certainly
be learned in the habituation phase but would be of no
use when novel test syllables are introduced. For the
same reason, a system that notes discrepancies with
stored sequences of words cannot account for differ-
ential attention to consistent and inconsistent sentences
in the test phase (Marcus et al., 1999). The authors
argued that abstract algebraic rules that represent
relationships between variables (e.g. ‘item x is the same
as item ") could account for the data.

In their second experiment, the authors controlled for
some overlap in sequences of phonetic features between
training and testing sets that may have been a confound.
Some of the training sentences in the ‘ABA” habituation
set, for example, had a voiced—unvoiced—voiced se-
quence of consonants. Each ‘ABA’ test sentence had the
same sequence, whereas each ‘ABB’ sentence had a
voiced—unvoiced—unvoiced sequence. In order to con-
trol for the possibility that infants relied on phonetic
features instead of deriving an abstract rule,? the authors
replicated the first experiment with a phonetic control.
That is, all syllables used in the habituation set were
voiced, whereas they varied as before in both test sets.
The results mirrored data obtained in the first experi-
ment: infants attended longer to grammatically incon-
sistent sentences.

In a third experiment, the authors controlled for
another possible confound. In ‘ABB’ sentences, there is

3We do not understand how learning about phonetic features cannot
qualify as algebraic rules. From Marcus and colleagues’ (1999)
example of such rules, ‘item x is the same as item y’, nothing would
seem to prevent the operator ‘is the same’ from applying to phonetic
features of x and y.
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an immediate duplication of syllables that is not found
in ‘ABA’ sentences. Infants could thus have distin-
guished the two grammars on the presence or absence of
such duplication. Using the same habituation-recovery
method from Experiments 1 and 2, Marcus and his
colleagues (1999) habituated infants with either ‘AAB’
or ‘ABB’ sentences and used novel sentences from both
grammars in the test phase. As in the first two
experiments, infants attended longer to grammatically
inconsistent fest sentences.

Marcus and his colleagues (1999) concluded from
these three experiments that infants must have the
ability to extract abstract algebraic rules in order to
react to inconsistent sentences. As further evidence for
the rule-based interpretation, Marcus et al. (1999)
discuss neural network simulations they conducted,
which failed to capture the data of their experiments.

In his companion article, Pinker (1999) argues that the
report from Marcus and colleagues ‘suggests that one of
the mechanisms that makes computers intelligent —
manipulating symbols according to rules — may be a
basic mechanism of the human brain as well’ (p. 40).
Pinker’s (1999) contention is that Marcus and colleagues
have sustained a central claim in classic psycho-linguistic
theory: infants are innately endowed with symbol-
manipulating machinery that enables them to acquire
language. This conclusion assumes that Marcus et al.’s
(1999) interpretation is correct. A case can be made,
however, that it is premature.

Marcus and colleagues (1999) overstate the inability
of statistical learning mechanisms to capture the data
(McClelland & Plaut, 1999). There are inherent statis-
tical regularities in Marcus ef al’s (1999) stimuli. By
introducing novel words in the testing phase, the authors
did not simultaneously remove the covariance structure
in each sentence, which is identical for consistent test
sentences and habituation sentences. This covariance
structure is perceptual in nature: the syllables are
organized in such a way that two of them are always
redundant.

Marcus and colleagues (1999) use labels such as
‘ABA’ to describe the grammar underlying the stimuli
they present to infants. Whereas an ‘ABA’ grammar was
a methodological given for the authors, it would
necessarily be an induction for infants.* This induction
can only be assumed from differential looking times in
the testing phase; it is not an empirical fact and, as such,

4 As Kemler (1981) noted, what is actually perceived as meaningful by
infants in habituation experiments cannot be assumed to correspond
even to adults’” simplest formal description of the stimuli. McClelland
and Plaut (1999) make a similar point concerning the stimuli used by
Marcus and colleagues (1999).



alternative interpretations are equally valid. McClelland
and Plaut (1999) discussed several such alternatives. We
actually favor an alternative that they did not discuss.

This alternative is that infants formed a prototypical
pattern of the perceptual covariance structure in the
habituation corpus, and that a mismatch between this
prototype and inconsistent test items generated longer
looking times (e.g. Sokolov, 1963; Younger & Cohen,
1985; Cohen, 1998). We favor this other alternative
because it is consistent with a broad array of habituation
data and it has already been proposed in the habituation
literature. A label such as ‘ABA’, which Marcus et al.
(1999) refer to as a grammar, can actually be construed
as a perceptual-level prototypical pattern. Because this
prototype would be an abstraction of the habituation
corpus, it is conceivable that it would match consistent
test items, which have the same perceptual structure,
albeit with new elements.

The distinction between this alternative interpretation
and abstract algebraic rules is not merely one of
terminology. In Marcus et al’s (1999) interpretation,
perceptual input would be transformed into an appro-
priate symbolic format such that it can serve as input for
higher-level rule-based computations using variables. In
the prototype alternative, computations are performed
on the perceptual input directly and do not require
subsequent, higher-order machinery.

We suggest that the auto-associator neural network is
a likely candidate to model infant habituation, and that
it would implement this alternative, lower-level inter-
pretation. Moreover, it can model the temporal nature
of looking times in habituation experiments. In order to
substantiate these claims, the next section presents the
relevant properties of this neural network architecture,
as well as a series of successful simulations of Marcus et
al’s (1999) experiments.

An auto-associator model of habituation

The auto-associator (Anderson, Silverstein, Ritz &
Jones, 1977; Kohonen, 1977), as depicted in Figure 1,
consists of a set of simple processing units, fully
interconnected with one another. This square matrix of
connections, called weights, processes the internal
activity in the network.” When a pattern of external

5 Although we discuss the auto-associator as a simple neural network,
it is worth noting that it is actually a general class of networks, and
that many other types of network architectures are restricted
implementations of the auto-associator. By restricting the connectivity
and input of the auto-associator, one can implement a multilayered
feedforward network, for example.

© Blackwell Publishers Ltd. 2000

Learning by infants 445

External input

Figure 1 A generic auto-associator network. External input is
first presented to the network, activating the corresponding units
(large white circles). Then, each unit sends its activation via
weighted connections (lines) to all units, including itself. This
process can be repeated any number of cycles. Connections
leading away from the internal units would enable the network
to pass its activations to other networks.

input is presented to the network, the corresponding
units are activated, and these propagate their activations
to all units in the network, including themselves. This
internal circulation of activations can take place for
several cycles. Weights and activations are represented
as real numbers. Units stimulate or inhibit one another
on each processing cycle. Because weights can be
modified as a function of experience, networks can
learn regularities between features across a set of
training patterns.

A variety of implementations of the auto-associator
have been proposed (Anderson, 1977; Kohonen, 1977;
McClelland & Rumelhart, 1985). Some models use a
linear activation function, in which the activation of a
given unit is equal to the input it receives. The problem
with this function is that, over cycles, activations do not
settle but continue to grow unbounded. Alternative
activation functions involve some form of clipping of the
linear function; that is, activation values are equal to the
input but whatever exceeds a lower and upper bound is
clipped. Other models use nonlinear activation func-
tions, such as the sigmoid function (discussed later).
Models also differ with respect to the learning rule used
to update weights. Some models prevent self-connec-
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tions (i.e. the connection between a unit and itself), such
that units learn only their relationship to the other units
in the network. Despite these variations, the auto-
associator excels at capturing covariation in training
sets. Auto-associator networks are particularly suited
for pattern completion tasks. Given incomplete input,
they will generate a complete pattern based on what they
were trained on.

In order to model habituation experiments, we
devised our own implementation of the auto-associator.
For unit activation, we used the sigmoid function. This
nonlinear function keeps activation values within the
—0.5 to 0.5 range, thus providing natural clipping. The
sigmoid activation of a unit is computed as

1

gg=———
1 + exp(—A net;)

0.5 (1)

where g; is the activation of unit i, exp is the natural log,
X is a constant called the temperature parameter, and
net; is the input that unit { receives. The output of this
function is shown in Figure 2. As the figure implies, the
activation of sigmoid units is constrained between —0.5
and 0.5. Unit behavior shows more variation to small
changes in input when this input is close to zero than to
the same changes when absolute input is large. The
temperature parameter affects the slope of the function,
but not its range. Values above 1 result in a steeper

e
=
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i

Input
Figure 2  Sigmoid activation function. Curves are shown for
temperature values of 0.5 (dotted line), 1 (solid line) and 1.5

(broken line).
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slope, whereas values between 0 and 1 result in a flatter
slope.

In the auto-associator, the input to a unit is a function
of both internal activity and external input, and is
computed by

net; = Z wyd; + nE; — &a; 2)
J

where net; is the input unit / receives, j is the index of the
sending unit, w;; is the weighted connection between unit i
and unit j, g; is the activation of the sending unit j, n is a
constant we refer to as the input scalar, F; is the external
input of unit i, and £ is the decay parameter. For a given
unit, then, the input is the sum of weighted activations
from all units (including itself), plus some proportion of
the external signal, minus some proportion of its previous
activation. The input scalar 1 allows the external signal to
be amplified (n> 1) or weakened (0 <7 < 1).

In our implementation of the auto-associator, input
processing is a four-step process. First, the network is
presented with an external input pattern and the net input
to units is computed. There is initially no internal
activation, so the net input computed with equation (2)
on this first step is only the external input (i.e. the first and
third terms on the right-hand side of equation (2) equal 0
because g; is initially 0). Second, by applying equation (1)
to the net input, we obtain the unit’s activation
corresponding to the external pattern. Third, these
activations are used in equation (2) to compute an
updated net input of the network based on both external
input and internal activity. Lastly, the net input from the
third step is used to compute the updated unit activation
values with equation (1). These values from the fourth
step represent the network’s response to external in-
formation combined with its internal activity.®

After the fourth step, when unit activations reflect
internal representations based on external information,
weights in the network are modified to implement learning.
The learning rule used in our auto-associator networks is
the delta rule, which computes weight changes as

AW,‘j = A(E, - a,-)aj (3)

where Awy is the amount by which the weight between
sending unit j and receiving unit { is to be changed, A is the
learning rate constant, E; is the external input for unit i, g;
is the activation of unit i, and g; is the activation of the

%In some implementations of the auto-associator, the third and fourth
steps are repeated for a number of times, a process called internal
cycling. We did not implement this additional procedure to model
Marcus et al’s (1999) experiments. This is discussed in more detail
later.



sending unit j. This learning rule implies that connection
weights between units are changed as a function of the
discrepancy between the activation of a unit and the
external input it receives, and of the activation of the
sending unit. Over learning steps, the network is therefore
trained to reproduce the external input by allowing larger
weights between units that have correlated activations
across the training set. The higher the correlation, the
larger the weight. And as activation values get closer to the
external input, weight changes decrease. This naturally
prevents weights from growing too large.

We argue that such networks can implement the
habituation-recovery paradigm in a way that accurately
maps the experimental procedure. Networks can be
trained on habituation patterns until all activations on all
patterns change by less than some threshold value
between epochs (an epoch is a presentation of all training
patterns). Thus, we can stop the habituation phase when
the network has achieved a stable representation of the
habituation set through learning. This can be assumed to
underlie the decrease of responding in infants, as further
processing would pointlessly tap attentional resources.

When habituation is observed in networks, they can
then be presented with individual testing patterns, and
the number of presentations required to learn these test
items can be taken as an index of processing time. It is
therefore possible to test networks for differential
processing on novel consistent and inconsistent items
in a way that is analogous to the empirical procedure.
Both the dependent measure used in our simulations (i.e.
the number of processing steps) and the attentional
measures used with infants (e.g. looking times) are
temporal in nature.

In order to model Marcus and colleagues’ (1999)
experiments, we used an arbitrary coding scheme to
represent the syllables that formed sentences. Sixteen
syllables were created by using all possible combinations
of four binary values, as depicted in Table 1. Within this
encoding framework, a given syllable is coded on four
units, and networks that process three-syllable sentences
use 12 units. The use of this arbitrary encoding scheme
makes our simulations a general account of the
regularities underlying the Marcus er al. (1999) data,
as the model is not rooted in the specifics of these
experiments. The questions we ask of the model are can
the auto-associator (a) capture the structure of, for
example, ‘ABA’ habituation events and (b) show
differential recovery to consistent and inconsistent test
events? A successful answer to both questions within this
arbitrary scheme would suggest a modality-independent,
feature-independent model of habituation.

We now report of a series of simulations of the
Marcus et al. (1999) habituation experiments. Simula-
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Table 1 Distributed binary encoding scheme for 16 syllables

Pattern Unit 1 Unit 2 Unit 3 Unit 4
1 -0.5 -0.5 -0.5 —0.5
2 -0.5 -0.5 -0.5 0.5
3 -0.5 -0.5 0.5 -0.5
4 -0.5 0.5 -0.5 -0.5
5 0.5 -0.5 -0.5 -0.5
6 -0.5 —-0.5 0.5 0.5
7 -0.5 0.5 -0.5 0.5
8 0.5 -0.5 -0.5 0.5
9 -0.5 0.5 0.5 -0.5

10 0.5 -0.5 0.5 -0.5

11 0.5 0.5 -0.5 —0.5

12 -0.5 0.5 0.5 0.5

13 0.5 -0.5 0.5 0.5

14 0.5 0.5 -0.5 0.5

15 0.5 0.5 0.5 -0.5

16 0.5 0.5 0.5 0.5

tion 1 investigated whether our auto-associator model
could learn an ‘ABA’-type structure and generalize to
novel sentences by exhibiting differential processing of
consistent and inconsistent stimuli. The arbitrary coding
scheme we used does not depend on specific phonetic
features. As such, this simulation models Experiment 1
in Marcus ez al. (1999). Simulation 2 presents networks
similarly trained and tested on ‘AAB’ and ‘ABB’
structures, modeling the third experiment of Marcus
and colleagues (1999).

Simulation 1: ABA versus ABB

This simulation models Experiment 1 from Marcus et al.
(1999). Networks were habituated on ‘ABA’ stimuli and
tested on ‘ABA’ and ‘ABB’ stimuli consisting of novel
syllables. Figure 3 outlines the procedure we used to
implement sequential input. At time 1, the first syllable
is presented to the network and the four-step procedure
is used to compute activations. The net input for each
unit is computed and then transformed by the activation
function. These activations are circulated through the
network and used to compute an updated net input,
consisting of external information and internal activity.
Activations are then updated, at which point weights are
changed according to the learning rule. At time 2, the
second syllable is introduced. The first syllable is still
part of the external input but is decayed by some
proportion of itself.” The four-step procedure to
compute activations is applied, and weights are then

"This fading encoding representation scheme is consistent with a
perceptual perspective on habituation which considers lingering
sensory information (Haith, 1998; Sirois et al., in preparation). See
Ungerleider (1995) for a review of neurological support for this short-
term perceptual effect.
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A =1
A B T=2
A B A

Figure 3 Depiction of the sequential auto-associator network.
Three banks of units are used to process the three syllables in
‘ABA’ sentences. Each syllable is encoded on four binary units. The
syllables are presented over three time steps: A, then B, and finally
A. Previously presented syllables decay gradually as new syllables
are presented (represented graphically by the fading letters).

T=3

updated. During the first step, however, internal
activations obtained from the syllable presented at time
1 are part of the net input. That is, when the second
syllable is introduced, the network is already active from
the first syllable. At time 3, the third syllable is
introduced as external input, whereas the first two are
decayed (resulting in the most decay for the first
syllable). Activations are computed using the four-step
procedure, and weights are further updated.

This sequential procedure is used for both habituation
and testing patterns. After habituation, the networks are
expected to require significantly more processing time to
learn inconsistent test patterns compared with consistent
ones. For both types of test patterns, learning time
should decrease over blocks of test trials as networks
adapt to the novel items through weight changes.

Method

Thirty networks were used in this simulation. For each
network, a unique set of training and testing patterns
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was created. From the bank of 16 syllables listed in
Table 1, four were randomly selected (without replace-
ment) as A and four as B to construct the habituation
patterns. Combining all A and B syllables resulted in 16
‘ABA’ patterns. From the remaining eight syllables in
the bank, four were randomly selected to create the
testing patterns. These four syllables were randomly
assigned in two pairs in order to form two sets of
consistent and inconsistent test patterns (such as ‘wo fe
fe’, ‘wo fe wo’, and ‘la ti t’, ‘la ti 1a’), which is how
testing items were devised in Marcus et al. (1999).

Networks were habituated to ‘ABA’ patterns, and
tested on ‘ABA’ and ‘ABB’ patterns. In the habituation
phase, networks were trained on all 16 habituation
patterns, which were presented in random order in each
epoch. As in Marcus ef al. (1999), each sentence was
presented once per block of 16 trials. When the last
syllable of a sentence had been presented and weights
had been updated, activations were reset to zero and the
next sentence was presented. Training continued until
the change in activation on all units and on all patterns
between the current and previous epoch was below
0.005, at which point the network was considered to
have habituated to the training set. If a network reached
a 50 epoch limit before activation changes were below
criteria, training would be stopped and testing would
begin as for networks that had habituated according to
our criteria.

Following Marcus et al’s (1999) procedure, there
were three consecutive blocks of testing in our simula-
tions. In each block, the four testing patterns were
presented in random order to the network. For each
individual test pattern, activations were repeatedly
computed (and the weights updated) until the change
in activation for all units between the current and
previous presentation was below 0.005. At that point,
the test pattern was considered to no longer require
further processing. We refer to the repeated presentation
of individual test sentences as testing cycles, and these
will be the dependent variable.

It is worth pointing out that our networks always
process information the same way, whether they are in
the habituation phase or the test phase. A pattern is
presented sequentially and, as each syllable is presented,
the four-step procedure is used to compute activations
and weights are then updated. What distinguishes
habituation and testing is whether an individual pattern
is presented repeatedly, but this is a constraint from
Marcus et al’s (1999) procedure that affects what
networks process, but not Aow they process it.

The parameter values used in this simulation are 0.04
for the learning rate, 1 for the temperature of the
sigmoid function, 0.005 for the decay parameter, and 3



for the input scalar. For each network, weights are
initially set to zero. The parameter value used to decay
previous syllables was 0.9, which implies that already
present syllables were decayed by 10% at each of times 2
and 3 in a ‘sentence’ presentation.

Results

Networks in this simulation required an average of 24.1
epochs to learn to criterion in the habituation phase
(SD = 1.92). All 30 networks habituated within the 50
epochs limit. Figure 4 plots the number of testing cycles
required to learn each type of test pattern over testing
blocks. The average number of testing cycles for
consistent items was 3.4, 3.2 and 3.1 for test blocks 1,
2 and 3. For inconsistent items, the average number of
testing cycles was 3.6, 3.4 and 3.2 over test blocks. Six of
the networks required more testing cycles for consistent
test items, on average, than for inconsistent items.
Testing cycles required to learn were analyzed with a 2
by 3 by 2 repeated-measures analysis of variance, with
type (consistent and inconsistent), block (1-3) and
pattern (first and second) as within-subject factors. The
analysis revealed a significant effect of type
(F(1,29) = 5.69, p <0.05) as well as a significant effect
of block (F(2, 58) = 35.32, p<0.05). There was no
significant effect of pattern, nor any significant interac-
tion effect. Subsequent tests of within-subject contrasts
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Figure 4 Mean number of testing cycles required for network
learning of novel consistent (ABA) and inconsistent (ABB) test
patterns by trial in Simulation 1. Error bars show standard
deviations. (The range of the y axis in this figure and in Figure 7
has been restricted to the range of the data for clarity.)
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revealed a significant linear trend for block (F(1,
29) = 49.00, p < 0.05).

Figure S depicts the connectivity of a representative
network, i.e. a network that required 24 epochs of
training during the habituation phase (the average from
this simulation) and fewer pattern repetitions for
consistent test items. The raw weight values shown in
the figure were recorded after the habituation phase,
before testing began. The diagram can be mapped onto
the network representation in Figure 3, for clarity.
Columns represent incoming weights for individual
units, and rows represent outgoing weights from
individual units. In this figure, larger boxes represent
larger weights. Positive connections are represented with
white boxes, and negative connections with black boxes.
Weights with near-zero values do not appear in the
figure. The weights along the diagonal represent self-
connections. This network was habituated to an ‘ABA’
structure; redundant units were thus 1-4 and 9-12.

Figure 5 Weight diagram of a representative network, after
habituation and before testing. Columns represent weights
feeding into specific units. Rows represent the output
connectivity of individual units. Larger weights are represented
by larger boxes. Positive weights are depicted by white boxes,
negative weights by black ones. This network was trained on
‘ABA’ sentences. Regions labeled 1 show weights that encode
relationships between features of A syllables. Relationships
between features of B syllables are identified by regions identified
as 2. Correlations between features of A and B words are
identified in regions labeled 3. Weights that connect the
duplicated features of both A syllables are shown in regions
numbered 4.
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That is, units 1-4 encoded the first A word and units 9—
12 the second, identical A word.

The weight matrix obtained through learning is
essentially an approximation of the correlation matrix
between all features of the three ‘syllables’ over all 16
‘sentences’. What the network learns is thus not
independent of the specific features of the tokens that
were used. However, these are just arbitrary and
random. At the end of habituation to ‘ABA’ sentences
for example, what the network has learned can be
broken down into four distinct components (identified
by corresponding numbered regions in Figure 5).

First, to what extent are the activations on different
features of A ‘syllables’ correlated with one another (all
pairwise correlations within units 1-4, within units 9-
12, and between units of banks 1-4 and 912 except for
corresponding units 1 and 9, 2 and 10, 3 and 11, and 4
and 12)? These correlations capture the similarity of the
four A ‘syllables’ in the training set. For example, this
network learned that the first and second features of A
‘syllables’ were negatively correlated.

Second, to what extent are activations on features of B
‘syllables’ are correlated with one another (all pairwise
correlations within units 5-8)? This refers to the
similarity of the four B ‘syllables’ the network was
presented. This network learned, for example, that the
first and second features of B ‘syllables’ were also
negatively correlated.

Third, to what extent are activations on features of A
‘syllables’ correlated with B ‘syllables’ (all pairwise
correlations between units 1-4 and 5-8, and between
units 5-8 and 9-12)? This captures the similarity
between A and B ‘syllables’ in the training set. For this
network, the first features of A and B ‘syllables’ were
negatively correlated, as were the third and fourth
features. This is reflected in the network’s weights.

Fourth, the network has knowledge that activations
on corresponding units for duplicate A ‘syllables’ are
perfectly correlated (correlations for corresponding
units 1 and 9, 2 and 10, 3 and 11, and 4 and 12). This
last piece of knowledge is crucial because novel
‘syllables’ in the test phase will be dissimilar (to various
random degrees) with all three other pieces of knowi-
edge, but not with the latter one for consistent test
sentences. A and A’ syllables may be considerably
different (where A and A’ are phonemes used in A slots
in habituation and testing phases, respectively), and so
may B and B’ syllables. The similarity between A and B
could be different than that between A’ and B’. Whereas
the network learns something specific from the restricted
training set, there is one source of knowledge that allows
it to distinguish between consistent and inconsistent
‘sentences’ even when novel items are used. This was
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made possible by learning that corresponding features of
both A ‘syllables’ are identical.?

From a psychological perspective, at the end of the
habituation phase, networks have learned what the
prototypical A syllable is, what the prototypical B
syllable is, to what extent A and B syllables are related,
and the temporal organization of these prototypical A
and B syllables. Most importantly, the network will also
have learned that corresponding features of the dupli-
cated A syllable are identical. When testing begins, A’
and B’ syllables will differ from the prototypical A and
B, respectively. The similarity between A’ and B’
syllables may differ from the similarity between A and
B syllables. This will affect consistent and inconsistent
test sentences equally, on average. What the network
learned about the corresponding features in redundant
syllables is critical and is not affected by the introduc-
tion of novel syllables. This is what allows networks to
settle more quickly on consistent than on inconsistent
test sentences.

Discussion

The networks in this simulation of Marcus et al.’s (1999)
Experiment 1 capture what these authors observed in 7-
month-olds. Networks habituated to the initial structure
by learning stable representations. When tested with
novel patterns organized in consistent and inconsistent
structures, they required significantly more pattern
presentations to learn inconsistent items. Marcus and
colleagues (1999) reported that a few infants actually
attended longer to consistent items than to inconsistent
ones; this was observed in a few of our networks as well.
Despite Marcus’s (1999) claim to the contrary, networks
without rules or variables trained on distributed binary
input can capture the underlying structure in their
learning environment and generalize to novel items. In
fact, the weight diagram in Figure 5 represents a
computationally precise form of prototype. Weights
represent both the underlying structure in all sentences
and the specifics of the random set of habituation items
selected from Table 1.

It is worth noting that our coding scheme, distinct
from a coding scheme based on continuous features
represented on fewer units (e.g. Negishi, 1999; Shultz,

8To support this conclusion, we examined the performance of
networks in which either we reset these corresponding weights to zero
after habituation and before testing or we prevented weights for
corresponding features from changing during habituation and testing
phases. In both cases, networks exhibited no significant difference in
number of test cycles for consistent and inconsistent test patterns,
although a significant effect of block was observed (all p values were
greater than 0.05, except for block where p values were less than 0.05).



1999), creates spurious relationships in the habituation
phase. Randomly selecting four patterns as ‘A syllables’
and four patterns as ‘B syllables’ from Table 1 for the
habituation phase results in spurious within-syllable
correlations. By using a distributed encoding scheme, we
assume that all syllables share various levels of similarity
with one another. Given any four patterns, the correla-
tion between the activity of any two units representing
these patterns ranges between —1 and 1. Such correla-
tions will be reflected in the weights of the network at
the end of habituation training. In Figure 5, these
weights can be seen in regions 1, 2 and 3. The spurious
correlations within the test patterns (also randomly
selected from Table 1) will, on average, be inconsistent
with what the network has learned during habituation,
and will therefore slow down processing. However, such
an effect will occur for both consistent and inconsistent
test patterns, and therefore cannot be the source of any
reliable differences observed between the processing of
consistent and inconsistent test patterns.

The fact that networks required significantly more
processing on inconsistent test items emphasizes the
importance of the underlying statistical structure across
the habituation sentence as a whole rather than within
individual syllables. The corresponding weights (region
4 in Figure 5) are the largest between both A syllables,
and are not affected by within-syllable correlations.
When testing begins with novel syllables, networks will
anticipate that the third syllable is the same as the first,
although activations on the units encoding the last
syllable will be somewhat distorted from the within-
syllable correlations learned in the habituation phase
(i.e. the two regions identified as 1 in the bottom-right
corner of Figure 5).

We stress that the performance of our model is based
entirely on statistical learning. There are no rules applied
to variables involved in the performance of the net-
works. Marcus (1999) has argued that neural networks
that use a continuous encoding scheme on local units
actually implement variables, and therefore weights
implicitly implement rules. Although we do not agree

9 For variable bindings to be useful, they have to be preserved and
accessible to further computation, as is the case in explicit variable-
binding schemes. In networks with hidden units between input and
output units, assignments of analog values to inputs are lost as soon as
activation is propagated onto nonlinear hidden units (Shultz, 1999).
But more generally, the notion of variables is only meaningful in the
context of a system that explicitly manipulates variables. Even if the
input to a network is analog, and the network behaves in a rule-like
way, this does not mean that the network performs symbolic
computations on rules and variables. Indeed, the networks in question
do not use rules and variables.
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with this argument,’ it cannot be applied to our
distributed, binary encoding scheme.

Simulation 2: AAB versus ABB

Before moving on to the general discussion, we report
on a second simulation aimed to model Marcus et al.’s
(1999) Experiment 3. In this experiment, which used
‘AAB’ and ‘ABB’ structures, habituation patterns and
both types of test patterns involved a consecutive
duplication of one element (i.e. ‘AA’ or ‘BB’). That is,
both ‘grammar’ types involve immediate temporal
duplication, whereas this was not the case for the
‘ABA’ grammar in Marcus et al.’s (1999) Experiments 1
and 2.

Method

Thirty networks were trained and tested in this
simulation. The procedure was identical to Simulation
1, except that the training patterns were constructed so
as to follow an ‘AAB’ structure. Consistent test items
involved novel syllables organized into ‘AAB’ patterns,
whereas inconsistent test items followed an ‘ABB’
structure.

Results

The networks required an average of 23.4 epochs to
learn in the habituation phase (SD = 2.81). No network
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Figure 6 Mean number of testing cycles required for network
learning of novel consistent (AAB) and inconsistent (ABB) test
patterns by trial in Simulation 2. Error bars show standard
deviations.
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reached the 50 epochs limit. Figure 6 depicts the number
of testing cycles to learn consistent and inconsistent test
items over testing blocks. The average number of
pattern presentations for consistent items was 3.2, 3.1
and 3.1 for test blocks 1, 2 and 3. For inconsistent items,
the average number of testing cycles was 3.4, 3.3 and 3.3,
respectively. Four of the networks required more
pattern presentations for consistent patterns, on aver-
age, than for inconsistent patterns. Testing cycles
required to learn test items were analyzed with a 2 by
3 by 2 repeated-measures analysis of variance, with type
(consistent and inconsistent), block (1-3) and pattern
(first and second) as within-subject factors. The analysis
yielded a significant effect of type (F(1,29) = 13.05,
p <0.05) as well as a significant effect of block
(F(2,58) = 5.23, p<0.05). There was no significant
effect of pattern, nor any significant interaction. The
tests of within-subject contrasts showed a significant
linear trend for block (F(1,29) = 6.99, p <0.05).

Figure 7 shows the weight diagram of a network that
required 23 habituation epochs and required less
processing for consistent test items. These are weights
recorded at the end of the habituation phase. This
diagram should be interpreted as Figure 5 was, with the
exception that units 5—8 encode the second A syllable
and units 9-12 encode the B syllable. Networks at the
end of the habituation phase anticipate the second A
syllable to be identical to the first A syllable. This can be
seen in the square section delimited by rows 1-4 and
columns 5-8. Before the second syllable is introduced,
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Figure 7 Weight diagram of a representative network in
Simulation 2. This network was trained on ‘AAB’ sentences.
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units encoding this syllable will become active in a way
that reflects activity on corresponding units from the
first syllable.

Discussion

Networks in this second simulation capture the results
of Marcus et al.’s (1999) Experiment 3. Auto-associator
networks habituated to the initial patterns and showed
differential recovery to consistent and inconsistent test
items. In this simulation, as in the previous one,
networks generalized what they learned about the
underlying structure in the habituation set to patterns
with novel syllables. In both cases, networks capture
what Marcus et al. (1999) and Pinker (1999) argued can
only be captured by rules with variables.

Another way of characterizing our networks’ perfor-
mance is to say that they learned a type based on a
restricted set of tokens, and that they can generalize
their knowledge of type to novel tokens. This is one way
in which symbol-processing systems process informa-
tion. However, there are no rules, symbols, types or
tokens in our networks. This shows that some of the
functionality of symbol-processing systems naturally
emerges from simple, statistical mechanisms.

General discussion

Our simulations captured the empirical data of Experi-
ments 1 and 3 reported in Marcus et al. (1999).
Networks habituated to the training patterns by forming
stable representations of the input. When presented with
test patterns consisting of novel elements, they required
significantly more processing on patterns that were
inconsistent with the structure underlying the habitua-
tion patterns. We did not report simulations of Marcus
et al’s (1999) Experiment 2, which controlled for
patterns of phonetic features in their Experiment 1,
because their results showed that the pattern of phonetic
features did not matter.

We suggested that the networks implemented a
computational equivalent of the prototype interpreta-
tion of habituation data (Younger & Cohen, 1985). A
prototype is formed by averaging perceptual features of
the various stimuli presented (Rosch, 1978). Infants can
extract more than one prototype when the familiariza-
tion stimuli represent more than one class of items
(Younger & Cohen, 1985). The important point,
however, is that prototypes are constructed by implicit
computations based directly on the perceptual features
of the stimuli. This is different from transforming
perceptual input into variable values upon which



symbolic computations may be carried out. This
symbolic position is advocated by Marcus et al.
(1999), and it requires additional steps compared to
averaging perceptual input (namely, redescribing the
input in symbolic terms and then performing rule-based
computations). Our position, which is that of Sokolov
(1963) as it turns out, is that a model based directly on
the perceptual input can account for the data, without
requiring this input to be translated in symbolic form for
algebraic computations.

Does this mean that the prototype interpretation of
habituation, implemented by the networks, is psycho-
logically correct? As long as equally successful alter-
native accounts can be entertained, the answer is no.
What the success of our simulations suggests, however,
is that the conclusion that 7-month-old infants learn and
use rules as explicit computational mechanisms (Mar-
cus, 1999; Marcus et al., 1999; Pinker, 1999) is at best
premature. Contrary to previous claims, statistical
learning devices can capture these empirical regularities.

Our model requires that the same banks of units are
used for individual syllables, and the distributed coding
scheme further implies similarity between items. The
latter is an important assumption. McClelland and Plaut
(1999) discussed several ‘natural’ encoding schemes of
the phonemes used by Marcus and his colleagues (1999)
that also imply similarity between phonemes.

Similarity and identity are not incompatible, as similar
items (e.g. two dogs) can nevertheless have a unique
identity. Marcus et al’s (1999) interpretation can ignore
similarity because it is based on identity (i.e. rules such as
y = f(x) would not be affected if the various x values were
similar). Unless it is shown that phonemes share no
similarity, and McClelland and Plaut (1999) have argued
against that, our encoding scheme is not what distin-
guishes our model from Marcus et al.’s (1999) interpreta-
tion. Abstract algebraic rules could be successfully applied
to our patterns. The point, however, is that statistical
procedures can also capture the infants’ performance.

Marcus and colleagues (1999) acknowledged experi-
ments that showed a capacity in infants to learn
transitional probabilities (e.g. Saffran et al, 1996).
Because they assumed that statistical regularities could
not be learned in their own experiment, Marcus et al.
(1999) argued that infants possess at least two learning
mechanisms — a statistical learning mechanism sensitive
to transitional probabilities and a mechanism of
algebraic rules for problems such as in their experiments.
What is missing in this dual-process account is an
additional mechanism that knows which learning mode
should be selected for any particular task.

A possible solution to this problem is found in
Marcus (1999), where he suggests that distributed binary
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encoding is appropriate for capturing transitional
probabilities. We have demonstrated that this coding
scheme allows networks to capture underlying structures
such as ‘ABA’ or ‘ABB’ and generalize to novel items; it
may thus be that our auto-associator model provides an
integrated account of both types of habituation data. It
is both simpler and more consistent with other findings
than the account provided by Marcus and colleagues
(1999). Until unequivocal evidence of rule learning in 7-
month-old infants is reported, the interpretation found
in Marcus et al. (1999) and Pinker (1999) is not as
parsimonious.

This is related to the broader issue of interpreting
habituation data (Fischer & Bidell, 1991, 1992). Simpler
perceptual-level accounts have been offered that ques-
tion suggestions of conceptual knowledge, reasoning,
rules, surprise and so on in infants (e.g. Bogartz et al.,
1997; Cohen, 1998; Haith, 1998; Sirois et al., in
preparation). The data obtained in these experiments
are as valuable as any other data, and our paper is one
of the many that testify to the heuristic value of
habituation experiments that investigate infant compe-
tence. However, until a definitive demonstration of
rules, concepts or conceptualized expectation is made in
young infants, we would argue in favor of parsimony.
Perceptual-level accounts should be preferred because
they are simpler and warranted by the procedure.

In a recent paper, Gomez and Gerken (1999) report
findings from experiments similar to those of Marcus
and colleagues (1999). Also using a familiarization
procedure (in which habituation was assumed rather
than measured and individual patterns were not
presented repeatedly in the habituation phase), 1-year-
old infants were trained on speech streams generated by
a finite-state grammar. In four experiments, infants
showed a preference for consistent test items over
inconsistent items. That is, infants attended longer to
novel, consistent items than to novel, inconsistent ones.
This could be problematic for Marcus and colleagues
(1999), and consequently for our model, where novelty
preference rather than familiarity preference is observed.

The stimuli used by Gomez and Gerken (1999) are
more complex than the ones used by Marcus ez al. (1999).
In both cases, the data suggest that infants distinguish
between consistent and inconsistent items. However, the
familiarity preference observed by Gomez and Gerken
(1999) could reflect incomplete learning at the end of the
habituation phase (Hunter, Ross & Ames, 1982). Bogartz
and colleagues (1997) suggest that infants with partial
knowledge could (implicitly) distinguish consistent and
inconsistent stimuli, yet ignore the latter in favor of
appropriately learning the former. When habituation is
assumed rather than measured, the extent of learning
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cannot be assessed. Although infants obviously distin-
guished both types of items, insufficient learning could
have prevented them from exhibiting the novelty
preference observed with Marcus and colleagues’ (1999)
simpler stimuli. Both sets of data may well be compatible.
Whether our auto-associator model could capture Gomez
and Gerken’s (1999) data is beyond the scope of this
paper. Coverage of their data is conceivable because there
are perceptual regularities in their stimuli such as those
that were crucial in the present simulations.

A final issue worth noting is how our auto-associator
model compares with other neural network models of
habituation. Kohonen (1988) proposed the novelty filter
as a neural network model of habituation. Although
both our model and Kohonen’s use the auto-associator
architecture, the learning rules are quite different. At the
end of habituation training, the novelty filter no longer
responds to the habituation items. That is, if a pattern
was part of the habituation set, no unit in the network
will be active when it is presented in the test phase. Units
in the network will be active only when patterns with
novel features are presented. It follows that such a
model would capture the novelty effect (i.e. recovery) in
typical habituation experiments.

The differences between Kohonen’s (1988) model and
the one we present in this paper lead to an empirical
prediction. Our networks can distinguish between the
different habituation items at the end of training. That
is, the output of these networks can serve as useful,
discriminable input to other networks. The novelty filter
on the other hand returns an identical output for all
familiar items; its only use is, as the name implies, to
detect novelty. If infants were empirically shown to
distinguish between habituated items, the novelty filter
would not serve as a good model.

Our auto-associator approach is different from simple
recurrent network (SRN) models, which are explicitly
trained to predict the value of the next item in sequential
tasks. SRNs usually employ hidden units, allowing them
to learn complex nonlinear relationships. Predictive
ability in our networks would be the outcome of
learning simple, first-order statistics between sequential
input values, and not a consequence of training geared
towards prediction. Moreover, our networks can learn
relationships between sequentially distant units. This
allows our auto-associator networks to learn relation-
ships that would elude an SRN. For example, the four
vectors {(—1—-11D(1-1=1)(-111)(11-1)} could be
reproduced in a sequential auto-associator, which would
learn that items 1 and 3 are negatively correlated, but an
SRN could not learn to predict the third item of
individual vectors because the second item is unrelated
to the third item.
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Another important difference between the auto-
associator model and recurrent networks is in how we
have represented time. The temporal window in SRNs is
usually limited to discrete items, because the task is one
of predicting the next item. Such models of Marcus et
al’s (1999) experiments are essentially performing word
parsing. Our model, on the other hand, performs a form
of sequential sentence parsing. That is, the temporal
window is larger. SRNs learn to predict the next word,
whereas our networks learn to represent the whole
sentence, albeit sequentially. Which approach is more
appropriate is an empirical question.

Mareschal and French (1997,2000) presented the
auto-encoder feedforward architecture as a model of
habituation. As in our auto-associator model, such
networks learn to reproduce the input they receive.
However, the input is reproduced on a bank of output
units, and a set of hidden units mediates the propagation
of activation from input to output units. The number of
hidden units is less than the number of units required to
encode patterns on input and output units, and thus
networks must abstract information from the input in a
more compact form in order to reproduce it on output
units (Mareschal & Thomas, in press).

The auto-encoder model shares important features
with a variety of neural network models of Marcus et
al’s (1999) data. Several feedforward architecture
models reportedly capture the distinction between
grammatically consistent and inconsistent items (Chris-
tiansen & Curtin, 1999; Negishi, 1999; Seidenberg &
Elman, 1999; Shultz, 1999). The details of each model,
and their relative success at modeling the Marcus et al.
(1999) data, would deserve a paper in themselves. For
the purposes of the current paper, we highlight two key
distinctions between these models and our auto-asso-
ciator networks.

First, these feedforward models of Marcus e al’s
(1999) data all make an assumption about capturing the
temporal nature of recovery data. Network error on the
various test patterns is used as an index of a model’s
ability to distinguish between classes of test items.
However, it is not clear that this error index will
translate into an analog of infant looking. Sirois and
Shultz (1998) discussed how larger network error does
not necessarily lead to additional processing; in some
circumstances, larger error can actually make learning
faster. In the auto-associator simulations we presented
in this paper, the processing index for test items is
temporal in nature, providing a more direct mapping of
the empirical procedure.

Second, most of these feedforward models of Marcus
et al’s (1999) data make use of hidden units between
input and output. Such networks can learn complex



nonlinear functions. However, networks with a similar
level of architectural complexity are also used to model
cognitive processes in older children (e.g. Elman ez al.,
1996). In the context of the debate over interpretations
of habituation data (e.g. Bogartz et al.,, 1997; Haith,
1998), one question that follows is whether such
powerful networks are necessary to model habituation
in young infants. Our model highlights that the ability to
represent simple linear statistics is sufficient.

To summarize, our simulations of Marcus et al’s
(1999) habituation experiments successfully capture the
reported empirical regularities. This supports an alter-
native, perceptual perspective to these authors’ rule-based
interpretation. We suggest that there is no unequivocal
support for abstract, algebraic rules in 7-month-olds.
Future work aimed at contrasting the various neural
network models of habituation may prove fruitful for the
general goal of explaining infant competence.
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