
4
Developmental Transitions

In this chapter, we consider the second of the two major developmental

issues, namely how children effect transitions from one state or stage of

knowledge to the next. Although issues of transition are widely con-

sidered to be of extremely high priority, it has been reported that

many developmental researchers have not pursued these issues because

they considered problems of transition to be too difficult (Flavell, 1984;

Newell, 1990). This inherent difficulty, combined with nativist argu-

ments about language acquisition and contemporary research dis-

covering various competencies in young infants, has driven work on

developmental transition into the background in recent years. Because of

the abilities of networks to learn and self-organize, neural-network

approaches to development have driven a revival of interest in mecha-

nisms of psychological transition (Bates & Elman, 1993; Elman et al.,

1996). In addition, mainstream psychological work on developmental

transition has continued in at least a few laboratories (e.g., Case, 1985;

Siegler & Jenkins, 1989; Sternberg, 1984).

This chapter opens with a quick overview of both classical and con-

temporary psychological proposals for transition mechanisms and a

computational interpretation of these in terms of connectionist and rule-

based algorithms. It may be possible to achieve a theoretical integration

of these various psychological proposals by considering them from a

computational perspective, particularly from the perspective of a gener-

ative algorithm such as cascade-correlation (as introduced in chapter 2).

Then, as a prelude to a comparative modeling of three case studies of

transition, we present the basics of a leading rule-learning algorithm

called C4.5. After the three case studies (on balance-scale, conservation,

and habituation-of-attention phenomena), we consider four basic theo-

retical issues about transition: How can anything genuinely new be

learned? What is the relation between learning and development? How

might innate determinants operate? And finally, when is it appropriate

to use generative versus static networks in modeling psychological

development?

Proposed Transition Mechanisms

My coverage of influential proposals for transition mechanisms include

both classical Piagetian theory and a variety of more contemporary

ideas.

Piaget’s theory of transition

Because Piaget’s theory is not in much favor these days, a legitimate

question would be, why bother with it? The reason for bothering is that,

despite the critiques it has received, Piaget’s theory remains the single

most serious, ambitious, and influential attempt to describe and explain

cognitive development (Case, 1999; Miller, 1989; Siegler, 1998). Fur-

thermore, detailing Piaget’s theory and giving it a computational inter-

pretation may help to deal with one of the most devastating criticisms—

that the theory is hopelessly vague, particularly when it comes to tran-

sition mechanisms (Boden, 1982; Klahr, 1982). Finally, giving Piaget’s

theory a computational interpretation may help some readers who are

familiar with Piagetian psychology to better understand and appreciate

the computational approach.

Earlier attempts to discuss Piaget in neural-network terms (McClel-

land, 1995; Shultz, Schmidt, Buckingham, & Mareschal, 1995) did not

quite succeed, principally because they focused on Piaget’s older ideas on

assimilation and accommodation, ignoring his more recent notion of

abstraction. The twin processes of assimilation and accommodation may

be relatively easier to understand, and many developmental researchers

have interpreted them as Piaget’s definitive treatment of transition (e.g.,

Gallager & Reid, 1981; Klahr, 1982; Nersessian, 1998; Siegler, 1998).

Assimilation refers to distortion of information from the environment

to fit the child’s current cognitive system (Piaget, 1980). Accommoda-

126 Chapter 4

tion is the contrasting process in which cognition is adapted to external

information. Assimilation and accommodation can be viewed as two

different sides of the same coin, because assimilation typically prompts

accommodation and accommodation, in turn, improves future assimi-

lation. Equilibration is the process that maintains balance between as-

similation and accommodation, ensuring that sufficient accommodation

occurs to enable successful assimilation. The process of equilibration

produces a state of equilibrium. However, such an equilibrium is only

temporary if it occurs within an inadequate cognitive structure. Repeated

conflict between the child’s cognitive achievement and disconfirming

environmental feedback eventually prompts some kind of cognitive

reorganization.

Such reorganization occurs through the process of reflective abstrac-

tion. Reflective abstraction consists of two distinct processes: reflecting,

which is projection to a higher level of what is occurring at a lower level,

and reflection, which is reorganization at the higher level (Piaget, 1980).1

It is possible, and perhaps instructive, to map these Piagetian transi-

tion mechanisms onto computational algorithms used to simulate cogni-

tive development. Perhaps the clearest and fullest such mapping can be

done to the cascade-correlation algorithm, introduced in chapter 2.2 In

this mapping, which is summarized in table 4.1, assimilation corresponds

to the forward propagation of inputs through a network to the output

units, thus generating a response to a stimulus pattern. This forward

propagation occurs without any network modification, and so could

Table 4.1
Mapping Piagetian theory to computational features of cascade-correlation

Piaget Cascade-correlation

Assimilation Forward propagation of inputs

Accommodation Output-weight training

Equilibration Error reduction

Equilibrium Error stagnation

Conflict Error

Reflective abstraction Hidden-unit recruitment

Reflecting Input-weight training

Reflection Output-weight training (after recruitment)

Developmental Transitions 127

represent assimilation of an input pattern to a network’s current struc-

ture (topology) and knowledge (connection weights). Accommodation,

in turn, can be mapped to connection-weight adjustment, as it occurs

in the output phase of cascade-correlation learning. Here a network

changes in response to discrepancy between what it produces (on an

output activation vector) and what it sees in the environment (in a target

activation vector). This implements a process of equilibration in which

error is reduced as weights are adjusted. A state of equilibrium, repre-

senting a balance between assimilation and accommodation, is reached

when weights stop changing. This could be either a permanent equilib-

rium, if error can be reduced to some minimum value, or a temporary

equilibrium, representing the best a system can do with its current com-

putational power. Note that any such changes brought about by weight

adjustment are quantitative changes made within the network’s current

topology. The numbers on the weights change, but the network’s pro-

cessing is not qualitatively different than before. Weight adjustments are

not qualitative changes that create new structures.

More substantial qualitative changes, corresponding to reflective ab-

straction, occur as new hidden units are recruited into the network. In

cascade-correlation, this occurs in two phases. First is the input phase, in

which current input- and hidden-unit activations are projected onto a

new level, that of candidate hidden units. This might correspond to

reflecting in Piaget’s terms. When the system finds the hidden unit best

correlating with network error, it is installed into the network, down-

stream of the input and hidden units that project onto it, with weights

frozen at their current, recently trained levels to ensure that the unit’s

ability to track network error remains unchanged. Then the network

reverts back to an output phase in which it tries to incorporate the newly

achieved representations of the recruited unit into a better overall net-

work solution. This, of course, could correspond to Piaget’s notion of

reflection.

One possible difference between this computational reinterpretation

and Piaget’s original theory is that output-phase weight training can be

identified with both accommodation and reflection, at least after the first

output phase. Both of these processes represent attempts to solve the

problem posed by the training patterns within the current computational

structure, a structure that is changing with experience and development.

128 Chapter 4

Neither Piagetian psychology nor cascade-correlation requires or de-

pends upon this mapping of one theory onto the other. Each is a source

of theoretical ideas that might survive or fall based on psychological

evidence. But linking the two approaches in this way could promote

understanding of one by practitioners of the other and perhaps lead to

new insights about psychological development.

Cascade-correlation was not in any way designed to mimic Piaget’s

theory of transition. Indeed, it was designed instead to improve on the

back-propagation algorithm and perhaps be applied to various engi-

neering problems that require a learning approach. Nor was our choice

of cascade-correlation for simulating psychological development meant

to merely implement Piagetian theory in a computational fashion. In-

deed, the mapping presented here was achieved only recently (Sirois &

Shultz, 2000) and after previous false starts. It represents a fortuitous

and perhaps interesting way to relate the most influential psychological

theory of development to a principal neural-network algorithm for sim-

ulating cognitive development.

How might Piaget’s transition mechanism be mapped to other sim-

ulation methods? Piaget’s views on transition were mapped to back-

propagation learning by McClelland (1989). As I just did, McClelland

likened accommodation to weight adjustment and assimilation to pro-

cessing without any such adjustment. In rule-based learning systems,

assimilation could be construed as rule firing, and reflective abstraction

as rule learning. It is unclear how the full range of Piaget’s ideas on

transition can be accounted for in these alternate approaches. Connec-

tion weight adjustment seems destined to create only quantitative change

within a constant structure. Rule learning, on the other hand, seems to

involve only qualitative change, although quantitative changes in rules

can be implemented in terms of their priority, utility, or certainty of

conclusions, and this could correspond to Piagetian accommodation.

Contemporary views of transition

In comparison to Piaget’s rich and somewhat exotic formulation, con-

temporary views of transition mechanisms can seem a bit pedestrian. A

widely held view from the information-processing perspective that has

dominated cognitive psychology for the past 40 years is that children

develop by learning, more specifically, by altering the contents of long-

Developmental Transitions 129

term memory (LTM). This could mean learning rules, for theorists who

believe that human knowledge is coded in rules (e.g., Newell, 1990), or it

could mean learning other, still somewhat underspecified kinds of de-

clarative knowledge (e.g., Chi, 1978). There is considerable evidence that

not only do children acquire knowledge in many domains but also their

knowledge determines how and how much they can learn. For example,

children who are experts in chess remember more about chess positions

to which they are briefly exposed than do adults who are not experts in

chess (Chi, 1978). These child experts exhibit a case of LTM knowledge

aiding working memory (WM). Despite such occasional cases in which

children can acquire deep expertise, the general idea is that very young

children are universal novices, and that they develop by learning exper-

tise in a variety of domains. On this view, if we could understand how

children build and modify their LTMs, we would identify a transition

mechanism for cognitive development. Acquisition of strategies for in-

formation processing (Siegler & Jenkins, 1989) could also be considered

in terms of changes in LTM.

Other proposals, also from the information-processing approach,

emphasize working memory (WM), rather than LTM, as a source of

cognitive development. There has been a prolonged debate over the pos-

sibility that children gain in WM capacity as they mature. A number

of researchers have proposed that such capacity changes are responsible

for much of the improved cognitive performance seen in children with

advancing age (Case, 1985; Fischer, 1980; Pascual-Leone, 1970). For

example, Case (1985) argued that children can handle a single piece of

information at 3–4 years of age, up to two pieces of information at 4–5

years of age, three at 7–8 years, and four at 9–10 years of age. On a

rule-based theory of cognitive processing, it is a great mystery how chil-

dren ever solve any realistic-sized problems if that is all the information

that they can handle in WM. Recall, for example, the extensive WM

requirements of a production-system treatment of the notion of paternal

grandfather discussed in chapter 3. That was a very simple problem of

inferring who was the paternal grandfather of whom in a small number

of people. Admittedly, the example used a memory-hungry backward-

reasoning program, but even a more modest forward-reasoning program

would require far more WM capacity than Case’s limits.

130 Chapter 4

In general, assessing WM capacity is a huge problem because of the

well-known tendency for such capacity to expand with familiar material,

that is, information stored in LTM. The limit is on chunks of informa-

tion, which can be further broken down into subchunks and so on, using

information about these chunks that is stored in LTM (Miller, 1956).

For example, it is easier to remember alphabetic letters embedded in

familiar words than presented separately, and easier to remember words

in a meaningful sentence than words presented randomly. Thus, because

of the pervasive influence of LTM knowledge on WM processing, the

hypothesis that expansion of WM is a transition mechanism in cogni-

tive development may be essentially untestable.

Another potential problem for the expanding-WM theory of change is

that the cause of any such expansion may not be easy to identify. It has

sometimes been attributed to connectivity changes in the frontal lobes

(Case, 1992) and other times to automatization of mental operations

(Case, 1985). Basically, as mental skills become well-practiced (autom-

atized), this frees up WM for other operations, providing a kind of

functional increase in WM capacity. Consequently, automatization is

often proposed as yet another, independent source of cognitive develop-

ment (Siegler, 1998).

A somewhat related idea is that cognitive development is a function of

increases in processing speed of both WM manipulations and retrieval of

information from LTM (Hale, 1990; Kail, 1986, 1988, 1991). For ex-

ample, 5-year-olds can take up to three times as long to execute the same

mental operation as 14-year-olds. Like differences in WM capacity, dif-

ferences in processing speed could account for large differences in cog-

nitive performance. Such increases could, for example, counteract the

rapid decay of information from WM.

As in the case of changes in WM capacity, there are multiple causal

possibilities here. It might be that processing speed increases with brain

maturation, as suggested by evidence that children who are more physi-

cally mature are mentally faster than children who are less physically

mature (Eaton & Ritchot, 1995). Or it might be that older children and

adults are faster processors because of more practice at cognition, as sug-

gested by evidence that mean processing speeds of younger and older

individuals can be plotted on the same learning curve (Kail & Park, 1990).

Developmental Transitions 131

Yet another modern proposal for a transition mechanism is encoding,

that is, identifying the most relevant and informative features of stimuli

and using these features to form mental representations of the stimuli.

Encoding has figured in several influential theories of transition (e.g.,

Klahr & Wallace, 1976; Sternberg, 1985) as well as being an essential

feature of memory theories (e.g., Brainerd & Reyna, 1990). Encoding is

also likely to be involved in the effect of knowledge on new learning.

Basically, knowledge can focus a learner’s attention on the most impor-

tant features of the material to be learned.

Some of the most convincing evidence on encoding and learning

involves the balance-scale problem, introduced in chapter 3. Siegler

(1976) provided various kinds of balance-scale feedback to 5- and 8-

year-olds who were diagnosed at stage 1 of balance-scale performance.

Children of both ages who received feedback on distance problems

(which are typically failed in stage 1) usually progressed to stage 2. Also,

children of both ages who received feedback only on weight problems

(correctly solved in stage 1) continued to perform at stage 1. However,

only 8-year-olds profited from feedback on the more difficult, conflict

problems, often moving to stage 3, which is characterized by sensitivity

to both weight and distance information.

These training effects were simulated in a back-propagation model in

which age was manipulated by the amount of training (McClelland &

Jenkins, 1991). A network at epoch 20 represented 5-year-olds, and

a network at epoch 40 represented 8-year-olds. When trained on addi-

tional conflict problems, the ‘‘older’’ network quickly progressed to

stage 2, but the ‘‘younger’’ network did not. Examination of connection

weights provided a mechanistic description of how the older network

was more ready to learn than the younger network. Essentially, the

younger network was not yet effectively encoding distance information,

as indicated by a small range of connection weights. Consequently, this

network could not benefit from conflict problems in which distance in-

formation was critically important. In contrast, the older network did

encode distance information, as indicated by a relatively large range of

connection weights, albeit too weakly to actually produce stage 2 be-

havior. Thus, a small amount of additional relevant experience, in the

form of conflict problems, allowed the older network to progress to stage

132 Chapter 4

2. This simulation goes a long way to demystify the notions of readiness

to learn and conceptual precursors.

To test the idea that encoding difficulties prevented 5-year-olds

from benefiting from the conflict-problem feedback, Siegler assessed the

encoding skills of 5- and 8-year-olds diagnosed at stage 1 by asking them

to reconstruct balance-scale configurations from memory after a brief

exposure. While 8-year-olds tended to place the correct number of

weights on the correct pegs, showing that they encoded both distance

and weight information, 5-year-olds tended to place the correct number

of weights on the wrong pegs, suggesting that they were not encoding

distance information. Furthermore, 5-year-olds at stage 1 who were

trained to encode distance information did in fact benefit from exposure

to conflict problems. Thus, only those who are encoding distance infor-

mation can benefit from feedback that shows the utility of distance in-

formation. The relevance of these ideas to the notion of developmental

precursors is discussed in chapter 5.

Another candidate transition mechanism is generalization, the exten-

sion of knowledge to contexts outside of the ones in which the knowl-

edge was acquired. According to Klahr and Wallace (1976), children

develop by remembering details about events, detecting regularities in

those events, and eliminating redundancies in processing, all of which

result in more general knowledge.

A final proposal for a transition mechanism is representational rede-

scription. Karmiloff-Smith (1992) argued that much of cognitive devel-

opment is driven by redescribing existing cognition at higher levels of

abstraction. This serves to make implicit knowledge more explicit and

potentially available to other parts of the cognitive system.

Integration of transition mechanisms

Because the foregoing list of transition mechanisms appears to be fairly

comprehensive, it might be interesting to ask whether these mechanisms

could possibly be integrated in some way. Or are they simply indepen-

dent and competing proposals? Just as it was possible to map Piaget’s

transition theory onto the cascade-correlation algorithm, I believe that it

is possible to integrate the various contemporary proposals into a com-

putational description based on cascade-correlation. Such an exercise

Developmental Transitions 133

shows how the different proposed mechanisms may be related to each

other and clarifies whether they do in fact qualify as causes of devel-

opmental transitions.

Learning LTM content, whether it consists of rules or other de-

clarative material, is clearly within the grasp of neural-network learning

algorithms. As noted in chapter 2, LTMs are encoded in a network’s

connection weights. The possibility of implementing acquisition of new

strategies in the same fashion is quite straightforward. Indeed, just as

rules were considered as epiphenomenal descriptions of processes at the

subsymbolic level (in chapter 3), so strategies too can be considered

as epiphenomenal descriptions. Symbolically formulated strategies and

rules are both more in the heads of symbolically minded psychologists

than in the heads of the children they are studying. Such high-level

descriptions can provide a kind of summary or abstract characterization

of what is going on at the network level, but there is a sense in which the

characterization is not what is really going on.

Progressive enhancement of WM capacity might be somewhat more

difficult to implement in feed-forward learning algorithms. Indeed, sys-

tematic neural-network modeling of WM is only just beginning. In

chapter 2, I noted that transient activation patterns across a network

implement active memory (AM). Although such patterns might well

characterize the transient patterns of conscious cognition, they would

not suffice for maintaining slightly longer memories for these events. I

also noted in chapter 2 that recurrent connections in feed-forward net-

works implement a kind of WM for network processing over time. Still

other neural techniques employ intermediate WM units that remain

active for a longer period than conventional units, for example, until

receiving another input signal (Guigon & Burnod, 1995). Although I am

unaware of any efforts to simulate differences in WM capacity in such

models, it would seem feasible to do so, perhaps by varying the number

of recurrent connections or the number of WM units.

Similarly, it should be possible to simulate the effects of LTM, in terms

of both chunking and automatization, within neural-network models. In

general, the more of a task that is accomplished in LTM via connec-

tion weights, the less there is for other, for example WM, components to

undertake.

134 Chapter 4

At first glance, processing speed would seem to be impenetrable by

feed-forward neural-network models, because they propagate activation

from inputs to outputs in a single time step. However, as noted in chap-

ter 3, auto-associator networks (among other techniques) can be used to

implement latencies for responses that are generated by feed-forward

networks. Generally, those responses that generate the most error in a

feed-forward network require the longest cleanup times in an appended

auto-associator network. So it is entirely reasonable to expect that as

error decreases logarithmically over training, response latencies would

also decrease logarithmically, as they do in developing humans. Endoge-

nous changes in processing speed having more to do with brain matura-

tion could perhaps be implemented by variation in the learning rate in

feed-forward networks or in the update rate in auto-associator networks.

Encoding is very straightforward to deal with in neural-network terms.

As a feed-forward network is trained, it learns to encode stimulus pat-

terns onto its hidden units and decode the hidden-unit representations

onto output units. Thus, encoding, rather than being a cause of LTM

change, is more properly viewed as yet another symptom of network

learning. A network learns which inputs it should focus on to solve its

current problem by reducing error vis-à-vis target-signal feedback.

In a similar fashion, generalization should be regarded, not as an in-

dependent cause of developmental transitions, but rather as a natural

outcome of network learning. Networks inevitably try to assimilate new

patterns to their existing topology and knowledge, that is, generalize, but

their accuracy in doing so usually increases with training on representa-

tive patterns.

Many of these integrations apply to a wide variety of neural-network

algorithms. However, a few transition ideas, such as reflective abstrac-

tion and representational redescription, would appear to be uniquely

implemented in generative algorithms such as cascade-correlation. In

cascade-correlation, newly recruited hidden units receive input from

network input units and from any previously installed hidden units. The

hidden units thus effectively redescribe developmentally earlier com-

putations (Shultz, 1994). Because high-level hidden units receive both

raw descriptions of inputs (through direct cross-connections) and inter-

preted descriptions from previous hidden units, they permit ever more

Developmental Transitions 135

sophisticated interpretations of problems in the domain being learned.

Cascaded hidden units thus afford the construction of increasingly pow-

erful knowledge representations that were not available to developmen-

tally earlier instantiations of the network.

This integration shows how all of these proposed transition mecha-

nisms can be viewed, not so much as separate causal mechanisms, but as

natural byproducts of neural-network functioning. It also shows how

they might work together to generate cognitive development.

Rule Learning

To undertake a comparative analysis of connectionist versus rule-based

developmental modeling, we need a symbolic rule-learning program. Of

the three most prominent of such programs in the academic marketplace

today (Soar, ACT-R, and C4.5), I decided on C4.5, a symbolic learn-

ing algorithm that builds a decision tree to classify examples (J. R.

Quinlan, 1993). The decision tree, in turn, can be easily transformed into

production rules. We saw a glimpse of C4.5 in action at the end of

chapter 2, where I perversely used it to learn rules for selecting particular

neural-network models.

There were four main reasons for selecting C4.5 over other worthy

candidates. First, C4.5 has more successful developmental models to its

credit than any other symbolic algorithm. There are four such models in

the literature, covering the balance scale (Schmidt & Ling, 1996), past-

tense morphology in English (Ling & Marinov, 1993; Ling, 1994),

grammar learning (Ling & Marinov, 1994), and reading (Ling & Wang,

1996). There is also a simulation of nonconscious acquisition of rules

for visual scanning of a matrix (Ling & Marinov, 1994), which is not

particularly developmental, and a large number of applications to real-

world problems in machine learning and decision support. Second, in the

case of two alternative symbolic rule-learning algorithms applied to the

same problem, the balance scale, C4.5 produced a better model (Schmidt

& Ling, 1996) than did Soar (Newell, 1990). The C4.5 model was

superior in the sense that it covered acquisition of all four balance-scale

stages, whereas Soar reached only stage 3, and C4.5 provided coverage

of the torque-difference effect, which Soar did not, and presumably could

136 Chapter 4

not, cover. In the field of machine learning, this kind of direct, head-to-

head competition is often called a bakeoff. Third, C4.5 can actually learn

rules from examples, just as connectionist models do. It does not need

the extensive background knowledge that Soar and ACT-R seem to re-

quire to learn new rules. Finally, C4.5 shares other interesting similarities

with cascade-correlation. Both algorithms use supervised learning, focus

on the largest current source of error, gradually construct a solution,

and aim for the smallest possible solution. C4.5 is, in short, the most

plausible symbolic rule-learner to choose for a bakeoff with cascade-

correlation. It is not in any sense a ‘‘straw man’’ algorithm selected only

to showcase the abilities of cascade-correlation. Nonetheless, it would be

interesting to see other researchers try alternate rule-based models in the

domains used in the present bakeoff.

The C4.5 algorithm is a direct descendant of the ID3 (Induction of

Decision trees) algorithm (J. R. Quinlan, 1986). ID3, in turn, was

derived from the CLS (Conceptual Learning Systems) algorithm (Hunt,

Marin & Stone, 1966).

As we saw in chapter 2, C4.5 processes a set of examples in attribute-

value format and learns how to classify them into discrete categories in

supervised learning that uses information on the correct class of each

example (J. R. Quinlan, 1993). The learned class description is a logical

expression containing statements about the values of attributes, and is

equally well formulated as a decision tree or as a set of production rules.

A decision tree is either a leaf, indicating a class, or a decision node,

which specifies a test of a single attribute with a subtree for each value

or possible outcome of the test. Unlike related statistical algorithms,

such as Classification and Regression Trees (CARTs) (Breiman, Fried-

man, Olshen & Stone, 1984), C4.5 can form more than two branches at

each decision node, at least with discrete attributes. In my experience,

this makes for smaller and more sensible trees than is possible with mere

binary branching. C4.5 handles continuous-valued attributes as well, but

only with binary branching. The basics of the C4.5 algorithm are quite

simple, and the key procedure is exceptionally elegant. It is called learn

in my version, and it has examples and attributes as arguments:

1. If every example has the same predicted attribute value, return it as a

leaf node.

Developmental Transitions 137

2. If there are no attributes, return the most common attribute value.

3. Otherwise, pick the best attribute, partition the examples by values,

and recursively learn to grow subtrees below this node after removing

the best attribute.

Consider the sample classification problem in table 4.2 (from J. R.

Quinlan, 1993). It has 14 examples, each characterized by five attributes,

one of which is the classification to be learned, in this case whether or

not to play outside. Among the predictive attributes, two are discrete

(outlook and wind), and two are continuous (temperature and humidity).

The basic idea in C4.5 learning is to find a small tree that reveals the

structure of the problem and has sufficient predictive power to gen-

eralize to new examples. As with neural networks, small solutions are

most likely to avoid overfitting the training data and to provide the

best generalization to test patterns. Like most inductive problems, dis-

covering such a tree is not trivial. For example, 4� 106 ¼ 4 million

trees are consistent with an entirely discrete version of the play example.

In the jargon of computer science, such difficult problems are called

Table 4.2
Hypothetical examples for deciding whether or not to play

Example
(day) Outlook

Tempera-
ture Humidity Wind Play?

1 Sunny 75 70 Strong Yes

2 Sunny 80 90 Strong No

3 Sunny 85 85 Weak No

4 Sunny 72 95 Weak No

5 Sunny 69 70 Weak Yes

6 Overcast 72 90 Strong Yes

7 Overcast 83 78 Weak Yes

8 Overcast 64 65 Strong Yes

9 Overcast 81 75 Weak Yes

10 Rain 71 80 Strong No

11 Rain 65 70 Strong No

12 Rain 75 80 Weak Yes

13 Rain 68 80 Weak Yes

14 Rain 70 96 Weak Yes

Source: Quinlan, 1993

138 Chapter 4

NP-complete (nonpolynomial complete) (Hyafil & Rivest, 1976). Gen-

eralization is a wonderful thing, but it is by no means clear, even

in toy examples like this one, which is the best generalization and how

it can be learned in a reasonable time. There is certainly not enough time

to generate all possible trees and then choose the smallest or the one that

generalizes best.

Thus, it is important in algorithms like C4.5 to make good decisions

about which attribute to use to expand each node of the developing tree.

Most decision-tree algorithms are greedy, meaning that they do not

backtrack. Once an attribute to test has been selected, the tree is stuck

with that choice, which underscores the importance of making good

choices of attributes to test. Normally, the only information available for

choosing a test attribute is the distribution of classes (play/don’t play) in

the examples and their subsets. C4.5 looks over those distributions at

each node to be expanded and chooses the attribute that provides the

most information about classification. The information contained in a

message depends on its probability and is measured in bits as minus the

base 2 log of that probability. For example, if there are eight equally

probable messages about the classification of an example, the informa-

tion in any one of them is �log2ð1=8Þ or 3 bits of information. C4.5

picks an attribute that maximizes the information gained by partitioning

the examples on that attribute.

The information gained by a particular partition of example set S is

defined as the difference between the current information and the parti-

tioned information:

IGðSÞ ¼ IðSÞ � IPðSÞ ð4:1Þ

Here the current information is

IðSÞ ¼ �
X

j

Pj � log2 Pj ð4:2Þ

and the partitioned information is

IPðSÞ ¼
X

i

Pi � IðSÞi; ð4:3Þ

with Pj as the proportion of examples in class j and Pi as the proportion

of examples in subset i in the total set S.

Developmental Transitions 139

J. R. Quinlan (1993) reports better results on some problems when

information gain is scaled by split information to create a gain ratio:

GRðSÞ ¼ IGðSÞ
SIðSÞ ð4:4Þ

Split information is the information generated by partitioning the set of

examples S into the same number of outcomes o that would be achieved

by applying a particular test:

SIðSÞ ¼ �
Xo

i

Pi � log2 Pi ð4:5Þ

A trace of C4.5’s learning the examples in the play problem with the

gain-ratio option is shown in table 4.3. To provide this trace, I asked for

the gain ratios of each attribute to be printed along with the name of the

selected attribute and for the resulting partition of examples. In the case

of continuous attributes like temperature and humidity, C4.5 tried a

binary split between each consecutive value in the training examples. In

each case, it selected the attribute with the highest information gain ratio

to partition the examples. As it happens, the first attribute chosen is

outlook, which partitions the examples into three groups, one of which

(overcast) has all its examples in one class (play). This is the sort of result

that C4.5 is always trying to achieve, to create homogeneous classes of

examples through its partitions. The attributes of wind and humidity,

respectively, supply the highest gain ratios in the next two rounds. In the

case of humidity, which is a continuous-valued attribute, the best split is

between 78% and 79%.

The decision tree created by this learning is shown in table 4.4. Read-

ing from left to right and top to bottom, the tree shows the selected

attribute, its values, and then further selected attributes and their values,

leading eventually to the classes of the predicted attribute. For example,

if the outlook is for rain and the wind is strong, then we won’t play.

Production rules for a tree can be created in just this fashion, by follow-

ing every path from the root of a tree to a leaf, representing a particular

class. Each such path creates one rule. Thus, C4.5 learned to classify the

play examples correctly with just 5 rules. In the case of this particular

tree, all of the training examples are correctly classified, but in general

there is no guarantee that this will happen on every learning problem.

140 Chapter 4

Table 4.3
Trace of play problem in C4.5

gain of outlook ¼ 0.156

gain of temperature ¼ 0.017

gain of temperature ¼ 0.001

gain of temperature ¼ 0.048

gain of temperature ¼ 0.048

gain of temperature ¼ 0.001

gain of temperature ¼ 0.001

gain of temperature ¼ 0.029

gain of temperature ¼ 0.001

gain of temperature ¼ 0.017

gain of humidity ¼ 0.017

gain of humidity ¼ 0.048

gain of humidity ¼ 0.092

gain of humidity ¼ 0.109

gain of humidity ¼ 0.029

gain of humidity ¼ 0.017

gain of wind ¼ 0.049

choose attribute outlook

partition ((rain day14 day13 day12 day11 day10)

(overcast day9 day8 day7 day6)

(sunny day5 day4 day3 day2 day1))

gain of temperature ¼ 0.650

gain of temperature ¼ 0.650

gain of wind ¼ 1.000

choose attribute wind

partition ((strong day10 day11) (weak day12 day13 day14))

gain of temperature ¼ 0.650

gain of temperature ¼ 0.797

gain of humidity ¼ 1.000

gain of humidity ¼ 0.797

gain of wind ¼ 0.650

choose attribute humidity

partition ((79 day2 day3 day4) (78 day1 day5))

Developmental Transitions 141

One of the options in my version of C4.5 is to use randomly selected

attributes and partitions. This allows us to see how effectively the infor-

mation-optimization technique in C4.5 is working. Over 20 runs on the

play problem, the mean number of rules learned with random partition-

ing, indexed by the number of leaves in the decision tree, was 9.35. The

mean proportion of correctly classified training examples was 0.93, as

9 of the 20 solutions produced two or more mistaken classifications.

In contrast, with information optimization turned on, we achieved

errorless performance and did so with only 5 rules. This shows that the

information-optimizing technique in C4.5 is quite successful in produc-

ing compact rule sets and correct learning.

One of the parameters in C4.5 is m, the minimum number of examples

to be classified under an attribute value. That is, to be used as a new

decision node, an attribute must have at least two values, each of which

classifies at least m examples. According to J. R. Quinlan (1993), the m

parameter was designed to avoid selecting attribute tests in which nearly

all of the examples have the same outcome, because that can lead to trees

with little or no predictive power. More interesting for our purposes is

that developmental modelers use m to control the depth of decision trees.

Small values of m create deeper trees, whereas larger values of m create

shallower trees. As we will see, however, the use of m in developmental

models has not always been consistent across C4.5 models.

With this powerful rule-learning algorithm in our arsenal of simula-

tion weapons, we can now hold a bakeoff pitting cascade-correlation

Table 4.4
Decision tree learned in play problem by C4.5

outlook

¼ rain

wind

¼ strong) no

¼ weak) yes

¼ overcast) yes

¼ sunny

humidity

¼ 79) no

¼ 78) yes

142 Chapter 4

against C4.5, and occasionally other algorithms used by other research-

ers when they are available in the literature. In each domain, our interest

is in determining whether a connectionist or symbolic algorithm provides

the better model of developmental transitions. The three domains that

I consider here are the balance scale, conservation, and habituation of

attention.

Balance-Scale Stages

The balance-scale problem was described in chapter 3, where I noted

that it has become a major benchmark for computational modeling of

development. The clarity and replicability of balance-scale phenomena,

coupled with the classical developmental appeal of its stagelike charac-

ter, have led to both rule-based models (Klahr & Siegler, 1978; Langley,

1987; Newell, 1990; Schmidt & Ling, 1996) and connectionist models

(McClelland, 1989; Shultz, Mareschal, & Schmidt, 1994). Whereas in

chapter 3 we focused on representational issues and the torque-difference

effect, here we focus on issues of transition, namely the ability of com-

putational models to capture transitions between the various balance-

scale stages. In other words, does a model produce unaided transitions to

all four balance-scale stages?

Simulating transitions is not all that easy, and this allowed us to

quickly eliminate several of the models that did not quite work. One

rule-based model that used hand-written rules to represent each stage did

not develop at all (Klahr & Siegler, 1978). Another rule-based model,

using a discrimination-learning technique to learn from initial hand-

written rules, developed only stage 3 and lacked the other three stages

(Langley, 1987). Another, using the Soar program, which learns pro-

duction rules by chunking together the results of look-ahead search,

captured the first three stages, but failed to reach stage 4 (Newell, 1990).

A static neural-network model, using back-propagation learning, like-

wise captured the first three stages, but never permanently settled into

the final stage, and instead perpetually alternated between stages 3 and 4

(McClelland, 1989).3

Indeed, some researchers attempted to turn an apparent bug into a

feature by arguing that, because many people never reach stage 4 of

Developmental Transitions 143

the balance scale either, these models that failed to reach stage 4 were

actually realistic. Unfortunately, this ignores the fact that some lucky

(or at least skilled) individuals actually do reach stage 4, which makes

it incumbent on any truly comprehensive model to capture that final

transition.

The only two models that capture all of the stage transitions on the

balance-scale task are a C4.5 model (Schmidt & Ling, 1996) and a

cascade-correlation model (Shultz, Mareschal & Schmidt, 1994). Let’s

see how they do it.

A cascade-correlation model

Our cascade-correlation model was largely inspired by McClelland’s

(1989) pioneering back-propagation model, but with some critical dif-

ferences. There were four input units, one bias unit, and two output units

in the initial networks (Shultz, Mareschal & Schmidt, 1994). The input

units coded information on the number of weights and the distance from

the fulcrum at which they were placed on each side of the beam. Of the

four input units, one coded left-side weight, a second left-side distance, a

third right-side weight, and a fourth right-side distance. Integers from 1

to 5 coded these values. On the output side, there were two units with

sigmoid activation functions that represented balance-scale results in a

distributed fashion. A left-side-down outcome was coded by excitation

of the first output unit and inhibition of the second output unit. A right-

side-down outcome was coded by the reverse pattern. A balanced out-

come was coded by neutral values on both output units. Our networks

typically recruited between one and three hidden units, which also had

sigmoid activation functions.

There were 100 initial training patterns, randomly selected from 625

possible five-peg, five-weight problems. Critically, training patterns had a

substantial bias in favor of equal-distance problems (i.e., balance and

weight problems, as seen in figure 3.5). On each epoch in output phases,

another training pattern was randomly selected and added to the training

patterns, subject to the same equal-distance bias. Thus, the training set

was gradually expanded, with one new pattern added in each output-

phase epoch. This expansion of the training set assumes that the child’s

learning environment gradually changes and that these changes are

144 Chapter 4

characterized by exposure to more aspects of the balance-scale world.

The large bias in favor of equal-distance problems reflects the assump-

tion, originally made by McClelland (1989), that although children have

lots of experience lifting differing numbers of objects, they have relatively

little experience placing objects at varying discrete distances from a ful-

crum. Without this training bias, networks would skip stages 1 and 2

and move directly to stage 3.

Twenty-four randomly selected test patterns were balanced for both

problem type and torque difference, so that there were four patterns

from each of Siegler’s six problem types (as portrayed in figure 3.5). For

each problem type, one pattern was selected from each of four different

levels of torque difference. At each output-phase epoch, networks were

tested with these 24 test patterns. Any test problem in which both out-

puts were within score-threshold of their correct targets was scored as

correct; any other test problems were scored as incorrect. This was the

first, and possibly only, time in which torque differences and problem

types were unconfounded, thus making stage diagnosis more definitive.

We wrote software to diagnose stages by examining the patterns of cor-

rectly and incorrectly answered problems, following Siegler’s (1976,

1981) rule-assessment method with children.

Stage-diagnosis results revealed that 11 of the 16 networks progressed

through all four stages in the correct (1, 2, 3, 4) order. Two other net-

works progressed through the first three stages, but did not reach stage 4

(1, 2, 3). One network missed stage 3, but got the other three stages in

the correct order (1, 2, 4). Another network showed stages (1, 2, 4) with

regression back to stage 3 and then to stage 2. And finally, one network

showed stage 1 and then stage 2. With continued training beyond our

limit of 300 epochs, such networks do tend to converge on stage 4.

Overlap between diagnoses of adjacent stages near transition points

reflected the tentative nature of some stage transitions. Most often, there

was a brief period of going back and forth between two consecutive

stages before a network settled into the more advanced stage.

In summary, these cascade-correlation networks learned to perform on

balance-scale problems as if they were following rules. We sometimes

observed developmental regressions and stage skipping, and stage tran-

sitions tended to be somewhat soft and tentative. Longitudinal studies in

Developmental Transitions 145

other psychological domains suggest that such phenomena are charac-

teristic of cognitive development (Siegler & Jenkins, 1989). The cross-

sectional research designs used with children on the balance scale are not

well suited for investigating issues of stage skipping and regression. Stage

skipping, in particular, would require very small time slices to verify that

children actually missed a stage. Some regression to earlier balance-scale

stages has been noted in existing cross-sectional research (Chletsos, De

Lisi, Turner & McGillicuddy–De Lisi, 1989; Siegler, 1981).

Unlike McClelland’s (1989) back-propagation network, these cascade-

correlation networks did not require hand-designed hidden units, segre-

gated with separate channels for weight and distance information. Also

in contrast to McClelland’s network, cascade-correlation networks could

stay in stage 4 without sacrificing earlier progression through stages 1

and 2. As noted in chapter 3, neural-network models, whether static or

generative, naturally produce the torque-difference effect.

A C4.5 model

The C4.5 model also employed a five-peg, five-weight version of the

balance scale (Schmidt & Ling, 1996). When the predictor attributes

were raw integer values of weights and distances, as in the cascade-

correlation model, C4.5 was not able to capture the stages seen in chil-

dren. These four values had to be supplemented with the following three

predictor attributes: whether the problem presented an equal number of

weights at equal distances from the fulcrum (yes or no), the side with

greater weight (left, right, or neither), and the side with greater distance

(left, right, or neither). These three additional attributes essentially rep-

resent further processing of the raw weight and distance numbers, com-

puted not by the C4.5 algorithm but by the researchers, who happen to

know what is important in learning how to make accurate balance-scale

predictions. In the training patterns, there was no bias in favor of equal-

distance problems, but there was a bias in favor of simple balance prob-

lems (with equal weight and equal distance). Because there are only 25

simple balance problems in the total set of 625 problems, these 25 had to

be tripled in frequency. The only justification provided for this, and for

the explicit coding of simple balance, was the argument that balance is

salient to children. The model was run 100 times, starting with an m of

80 and decreasing by 1 on each run until m was equal to 1 for the last 20

146 Chapter 4

runs. As expected, the progressive decrease in m created deeper and

deeper trees until completely correct classification was achieved when m

became 1. The authors considered decreasing m to implement an in-

crease in some unspecified mental capacity.

Rule diagnosis was carried out as in the cascade-correlation simu-

lations and was found to reproduce the correct sequence of stages. Be-

cause rule diagnosis depends somewhat on the order in which the stage

criteria are applied, two different orders were tried, one with higher

stages having priority over lower stages and another with the reverse

set of priorities. With the former order (4, 3, 2, 1), there was no stage

skipping and no regression; with the latter order (1, 2, 3, 4), there was

some regression from stage 3 to stage 2, but no stage skipping. A torque-

difference effect was found only at stage 3, but not at the other three

stages. Rules at each stage were found to be similar to those formulated

by Siegler (1976) from his experiments with children.

To simulate the torque-difference effect, the predictor attributes of

which side had greater weight or greater distance were converted to

continuous variables by subtracting the right-side value from the left-side

value. Under these conditions, a torque-difference effect was found at

every one of the four stages. A sample decision tree that generates stage 3

performance is presented in table 4.5. At stage 3, children emphasize

weight and distance information about equally, but succeed only on

Table 4.5
Decision tree learned on the balance-scale problem by C4.5 at m ¼ 50

equal weights and equal distances

¼ yes) balance

¼ no

greater weight

a�1

greater distance

a1) right side down

>1) left side down

>�1

greater distance

a�1) right side down

>�1) left side down

Adapted from Schmidt and Ling, 1996

Developmental Transitions 147

simple problems in which weight and distance information do not con-

flict. An English gloss of one of the rules from the decision tree in table

4.5 is as follows: if there are not equal weights and distances on each

side, the right side has one or more weights than the left side, and the

left-side distance is one or less than the right-side distance, then predict

that the right side should go down. Even though such rule sets cover the

torque-difference effect, it is apparent that they no longer resemble the

rules formulated for children, emphasizing, as they do, weight and dis-

tance differences between one side and the other.

On the positive side, this C4.5 model does cover the basic psychologi-

cal phenomena in the balance-scale literature—the stage transitions and

the torque-difference effect—and it is the first and only symbolic rule-

based model to do so. On the negative side, the reasons for C4.5 cover-

age do not seem as natural or principled as those behind the coverage

achieved by cascade-correlation networks. First, to capture the stage

transitions, it is necessary to extensively preprocess predictor attribute

values, with codes for equal weights and distances and explicit compar-

isons of one side to the other on both weight and distance. Second, to

ensure that weight information is initially given more attention than dis-

tance information, it is necessary to list the weight attributes before the

distance attributes, thus capitalizing on the arbitrary characteristic of

C4.5 to break ties in information gain by picking the first-listed attribute.

Third, to capture the torque-difference effect, it is necessary to use con-

tinuous-valued weight and distance differences among the predicting

attributes. This has the unfortunate side effect of rendering the rules

learned by C4.5 unrealistic in comparison to those diagnosed in children.

Fourth, unlike cascade-correlation models, there is no variation in per-

formance. Every run at a given level of m produces exactly the same

decision tree. Finally, developmental transitions depend entirely on de-

creasing the m parameter to create ever deeper decision trees. It is cur-

rently unknown what sort of mental capacity m corresponds to, but

worse yet, the m parameter has to be increased, rather than decreased, to

cover other developmental phenomena (Ling, 1994; Ling & Marinov,

1993). To date, it has not been explained how and why this unspecified

mental capacity increases for some developmental phenomena and de-

creases for others.

148 Chapter 4

Conservation Acquisition

The conservation problem and its associated psychological phenomena

were described in chapter 3, where it was noted that production rules

can be written that mimic conservation responses of both younger and

older children. Here I describe a bakeoff competition between cascade-

correlation and C4.5 to determine their relative success in capturing

these phenomena while actually acquiring conservation. Only the

cascade-correlation model has been published; the C4.5 model is created

here especially for the bakeoff.

As noted in chapter 3, inputs to the cascade-correlation networks

included descriptions of how the rows appear in terms of length and

density, both before and after one of them is transformed, as well as the

nature of the transformation and the identity of the row to which it is

applied (Shultz, 1998). Row lengths and densities were indicated by real

numbers in the range of 2–6. On the output side, the networks had to

learn to predict the identity of the row that had the greater number of

items, or whether the two rows had an equal number of items, where

number was equal to the product of length and density. Making these

problems more difficult, but also more realistic, was that the initial rows

could be either equal or unequal in number. Otherwise, merely learning

to give a conservation-of-equality answer to every problem becomes

really trivial. For each network, 420 training problems and 100 test

problems were randomly selected from the 600 possible conservation

problems of these sizes.

As might be guessed from the knowledge-representation analyses at

the end of chapter 3, these networks did succeed in learning how to

conserve. At the end of training, they got virtually all of the train-

ing patterns correct and a mean of 95% of the test problems correct,

indicating that the successful performance was not merely a matter of

memorizing the training patterns. Conservation acquisition for a repre-

sentative network is presented in figure 4.1 in terms of the proportion

correct on training and test problems. A sudden increase in conservation

performance is evident after recruiting the second hidden unit, indicated

by the second triangle. A regression analysis documented that these

networks in general showed a large, sudden jump in performance that

Developmental Transitions 149

mirrored that observed in a longitudinal study of children (Raijmakers,

van Koten & Molenaar, 1996). Finally, as noted earlier, the cascade-

correlation networks were able to cover a variety of other conservation

phenomena, including the problem-size effect, length bias, and screening

effect.

Because the training patterns used in the cascade-correlation simu-

lations were designed to be comprehensive and neutral with respect to

theories and models, the first C4.5 model was also trained with them,

with suitable modification in formats. Because training patterns were

randomly selected, it was meaningful to perform multiple runs. This

first C4.5 model, trained on the same examples as were the cascade-

correlation networks, yielded a mean over 20 runs of only 40% correct

on training patterns and 35% correct on test patterns.

Now, a failed model is not by itself particularly informative. I some-

times tell my students that building a failing model is about as meaning-

ful as tripping over a rock—anyone can do it, and it doesn’t mean much.

So my strategy was to change the input coding until C4.5 learning be-

came successful. Then we can evaluate what is required to learn success-

fully in terms of the psychological coverage it provides. Therefore, I next

tried coding the conservation problems in relational terms, much like

Schmidt and Ling (1996) did for balance-scale problems. Pre- and post-

transformation length and density were each coded according to whether

Train
Test
New hiddens

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Output epochs

P
ro

p
o

rt
io

n
 c

o
rr

ec
t

Figure 4.1
Acquisition of conservation in a representative cascade-correlation network.

150 Chapter 4

the first row had more than the second, the second had more than the

first, or the two rows were the same. This produced C4.5 decision trees

with 100% correct responses on both training and test patterns.

A representative decision tree from these runs is presented in table 4.6,

where the rows are referred to by L for left and R for right. An English

gloss of one of the rules in this tree would read as follows: if the left row

is longer than the right row before the transformation and shorter than

the right row after the transformation, then the left row has more items.

Table 4.6
Conservation decision tree learned by C4.5 with relational coding

length1

¼ (l > r)

length2

¼ (l ¼ r)) equal

¼ (l < r)) left

¼ (l > r)) left

¼ (l < r)

transform

¼ left

length2

¼ (l < r)) right

¼ (l > r)) right

¼ (l ¼ r)) equal

¼ right

length2

¼ (l ¼ r)) equal

¼ (l < r)) right

¼ (l > r)) right

¼ (l ¼ r)

length2

¼ (l > r)

density2

¼ (l ¼ r)) left

¼ (l < r)) equal

¼ (l < r)

density2

¼ (l ¼ r)) right

¼ (l > r)) equal

Developmental Transitions 151

All of the C4.5 runs produced rules like this, none of which made any

reference to either the transformation that was applied or the identity of

transformed row, both of which are supposed to be critical in older

children’s successful conservation performance (Piaget, 1965). Thus,

even though these C4.5-generated rule sets afford completely correct

conservation performance, they do not constitute psychologically realis-

tic knowledge representations. In contrast, the knowledge representa-

tions acquired by cascade-correlation networks were quite realistic in

terms of a shift from an early focus on how the rows looked (their length

and, to a lesser extent, their density) to an eventual focus on the identity

of the transformed row (left or right) and the nature of the transforma-

tion applied to it (refer to tables 3.13 and 3.14).

In summary, the conservation bakeoff between a neural-network

model (cascade-correlation) and a symbolic rule-learning model (C4.5)

resulted in clear favor of the subsymbolic neural-network model. First,

C4.5 could not learn the basic structure of conservation knowledge from

raw inputs, just as it could not learn the balance-scale problem from raw

inputs. Aided by relational coding of the inputs, C4.5 can learn conser-

vation and generalize effectively, but the rules that it learns are psycho-

logically unrealistic. They do not look at all like the rules diagnosed in

children, nor do they cover other psychological phenomena, such as

problem-size, length-bias, and screening effects. In contrast, cascade-

correlation networks learn and generalize well, even with raw conser-

vation inputs, thus again demonstrating their ability to uncover the

essential structure of a problem domain. They also achieve sensible

knowledge representations, and cover a variety of conservation phe-

nomena, such as a sudden jump in performance and the problem-size,

length-bias, and screening effects.

Habituation of Attention

The third and last case study of transition concerns the habituation of

attention in infants. Unlike the cases of conservation and the balance

scale, the transition here occurs over the space of a few minutes rather

than a few years. In habituation experiments, an infant is repeatedly or

continuously exposed to a stimulus until he or she grows tired of it. It is

152 Chapter 4

assumed that the infants build categories for such stimuli and that they

will subsequently ignore stimuli corresponding to their categories and

concentrate on stimuli that are relatively novel (Cohen, 1973; Sokolov,

1963). Such a mechanism is of obvious adaptive value in promoting fur-

ther cognitive development. Recovery of attention to novel stimuli is

typically called dishabituation. The experimental paradigm is sometimes

called familiarization if the exposure to stimuli is insufficient to cause

complete habituation.

These processes of habituation and familiarization are typically dis-

cussed in terms of recognition memory. If there is substantial recovery of

attention to a novel test stimulus, then that stimulus is considered to be

novel. But if there is little or no recovery of attention, then the stimulus is

considered to be recognized as a member of a familiar category. During

the period of habituation or familiarization, there is typically an expo-

nential decrease in infant attention.

Because habituation has made it possible to assess a wide range of

perceptual and cognitive abilities in nonverbal, response-impoverished

infants, it is one of the most important methodologies in developmental

psychology. Because of their performance in habituation experiments,

infants have been credited with the ability to perceive form and color,

complex patterns, faces, and relations; to learn categories and proto-

types; to perceive perceptual constancies; to know about objects and

causes; and to build both short- and long-term memories for events (e.g.,

Cohen, 1979; Haith, 1990; Quinn & Eimas, 1996).

Although neural-network techniques for modeling habituation have

been available for some time (Kohonen, 1989), it is only recently that

they have been applied to habituation in human infants. Encoder net-

works, which learn to reproduce their inputs on their output units (see

chapter 2), have been shown to simulate habituation and dishabituation

effects in infants (Mareschal & French, 2000; Mareschal et al., 2000). In

these networks, relations among stimulus features are encoded in hidden-

unit representations, and the accuracy of these representations is tested

by decoding the hidden-unit representations onto output units. The

discrepancy between output and input representations is computed as

network error. Familiar stimuli produce less error than novel stimuli,

which presumably deserve further processing and learning. Hidden-unit

Developmental Transitions 153

representations in these encoder networks enable prototype formation,

generalization, and pattern completion (Hertz et al., 1991).

To illustrate this work, I focus on one particular data set that has

generated at least nine different connectionist simulations in the last two

years, in spite of the claim by the original infant researchers that these

data were unsuited for a connectionist approach. They claimed instead

that their data, concerning infant habituation to sentences in an artificial

language, required a rule-and-variable explanation (Marcus, Vijayan,

Bandi Rao & Vishton, 1999). It was presumably this challenge that set

off the rather large number of connectionist-modeling efforts in a very

short time. The connections-versus-symbols nature of the controversy

swirling around this data set fits well with the bakeoff theme of the

present chapter.

Marcus et al. (1999) familiarized seven-month-old infants to three-

word artificial sentences and then tested them on novel sentences that

were either consistent or inconsistent with the familiar pattern. The basic

design of their three experiments is shown in table 4.7. In experiment 1,

infants were familiarized to sentences with either an ABA pattern (e.g., li

ga li) or an ABB pattern (e.g., ga ti ti). There were 16 sentences, con-

structed by combining four A-category words (ga, li, ni, and ta) with

four B-category words (ti, na, gi, and la). After the infants became

familiar with a sentence pattern, they were tested with two sentences

containing novel words that were either consistent or inconsistent with

the familiar sentence pattern.

When an infant looked at a flashing light to the left or right, a test

sentence was played from a speaker placed next to the light. This test

sentence was played until the infant either looked away or 15 seconds

Table 4.7
Design of the experiments by Marcus et al. (1999)

Experiments 1 & 2 Experiment 3

Sentences Condition 1 Condition 2 Condition 1 Condition 2

Familiar ABA ABB ABB AAB

Consistent ABA ABB ABB AAB

Inconsistent ABB ABA AAB ABB

154 Chapter 4

elapsed. The basic finding was that infants attended more to inconsistent

novel sentences than to consistent novel sentences, showing that they

distinguished the two sentence types.

Experiment 2 was the same except that the particular words were

chosen more carefully to ensure that phoneme sequences were different

in the familiarization and test patterns. Finally, experiment 3 used the

same words as did experiment 2, but in contrastive syntactic patterns

that each duplicated a consecutive word: AAB or ABB. The purpose of

experiment 3 was to rule out the possibility that infants might have used

the presence or absence of consecutively duplicated words to distinguish

between the two sentence types.

In all three of these experiments, infants attended more to inconsistent

than to consistent novel sentences. But what is the best theoretical ac-

count of these data? Is the infant cognition underlying these syntactic

distinctions based on symbolic rules and variables or on subsymbolic

connections?

Marcus et al. (1999) claimed that these grammars could not be learned

by what they called the statistical methods common to standard neural

networks.4 They also tried some neural-network simulations using SRNs

(refer to chapter 2), which proved to be unsuccessful in capturing the

data. They argued that only a rule-based model could cover their data.

‘‘We propose that a system that could account for our results is one in

which infants extract algebra-like rules that represent relationships be-

tween placeholders [variables] such as ‘the first item X is the same as the

third item Y’ ’’ (1999, 79). They hedged a bit by noting that their data

might also be accounted for by so-called structured neural networks that

implement explicit rules and variables in a neural style: ‘‘The problem is

not with neural networks per se but with the kinds of neural networks

that are currently popular. These networks eschew explicit representa-

tions of variables and relations between variables; in contrast, some less

widely discussed neural networks with a very different architecture do

incorporate such machinery and thus might form the basis for learning

mechanisms that could account for our data’’ (1999, 79–80).

Indeed, one of the nine successful neural-net simulations is of this

structured sort (Shastri, 1999). This model had explicit variable bind-

ing, implemented by temporal synchrony of activations on units that

Developmental Transitions 155

represented sequential positions of words and other units that repre-

sented arbitrary binary word features. The model had no explicit rules in

the sense of symbolic if-then propositions. The network learned to rep-

resent, for example, an ABA pattern by firing the first-position unit syn-

chronously with the third-position unit. Such a network would seem to

generalize very well to any novel sentences of three words, regardless of

the particular features of the words used. However, this structured net-

work is built by hand, and the feedback signals that it requires to learn

about the position of words in a sentence are psychologically implausi-

ble. Although infants certainly hear sentences with words in various

positions, there is no systematic feedback about the positions of the

words.

A review of the other eight connectionist models of the Marcus et al.

data (Shultz & Bale, 2001) reveals that only one of them is structured

(Gasser & Colunga, 1999), although perhaps not as extensively as

the Shastri model. Seven of them are standard unstructured neural net-

works of the sort covered in chapter 2: SRNs (Altmann & Dienes, 1999;

Christiansen & Curtin, 1999; Negishi, 1999; Seidenberg & Elman, 1999),

cascade-correlation networks (Shultz, 1999; Shultz & Bale, 2001), and

auto-associator networks (Sirois et al., 2000). All nine of these con-

nectionist models cover the basic findings of the infant data in terms of

learning to distinguish between consistent and inconsistent sentences, but

many of them postulate assumptions about either the training or the

network architecture that may not be agreeable to everyone. At this

point though, there is no question that the infant data can be covered by

unstructured neural networks. A symbolic rule-based system is most

certainly not required and, indeed, has not even been reported as suc-

cessful. Continuing in our comparative spirit, we now examine a bakeoff

competition between my favorite connectionist model of these data and

the most successful symbolic rule learner on developmental problems,

C4.5.

The connectionist model uses an encoder version of cascade-correlation

(Shultz & Bale, 2000, 2001), as described in chapter 2. The network

basically learns to recognize the sentences to which it is exposed during a

habituation phase. Error on these training sentences decreases exponen-

tially during the habituation phase, mimicking the decrease in attention

156 Chapter 4

seen in many infant-habituation experiments. After training, error on the

consistent test sentences is significantly less than that on the inconsistent

test sentences, capturing the basic finding in the Marcus et al. (1999)

experiments. Moreover, this consistency effect generalized beyond the

range of the training patterns. The words and sentences are those used

with the infants, with words coded in a realistic fashion by the sonority

of the phonemes. Sonority is the quality of vowel similarity, as defined by

perceptual salience and openness of the vocal tract. The proportion of

network reversals (.0667) of the consistency effect (more error to consis-

tent than to inconsistent test patterns) was eerily close to the proportion

of infants that preferred to look at consistent patterns (.0625).

My first C4.5 model treated the Marcus et al. (1999) sentences as

a concatenation of symbols, e.g., li ga li or ga ti ti. The predicting

attributes were the three word positions, and the predicted attribute was

the artificial grammar, for example, ABA or ABB. Presented only the

ABA sentences, C4.5 unsurprisingly produced a decision tree with no

branches and one leaf, labeled ABA. Note that it could have done this

even with only one or two sentences, and that it does this immediately, as

if in a single trial. C4.5 does not require the full complement of 16 senten-

ces, nor does it show any exponential decrease in error. So far, this shows

only that C4.5 is unsuited to modeling habituation or any other form of

recognition memory; it is really a discrimination learner or classifier.

Consequently, my next effort was to convert the problem into a dis-

crimination (or classification) problem, essentially by including the 16

contrasting ABB sentences in the training set. Before objecting too stren-

uously to such a major change in the task, please note that some con-

nectionist models also employed similar changes for pretraining their

SRNs (Seidenberg & Elman, 1999; Christiansen & Curtin, 1999), not

in such a bald-faced way, but still making a shift to a discrimination-

learning paradigm. Perhaps someone can construct a convincing argu-

ment for why a C4.5 model deserves a discrimination version of this task.

In any case, it is interesting to see how C4.5 does with a discrimination

version of the artificial-syntax task. The decision tree that it generates is

shown in table 4.8. It focuses only on the third word position and uses

the words it sees in that position to distinguish ABA from ABB sen-

tences. This is nothing at all like the first-word-matches-third-word rule

Developmental Transitions 157

envisioned by Marcus et al. (1999), but it is quite ingenious nonetheless

in its relentless focus on an obvious difference between ABA and ABB

sentences. Needless to say, this solution will not generalize at all well to

the novel-word test sentences, as it depends entirely on the words

encountered in the third position in the training sentences.

Okay, how about a relational coding scheme like those in the balance-

scale and conservation simulations with C4.5? In this case, the important

relations are between word positions in the sentences. For ABA sen-

tences, positions 1 and 2 are different, 1 and 3 the same, and 2 and 3

different. Coding an ABB sentence in a similar fashion and running C4.5

yields a decision tree that performs as strongly as Marcus et al. would

presumably like, as shown in table 4.9. If words 1 and 3 are the same,

then you have an ABA sentence; if different, then an ABB sentence. This

will generalize perfectly, but consider the drawbacks:

. We have provided C4.5 with the solution in our relational coding,

coming very close to the rule-writing tendencies of many symbolic-

computation adherents.

Table 4.8
Decision tree generated by C4.5 on a discrimination version of the syntax task

3
¼ la) ABB

¼ gi) ABB

¼ na) ABB

¼ ti) ABB

¼ ta) ABA

¼ ni) ABA

¼ li) ABA

¼ ga) ABA

Table 4.9
Decision tree generated by C4.5 on a discrimination version of the syntax task
with relational coding

13

¼ different) ABB

¼ same) ABA

158 Chapter 4

. No more than a single exposure to as few as two sentences generates

perfect knowledge of the problem.

. No reversals of the consistency effect would be possible with this

knowledge.

Not quite willing to give up, I also let C4.5 try the sonority-coding

scheme used in the cascade-correlation simulation of the syntax problem.

Does the gander do as well as the goose? Not really. With this coding

scheme, C4.5 produces a tree that is correct on only 62.5% of the train-

ing sentences and fails entirely on the test sentences, whether consistent

or inconsistent. Moreover, the tree contains rules of the following sort:

If C1 < �5;C3 < �5; and C2 > �6; then syntax is ABA:

If C1 < �5 and C3 > �6; then syntax is ABB:

Here C1 refers to consonant 1, C2 to consonant 2, and so on, and the

integers refer to sonority values.

To summarize, C4.5, the first reported full-blown symbolic rule-

learning system to be applied to a data set that was claimed to be ame-

nable only to symbolic rule-based models, does not fare well. First, C4.5

does not model habituation, because it quickly and trivially learns to

generate the only category to which it is exposed. When asked to model

a different task, namely discrimination (its specialty), it does not learn the

desired rules except when virtually given the rules by the coding scheme.

Writing rules to fit psychological data is one thing; creating an automatic

rule-learner that fits psychological data is quite a bit more difficult. In

contrast, cascade-correlation learns a realistic interpretation of the syn-

tax-habituation problem with a realistic stimulus-coding scheme in a

way that captures all the main features of the little that is currently

known about this problem: exponential decrease in attention, post-

habituation preference for inconsistent patterns, a slight tendency to

prefer consistent patterns, and generalization beyond the range of the

training patterns.

Conclusions from the Case Studies

Do these three case studies prove that symbolic rule-based approaches

cannot handle developmental transitions? No, because we have not

Developmental Transitions 159

provided a logical proof that rule learning cannot work, nor have we

tried all of the available rule learners. We have most certainly not tried

those rule learners yet to be designed. The case studies do, however,

highlight the sorts of problems that would confront any candidate rule-

learning program. Inducing rules is a very complex business, and even

the arguably best current rule-learning algorithm for developmental

phenomena does not always learn the rules that the modeler would like

to see. These problems seem formidable indeed compared to the relative

ease and naturalness with which current connectionist models acquire

the relevant developmental transitions. With these case studies behind

us, I next turn to an examination of four basic theoretical issues about

transition.

How Can Anything Genuinely New Be Learned?

The constructivist view of cognitive development holds that children

build new cognitive structures by using their current structures to inter-

act with the environment. Such interaction with the environment forces

adaptation to environmental constraints, and the adaptation of existing

cognitive structures results in new, more powerful cognitive structures.

Constructivism was inspired by Kant’s resolution of the rationalist-

empiricist debate and served as the basis for Piaget’s (1977) theory of

cognitive development and the considerable body of empirical research

that followed.

Fodor (1980) punctured a neat hole in the constructivist balloon by

arguing that a constructivist account of cognitive development was not

logically coherent. Interestingly, Fodor’s argument was based essentially

on computational considerations. None of the computationally precise

learning algorithms that Fodor was familiar with in the late 1970s were

capable of learning anything genuinely new, in the sense that they had

to possess the representational power to describe anything that they

could learn. For example, to learn the concept of red square, a learning

system must already be able to represent red, square, and conjunction.

Without such representational abilities, the learning system could not

build hypotheses such as red square to test against the evidence. If these

hypothesis-testing algorithms possessed the three representations of red,

160 Chapter 4

square, and conjunction, they could combine them to form the hypo-

thesis red square and then test that hypothesis against the available

evidence.

The implication for cognitive development was that children could

not construct anything genuinely new through experience-based learning

mechanisms. This was meant as a fatal blow to Piaget’s constructivist

account and prima facie evidence in favor of a more nativist view that

children come equipped with the full cognitive powers of an adult. Just

as in Chomskyan-inspired psycholinguistics, the argument was essen-

tially that if it cannot be learned, then it must be innate. Never mind that

a full nativist account was never actually specified.

In practice, Fodor’s argument against the possibility of constructivism

was largely ignored by many developmental researchers, who continued

to work, at least implicitly, within a constructivist framework. However,

the fact that Fodor’s argument had never been successfully countered

provided a disturbing backdrop for much of that research. I refer to it as

Fodor’s paradox because it seems to be a fundamentally sound argument

against what seemed to be an inherently correct assumption that cog-

nitive development is driven by experience. Contemporary updates of

Fodor’s view indicate that it was not a one shot deal (Bloom & Wynn,

1994; Marcus, 1998).

Recently it has been argued that generative networks, such as cascade-

correlation, have the capacity to escape from Fodor’s paradox (Mar-

eschal & Shultz, 1996; Quartz, 1993). After recruiting new hidden units,

these generative networks become capable of representing relationships

that they could not possibly represent previously. Indeed, their lack of

early representational ability likely produced a stagnation of error re-

duction and triggered the recruitment process.

In contrast, it would seem that static neural networks fail to escape

Fodor’s paradox because the range of functions they can learn is limited

by their initial network topology (Mareschal & Shultz, 1996; Quartz,

1993). At first glance, it might appear that static networks could also

escape Fodor’s paradox. For example, the fact that static networks are

able to learn new representations might allow them to escape. While it is

true and amply demonstrated that static networks can learn new repre-

sentations (Elman et al., 1996), the computational power of these static

Developmental Transitions 161

networks is clearly limited by their initial topology. That is, they can

learn only those functions that can be represented within that initial

topology. Thus, Fodor’s (1980) view, that one must be able to represent

the hypotheses that can possibly be tested, still applies.

A well-known example in the connectionist literature is that a static

network using back-propagation of error cannot learn an exclusive-or

problem unless the network has at least two hidden units.5 In terms of

the example just discussed, a static network with only one or no hidden

units could learn to represent Red and square or Red or square, but not

Either red or square, but not both red and square.

Exclusive-or is a nonlinear problem in the sense that no linear com-

bination of weights can be learned to solve it. As noted in chapter 2,

exclusive-or can be considered as a two-bit parity problem, in which

the network’s output unit should respond positively only if there are an

odd number of 1s in the input. Parity problems with more than two bits

of input can also be constructed and require even more hidden units to

solve because of their increasing nonlinearity with increasing numbers of

input bits. In general, the greater the degree of nonlinearity in the prob-

lem to be learned, the more hidden units required to learn it.

It might be thought that static network designers can escape Fodor’s

paradox by fitting the network with very large numbers of hidden units.

The number of hidden units a network possesses may be taken as a

rough index of its computational power. However, as also noted in chap-

ter 2, networks that are too powerful have a tendency to memorize their

training patterns rather than abstract useful generalizations about them,

i.e., these oversized networks tend to generalize poorly. Poor generaliza-

tion is considered fatal for both engineering applications and cognitive

modeling because the network fails to deal effectively with novel patterns.

It is worth considering whether evolutionary forces might endow static

biological networks with just the right amount of computational power.

For some essential skills, such as perception or language or basic cogni-

tive abilities like object permanence, evolutionary pressure might well

have done just that. But it is doubtful that evolution could have prepared

us for all of the cognitive tasks that we face in rapidly changing envi-

ronments. The learning of mathematics or computer programming may

be cited as convincing examples. It is much more likely that we require

162 Chapter 4

flexible network modules that can grow as needed to adapt to a variety

of novel problems. Quartz and Sejnowski (1997) argued that evolution

has prepared us for flexible learning. In such cases, it seems important

for learning algorithms to find the proper size and topology of a network

to facilitate learning.

Another possible argument that static networks can escape Fodor’s

paradox is to imagine that the process of increasing initially small ran-

dom weights during learning is really the same as the recruitment process

in generative networks such as cascade-correlation. Effectively, a hidden

unit that has little influence may, through learning, have its importance

dramatically increased. Static networks certainly do change their weights

in response to learning pressures. However, the process whereby an ini-

tially meaningless unit with random weights is progressively brought on

line by learning appropriate weights is a very different process from that

of hidden-unit recruitment in generative networks (Shultz & Mareschal,

1997). Even the apparently useless units in a static network (i.e., those

with small random or inappropriate weights) are contributing to the

total processing of the network. As seen in equations 2.5–2.11, these

units send residual activation to other units, and they are contributing to

the calculation of the error terms used to adjust other weights in the

network. Hence, they are an integral part of the computational power

available to solve the problem. In generative networks, however, units

not installed in the network do not contribute to the functioning of the

network in any way. They are not sending any activation. Nor are they

factored into the error-adjustment algorithms. They are simply not part

of the network module. In the early stages of network learning, cascade-

correlation networks are searching a decidedly smaller weight space than

are static networks of the same size as what the cascade-correlation net-

work may eventually achieve. As noted in chapter 2, this ability to start

small and increase in size as needed may provide cascade-correlation

with an advantage over static networks in learning difficult problems.

Thus, static networks do not share the ability of generative networks

to escape from Fodor’s paradox. A progressive growth in network com-

putational power appears to be necessary for escaping this paradox.

Because of the demonstrations that generative neural network models

can escape Fodor’s paradox and model human cognitive development,

Developmental Transitions 163

we can conjecture that constructivist models of cognitive development

are indeed possible. Of course, evidence that they are the best explana-

tion for cognitive development awaits future psychological and compu-

tational study.

Because synaptogenesis is so pervasive and important in brain devel-

opment (Quartz & Sejnowski, 1997), it is critical for neural-network

models to be able to grow as well as to learn. Without such growth

capabilities, it is doubtful that constructivist cognitive development could

occur, as argued by Fodor (1980).

The Relation between Learning and Development

Most of the theories and models discussed in this book and throughout

the field of psychological development assume, despite Fodor’s paradox,

that development occurs through some kind of learning of long-term

memory elements. This raises the question of whether we need the term

development at all in order to fully understand the psychological changes

that children go through. Why not just focus on learning per se?

Despite how tempting that idea may seem, many theorists of psycho-

logical development persist in using the terms learning and development

as if they were two different things. In many cases, however, they do this

without really making a clear distinction between the two. In the major

effort to understand development in terms of neural networks, for ex-

ample, Elman et al. (1996) end up explaining development in terms of

weight adjustment within static neural networks. They do make a good

argument that there is development underlying human cognitive change,

but the simulations they report consist of learning models that attempt to

capture developmental data. The ability of a neural network to mimic

developmental data does not, in itself, make it a developmental model.

Static back-propagation networks only implement learning, even when

they produce nonlinear changes in performance.

For generative network models, like cascade-correlation models,

which grow as well as learn, it is possible to draw a clear distinction be-

tween learning and development. Interestingly, this distinction is one that

can give computational explicitness to the verbally formulated ideas of a

number of developmental theorists.

164 Chapter 4

Learning can be defined as parametric change within an existing

processing structure in order to adapt to information from the environ-

ment (Sirois & Shultz, 2000). This definition is compatible with defi-

nitions offered by a wide range of theories, including nativist (e.g.,

Fodor, 1980), empiricist (White, 1970), and constructivist (e.g., Piaget,

1980). In contrast, development can be defined as a change of an exist-

ing structure to enable more complex parametric adaptations (Sirois &

Shultz, 2000). Thus, development is a qualitative change in the structure

supporting cognition, and learning is a quantitative change in parameter

values within a particular cognitive structure. Such a distinction is basi-

cally compatible with those made in Piaget’s (1980) theory of abstrac-

tion, Karmiloff-Smith’s (1992) theory of representational redescription,

Carey’s (1985) theory of conceptual change, and Liben’s (1987) general

discussion of the difference between learning and development.

The big difference is that now we have a clear computational view of

what the distinction might mean. Learning occurs via connection-weight

adjustment (quantitative parameter change), and development via hidden-

unit recruitment (qualitative change in structure). Interestingly, this view

implies that, although learning may occur without development, as when

a problem can be learned without recruiting additional hidden units, de-

velopment always involves learning. The reason for the latter claim is

that each recruitment of a hidden unit requires learning to find and train

the recruited unit and then more learning to determine how to best in-

corporate this new representation device into the overall solution. The

first kind of learning occurs in the input phase of cascade-correlation,

and the second in the ensuing output phase. On this view, it is correct to

say that a lot of psychological growth results from a combination of

learning and development, and that development incorporates learning.

It is also correct to say that some phenomena involving psychological

change in children may well be due to learning alone. At the present state

of the art, decisions about whether a particular psychological change in

children is due to learning or to development may be greatly aided by

accompanying generative-neural-network models. A model that fits the

psychological data can be examined to see if hidden units have been

recruited.

Developmental Transitions 165

How Might Innate Determinants Operate?

Nativist approaches to psychological development have been around for

a long time and continue to be influential, particularly in discussions of

language acquisition and early infant competence. Contrary to the com-

mon view that connectionist approaches are antinativist because of their

emphasis on learning, an important connectionist contribution to the

study of innate factors in development concerned the different ways in

which psychological processes could be construed to be innate (Elman et

al., 1996). Elman et al. argued that innateness can occur in representa-

tions, architectures, or timing. Their focus was not so much on identify-

ing what is innate, but more on expanding consideration of how things

could be innate.

The classical view, shared by nativists, empiricists, and constructivists

alike, is that innateness occurs at the level of knowledge representations.

The basic idea of representational innateness is that children have

domain-specific knowledge that is somehow controlled by a genotype.

Recent proposals of this sort, for example, have pointed to innate

knowledge of syntax (Pinker, 1994), arithmetic (Wynn, 1992), and

physics (Spelke, 1994). The neural-network analog to such represen-

tational innateness is to have many or all of a network’s connection

weights specified before learning starts.6

Indeed, some interesting work along these lines has documented in-

teractions between evolution and learning in neural networks that are

allowed to reproduce as well as to learn. In a population only those net-

works that are most fit, in terms of learning whether an input pattern is

symmetrical or not (Belew, McInerney & Schraudolph, 1991) or learn-

ing to find food (Menczer & Parisi, 1992; Nolfi, Elman & Parisi, 1994)

were allowed to reproduce, in some studies sexually and in others asex-

ually. Evolution succeeded in preparing successive generations to be

better learners, even when the learning task (predicting food location on

the basis of its current location and planned network movement) was

different from the fitness task (obtaining food) (Nolfi et al., 1994). Not

only did evolution improve learning, by selecting more promising initial

weights, but learning also accelerated evolution, by flexibly exploring

solutions to the fitness task. Interestingly, these findings represent neither

166 Chapter 4

evolution of innate abilities nor Lamarckian transmission of learned

knowledge. Rather, the networks were predisposed by evolution to be

good learners by the transmitted initial, unlearned connection weights.

However, Elman et al. (1996) disavow representational innateness,

arguing that there is insufficient information in the human genotype for it

to be feasible. They astutely point out even the molecular parts of the

body cannot be fully specified in the genotype, much less large amounts

of psychological representations. Evidence is cited that the human body

contains 5� 1028 bits of molecular information, but the human geno-

type contains only 105 bits of information.7 The implication is that the

human genotype does not have enough information to serve as a blue-

print for possible innate aspects of language and cognitive development.

Elman et al. also use evidence for the initial equipotentiality of mam-

malian cortex to discredit representational innateness. The idea that the

genotype contains a detailed blueprint for cortical functioning is difficult

to maintain against evidence that cortical neurons can serve a variety of

functions, depending on experience. The gist of this evidence can be

summarized under the maxims ‘‘When in Rome do as the Romans do’’

and ‘‘You are what you eat.’’ Compelling demonstrations come from

experiments with small mammals that transplant pieces of fetal cortex

from one area to another or redirect thalamic inputs from their usual

targets to some other cortical location. In such experiments, the cortex

takes on properties of the area that it is now in (‘‘When in Rome . . .’’) or

those of the input it receives (‘‘You are what you eat’’). It is as if auditory

cortex becomes able to see and visual cortex becomes able to hear. If

cortical material does not initially know its eventual job and can be

recruited for other jobs, then how could its domain-specific content be

innately specified?

In a critique of this argument, Marcus (1998) speculates that some

kinds of representations could be innate even though no individual neu-

ron has an initially specified role. Instead, he argues that a cell could

carry conditional instructions that specify different functions depending

on particular conditions such as location and input. However, this

counterargument fails because such conditional rules would require

vastly more information than the single-function instruction envisioned

by Elman et al. (1996).

Developmental Transitions 167

Another way for something to be innate is in terms of architectural

constraints. Elman et al. (1996) break down architectural constraints

into unit, local, and global constraints. At the unit level would be fea-

tures like firing thresholds, transmitter types, and learning rules. Con-

nectionist analogs of such unit constraints would be activation functions,

learning rules, and the parameters of learning rules. Local constraints

would be things like number of layers of neurons, connection density,

and circuitry. Analogs to these constraints in artificial neural networks

would be network topologies, including numbers of layers and units. At

the global level, there would be constraints from connections between

brain regions. These could be implemented in neural networks via mod-

ules that may have different jobs and that feed input to other modules.

Currently, these kinds of architectural decisions are typically made by

the researchers and implemented by hand, except for generative algo-

rithms that create their own topologies. Some evolutionary simulations

have successfully explored genotypes involving network architectures

(Miller, Todd & Hegde, 1989), parameter values for learning rate and

momentum (Belew et al., 1991), and learning rules (Chalmers, 1990).

The third way for something to be innate is in terms of the timing

of events in development. An example cited by Elman et al. concerns

spatiotemporal waves of cortical development. The locus of maximum

neural plasticity begins in the primary sensory and motor areas, migrates

to the secondary association areas, and finally to the frontal areas (e.g.,

Thatcher, 1992). When developed and connected, these regions act as

successively higher-level filters of incoming information, from primary to

secondary areas, and on to frontal areas. Such progressive spreading

of plasticity could be built into static networks, but it is worth noting

that generative algorithms like cascade-correlation implement it naturally

by freezing the weights to recruited hidden units and by training and

recruiting still more hidden units downstream.

While Elman et al. consider representational innateness to be unlikely,

they do consider architectural and timing constraints to be reasonable

forms of innateness. Indeed, with static networks, most architectural

constraints have to be innately specified.

However, it is worth asking whether the brain would come innately

wired with all of the networks in place, with the correct size and con-

168 Chapter 4

nectivity, that will eventually be needed for mastering a lifetime of tasks

and problems. In order to produce appropriate static network topol-

ogies, the brain would seem to require some a priori representation of

the problems it will have to learn (Sirois & Shultz, 1999). This is be-

cause, as noted in chapter 2, network topology determines the range of

functions that can be learned. Thus, innately designed networks, even

though having random weights, still imply representational innateness, if

only a relaxed version. As Quartz noted, static networks ‘‘have built into

their architecture a highly restricted hypothesis space that contains the

target function, or at least an acceptable approximation to it’’ (1993,

p. 233). Failure of the evolved brain to specify networks of the right

topology for a lifetime of learning would run the risk of having to learn

many problems with networks that were either too weak, leading to

learning failure, or too powerful, leading to generalization failure (see

chapter 2). A formal analysis of the brain’s ability to specify topology

suggests that the probability is virtually nil that the brain can anticipate

the right size networks for a realistically wide range of learning prob-

lems, many of which were not present in the environment when the brain

evolved (Sirois & Shultz, 1999).

In summary, by considering architecture and timing, as well as repre-

sentations, Elman et al. (1996) have used neural-network research to

significantly and creatively enlarge our conception of how psychological

development might be innately constrained. Indeed, critics of their con-

tribution (e.g., Marcus, 1998) have missed the main point by attacking

Elman et al.’s (1996) critique of representational innateness. Elman et al.

have given us new ways and methods to investigate innate determinants

of psychological development. However, by implementing only static

networks that must be innately designed even though not innately

trained, Elman et al. have inadvertently opened the door to a relaxed

form of representational innateness. Rather than having the burden of

anticipating all learning problems that an organism will face over a life-

time, it would seen preferable to have a brain flexible enough to design

its own networks through neurogenesis and synaptogenesis. Quartz and

Sejnowski’s (1997) recent review of brain development concluded that

plasticity is most often found in species that are phylogenetically recent

and proximal to humans. They characterize human evolution as moving

Developmental Transitions 169

towards maximal plasticity rather than towards hyperspecialization.

This kind of flexible network construction is better approximated by

generative networks, such as cascade-correlation, than by static, innately

provided networks.

Generative versus Static Networks

Given the foregoing considerations, is it ever appropriate to use static

networks in modeling psychological development? Even if generative

networks are more powerful and flexible general learning systems than

static networks, there still may be domains in which it is more appropri-

ate to use static networks than generative networks to model develop-

ment. There are several domains in which generative networks produce

better simulations than do static networks (e.g., the balance scale and

integration of velocity, time, and distance cues; see chapter 5 for the

latter). So far, there have been no demonstrations of the opposite trend,

but it is possible that static networks might be superior on some prob-

lems. And there may be many domains in which phenomena could be

equally well modeled by static or generative networks.

It has been suggested that static networks should be used to model

domains that are constant across all individuals and for which evolu-

tionary pressures may have prepared networks with either topology

alone or both weights and topology (Shultz & Mareschal, 1997). Exam-

ples might include some basic abilities in areas such as vision, audition,

spatial and temporal reasoning, causal inference, memory, categoriza-

tion, and aspects of language. These abilities begin to develop very early

in infancy and are found in all cultures. No matter where an infant is

born, she will need to develop this knowledge in a form that is consistent

across all cultures.

Static networks have been used to model a number of basic infant

abilities such as categorization (Mareschal & French, 2000; Mareschal et

al., 2000) and object permanence (Mareschal, Plunkett & Harris, 1999;

Munakata, 1998; Munakata, McClelland, Johnson & Siegler, 1997).

These are abilities found in every infant and might well serve as building

blocks for learning more complex tasks.

170 Chapter 4

Cognition that apparently builds on this initial learning tends to vary

greatly over the planet. Evolution could not possibly anticipate what

every child might eventually need to learn. The learning required of

children in a hunting-and-gathering culture is quite different from that

required of children learning to program computers. Despite some flexi-

bility in the possible initial network topologies that can be used to learn

a task, getting the topology wrong can determine whether a task can be

learned or not and how easily and how well it is learned (Mareschal &

Shultz, 1996; Quartz, 1993). Thus, the ability to learn a wide range of

tasks requires the ability to construct appropriate networks.

In summary, although it is presently difficult to predict what sort of

model is likely to produce a better model of a particular domain, it might

be that static networks are better for those problems that evolution could

correctly anticipate. Generative networks might be preferred for learning

problems whose features are less predictable.

General Conclusions about Transitions

A generative connectionist algorithm (cascade-correlation) was found

capable of integrating both Piagetian and contemporary proposals for

explaining developmental transitions, perhaps the most persistently diffi-

cult theoretical problem in the field of developmental psychology. A sys-

tematic comparison of this algorithm to the leading rule-based learner

(C4.5) over three case studies of development demonstrated a consistent

superiority of the connectionist approach. Cascade-correlation learned

the essentials in each domain, naturally captured a variety of associated

phenomena, and produced knowledge representations that were psycho-

logically realistic. In contrast, C4.5 had difficulty learning unless the

examples were coded in a very helpful format, failed to cover associated

phenomena, and typically produced knowledge representations that were

not psychologically realistic.

Cascade-correlation simulations further showed how it was com-

putationally feasible to implement a constructivist account of develop-

ment, thus escaping Fodor’s paradox about experience-based learning.

Using cascade-correlation ideas, I formulated a clear distinction between

Developmental Transitions 171

learning and development by noting that learning involves quantitative

parameter changes within an existing cognitive structure, whereas devel-

opment involves qualitative changes in the cognitive structures them-

selves. A recent connectionist account of innate determinants (Elman

et al., 1996) usefully enlarged the possibilities to include timing and

architectural constraints, while dismissing the more conventional repre-

sentational innateness. However, without a generative approach, con-

nectionism may inadvertently allow a relaxed form of representational

innateness. Finally, there could well be room for both static and con-

structivist neural-network models of development, with static models

being more appropriate for universal knowledge and constructivist

models being required for culturally specific knowledge.

172 Chapter 4

