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Abstract

In Markov chain Monte Carlo estimation of Bayesian latent variable models, sign

reflection can cause multiple chains to settle onto equivalent but numerically different

solutions, resulting in poorly mixed chains and nonconvergence. Sign reflection can be

handled using various methods, such as adopting unit loading identification (ULI),

assigning range restricted prior distributions, or using a relabeling algorithm. Some

statistical software automatically handles sign reflection in the background, e.g., the

blavaan package in R. We conducted simulations to address the lack of comprehensive

studies on such a wide variety of approaches. Our results show that most solutions will

work well in confirmatory factor analysis given sufficient sample sizes and good

measurement models. However, low scale reliability and poor choice of reference

indicator can negatively impact the performance, especially with small sample sizes. In

particular, we do not recommend using ULI without additional sign reflection handling

for Bayesian latent variable models.

Keywords: Bayesian, structural equation model, confirmatory factor analysis,

sign indeterminacy
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Evaluating approaches for the handling of sign reflection in Bayesian latent

variable models.

Latent variable models with reflective measurement are often invariant to sign

reflection in the indicator loadings, which is to say, the model remains equivalent–with

the same fit statistics and the same model-implied mean and covariance

structures–when some loadings switch signs from positive to negative, or vice versa.

This phenomenon, also known as sign indeterminacy, is a type of identification problem

related to factor reflection in both exploratory and confirmatory factor analysis

contexts. Identification itself refers to whether a unique solution exists and can be found

for a model under some estimation approach (Hayashi & Marcoulides, 2006). Other

types of identification issues involve whether factor loading matrices can be rotated to

find an equivalent solution (e.g., including in a confirmatory framework; Millsap, 2001),

which also relates to the arbitrary order in which columns appear in such a rotated

matrix (for a review of identification issues, see Hayashi & Marcoulides, 2006).

To illustrate sign reflection, suppose latent variable A and B are positively

correlated, and a set of indicators positively load onto A, then an equivalent model can

be obtained with the same indicators negatively loading onto A, with A now negatively

correlated with B. In the empirical interpretation of the model under sign reflection, the

label of A is simply reversed, e.g., “high agreeableness is positively correlated with

well-being” becomes “low agreeableness is negatively correlated with well-being” under

sign reflection. Since the different solutions should lead to equivalent theoretical

interpretations, sign reflection is often not a substantive issue for maximum likelihood

estimation, where arbitrarily choosing one of the solutions would not affect the

conclusion of the analysis. For example, in structural equation model (SEM) software

such as lavaan (Rosseel, 2012), one loading of each factor may be automatically

restricted to positive values in order to present the more easily interpretable solution.

Such software programs typically proceed to employ local search algorithms to find the

maximum likelihood solution.

In Bayesian Markov chain Monte Carlo (MCMC) estimation, multiple
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independent chains are generally used to ensure the posterior space is sufficiently

explored. These chains may sample from different local solutions with different factors

reflected due to sign indeterminacy, leading to nonconvergence when pooling their

draws (Erosheva & Curtis, 2017). The sign reflection problem in Bayesian analysis is

related to a broader class of label switching problems that includes cluster labels in

Bayesian analysis (Kim, Daniels, Li, Milbury, & Cohen, 2018) and factor labels in

Bayesian exploratory factor analysis (Conti, Frühwirth-Schnatter, Heckman, & Piatek,

2014). Methodological and empirical researchers have adopted various approaches to

handle sign reflection, such as restricting the signs of the loadings in various ways,

including the use of range restricted priors on some or all of the loadings (Chen, Bauer,

Belzak, & Brandt, 2022), relabeling the signs in the posterior sample (Erosheva &

Curtis, 2017), or switching the signs during Monte Carlo iterations (Merkle & Rosseel,

2018; Merkle, Fitzsimmons, Uanhoro, & Goodrich, 2021).

Confirmatory factor analysis (CFA) is used here as an example in order to

discuss sign reflection in more detail, with generality retained under most latent variable

models with “reflective” measurement models. In CFA, indicators are a function of their

underlying factor(s). For example, a participant’s score on an indicator may be

x = a + λF + e, where F is the factor score for that participant for the factor underlying

that indicator, λ is the factor loading, e is the random measurement error, and a is the

indicator intercept. Since the factor score F is not observed except indirectly through

the indicator x, the scale for F must be fixed in some way for the CFA model to be

identifiable (see Millsap, 2001). In practice, a latent variable model is typically

identified through one of two approaches. The unit variance identification (UVI)

approach fixes the variance of all factors to 1. The unit loading identification (ULI),

fixes one indicator loading in each factor to 1, thus scaling the factor score to a reference

indicator (Bollen, Lilly, & Luo, 2022). Sign indeterminacy is primarily an issue under

UVI, where the indicator score x would remain the same, if for example, the values in λ

and F were both reflected around 0 – suppose λ̂ = −λ̂′ and F̂ = −F̂ ′, then λ̂′F̂ ′ and λ̂F̂

will yield the exact same value. This indeterminacy in turn can cause multiple chains to
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sample from reflected equivalent solutions, resulting in poorly mixed chains with poor

convergence and invalid summary statistics for the Bayesian estimation of the loading λ.

Strategies for Sign Reflection

Quantitative and empirical researchers conducting Bayesian analysis on latent

variable models adopt a wide range of approaches for the handling of sign reflection.

Most of these approaches can be broadly divided into the following categories: 1) unit

loading identification (ULI); 2) range restricted priors, where the priors of some or all

loadings are restricted to the positive range to avoid sign reflection; 3) posterior

relabeling, such as the algorithm by Erosheva and Curtis (2017), which takes the

posterior draws from multiple chains to switch the signs of reflected solutions; 4)

in-iteration relabeling, used by blavaan (Merkle & Rosseel, 2018) to switch the signs of

loadings during the MCMC sampling to ensure the solutions have the expected signs.

In what follows, we provide an overview of these approaches.

Unit Loading Identification

With ULI, because one reference indicator loading of each factor is chosen to be

fixed to 1, the sign of the solution to the factor scores is constrained to be in agreement

with the sign of that indicator. In theory, this should make a latent variable model

identified using this strategy resilient to issues caused by sign reflection. However, the

ULI has several downsides. First, if the chosen reference indicators are poor measures of

the factors, inefficiency may permeate other aspects of the model, such as instability in

the scaling of the factor scores and unreasonably large and highly varied loadings on

other indicators. Second, if an indicator has low reliability, a large portion of the

sampling distribution of its loading (had it been estimated) may be on the other side of

0. Thus, fixing reference loadings to 1 may cause the factor scaling itself to change signs

from sample to sample. Lastly, in many applications of the latent variable model, it is

important to establish measurement invariance, i.e., the scale works the same way

across different groups. ULI may not be desired in such a scenario, because the

identification strategy already assumes that the reference indicators are invariant across

groups. For these reasons, it is important to explore solutions to sign reflection in



EVALUATING APPROACHES FOR 6

Bayesian latent variable models not identified using ULI.

Range Restricted Priors

In Bayesian estimation, loadings are often given diffuse normal priors centered

around 0. For example, the default prior for loadings in blavaan is N (0, 102) (see Merkle

& Rosseel, 2018; Smid & Winter, 2020). The range restricted priors approach handles

sign reflection in UVI latent variable models by ensuring that one or several loadings for

each factor are positive by assigning them priors that only have density in the positive

range. One common approach is through the use of truncated normal priors, specifically

half-normal priors, which are normal priors restricted to only positive values. For

example, in item response theory (IRT), a categorical variable counterpart to CFA,

half-normal priors N +(0, 52) are sometimes given to the slopes (similar to loadings in

CFA) (Chen et al., 2022). Alternatively, for researchers who prefer to avoid potential

improper priors with truncated priors, a more natural choice could be lognormal priors,

which are naturally bounded at 0 (Martin-Fernandez & Revuelta, 2017).

Ulitzsch, Lüdtke, and Robitzsch (2023) studied small sample Bayesian

estimation of SEMs. In their study, Bayesian models were used to estimate the

standardized loadings and latent variable correlations through the well-established

model-implied covariance matrix (Jöreskog, 1970) for SEM, using the sample covariance

matrix of indicators rather than individual participant data as input. By

parameterizing the model with standardized loadings rather than unstandardized

loadings and assuming very simple structure (each indicator loads on only one factor at

a time), each loading must fall into the range of [−1, 1]. Thus, sign reflection can be

handled under this approach by assigning uniform priors Uniform(.01, .99) to the first

loading of every factor to ensure it is positive, and the remaining loadings can be

assigned uniform priors Uniform(−.99, .99).

Despite the intuitive appeal of range restricted priors, researchers are sometimes

advised against using this approach. When loadings are small or the sampling

distribution has high variability, the posterior distributions for loadings are likely to

have some probability density in both positive and negative regions if unrestricted
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priors were used. Since priors bounded above zero cannot produce these posteriors

samples, they are unable to properly estimate these loadings. Instead, approaches such

as relabeling, which are in theory more robust to problems such as low reliability and

poor reference indicators, are often recommended as alternatives (Merkle, Ariyo,

Winter, & Garnier-Villarreal, 2023).

Posterior Relabeling

When sign reflection occurs without additional estimation issues, the reflected

posteriors of each parameter (e.g. loadings, factor covariances, path coefficients) are

theoretically sampled from distributions that are identical but for their reflected signs

across multiple chains. This allows us to pursue a post hoc relabeling approach, first

performing the multiple chain Bayesian estimation with UVI—temporarily tolerating

sign reflection—then multiplying the appropriate loadings and factor covariances (or

path coefficients) by -1. Erosheva and Curtis (2017) proposed a relabeling algorithm for

Bayesian factor analysis. The algorithm leverages the assumption that the posterior

samples for a loading from multiple chains are pooled together, they should form a

roughly normal distribution when no sign reflection occurs. This assumption becomes

more reasonable as sample sizes increases as posterior distributions will approach

normality. Thus, this approach examines the posterior samples across all chains to

choose a set of sign changes that results in a pooled posterior distribution for each

parameter, which best fits a normal distribution. The sign changes are chosen by first

assigning a set of random initial sign changes, then iteratively finding new sign changes

that maximize a normal density for the posterior of each loading. Compared to range

restricted priors, relabeling has the advantage of being able to appropriately obtain

posteriors for loadings that overlap with zero. However, the success of this approach is

somewhat contingent on the pooled posterior across reflected chains for each parameter

having reasonably well separated modes (Erosheva & Curtis, 2017). If the modes are

not well separated, for example, if the loadings are too close to zero, or if other

estimation issues occur such as the chain being stuck in local extrema, the posterior

relabeling approach may not be able to appropriately handle sign reflection.
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In-Iterations Relabeling

The R package blavaan (Merkle & Rosseel, 2018) handles sign reflection using an

in-iterations relabeling approach (Merkle et al., 2021). Similar to some range restricted

priors approaches, in-iterations relabeling restricts one “reference” loading in each factor

to be positive, allowing remaining loadings to be freely estimated. Rather than placing

range restricted priors on the reference loadings, this approach ensures they are positive

by checking their sampled values during the MCMC iterations. At any iteration, if a

draw for a reference loading is negative, that reference loading is multiplied by -1 before

the MCMC estimation continues, as are other loadings for that factor and any

associated covariances and path coefficients. Subsequent iterations thus typically get

back on track to a solution in which the sign of the referent loading is positive and

ensuring sign agreement across chains. While this is the automatic sign reflection

handling in blavaan, it is not documented in detail and its impact has not been

thoroughly studied1.

Current Study

To our knowledge, there has not been a comprehensive study on sign reflection

handling in Bayesian latent variable models that summarizes and evaluates the

effectiveness of such a wide variety of approaches. Here we conduct a simulation study

to evaluate the performance of a range of extant approaches, from ULI, Erosheva and

Curtis (2017)’s relabeling algorithm, blavaan’s in-iterations relabeling method, to

several range restricted prior approaches, including Ulitzsch et al. (2023)’s marginal

likelihood approach placing restricted priors on standardized loadings and factor

corelations. We used a three factor CFA for the simulation, as CFA with two to three

factors are very common psychology and other social sciences. Additionally, a three

factor CFA is equivalent to a latent variable mediation model, which is also a commonly

used model in applied research and a focus of several recent simulation studies

evaluating Bayesian methods (e.g., Ulitzsch et al., 2023, Liu, Heo, Ivanov, & Depaoli,

1 We would like to thank Dr. Ed Merkle for making blavaan open source, as well as clarifying its sign

handling feature in private correspondence
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2025, Sun, Zhou, & Song, 2021, (Liu, Heo, Depaoli, & Ivanov, 2025)). For the

simulation, we varied the overall reliability of the scales (high vs. low), the strength of

the reference loadings (good vs. poor), and the sample size (high vs. low), to provide an

evaluation under a range of plausible scenarios.

Methods

The simulation study was conducted using the R programming language (R Core

Team, 2019) and the Stan software (Stan Development Team, 2025). R code and Stan

code were adapted from Ulitzsch et al. (2023) and Erosheva and Curtis (2017),

respectively, for the marginal likelihood approach with restricted priors on standardized

loadings and the relabeling strategies. The blavaan package was used for the

in-iterations relabeling strategy (Merkle & Rosseel, 2018). All the code used to simulate

the data and perform the analyses are available on OSF2.

Data Generating Model

The data generating model was a CFA with three factors and four indicators per

factor, Xij = aij + λijFj + eij, where j ∈ [1, 2, 3] for the three factors, i ∈ [1, 2, 3, 4] for

the four indicators. Xij, Fj, and eij were random normal variables each representing

indicator scores, factor scores, and measurement errors, respectively. λij represent

indicator loadings, while aij are the indicator intercepts and were set to 0. Correlations

between the factors were set to be .3. Measurement error was assigned to each indicator

so that they were standardized in the population, i.e. the variance of the measurement

error was set to var(eij) = 1 − λ2
ij.

For our study design, we wanted to evaluate as many approaches as possible,

although many of them can be somewhat computationally intensive. Therefore we

limited the number of data conditions, with three fully crossed factors of sample size,

reliability, and reference loading quality, leading to 2 (small vs. medium sample size) ×

2 (low vs. high reliability) × 2 (good vs. poor reference loadings) = 8 conditions in

total for each of the 7 approaches.

For the sample size conditions, we chose N = 100 and 200. The sample size

2 Available at https://osf.io/392ng/?view_only=6e35f8676d87439ca67286ad9ca76dc0

https://osf.io/392ng/?view_only=6e35f8676d87439ca67286ad9ca76dc0
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N = 100 was chosen to examine how methods can breakdown under a small, but

nevertheless realistic, sample size for CFA in psychological research. The N = 200 is

typically deemed as a minimum sufficient sample size under the same context. In the

factor analysis literature, 0.3 is often regarded as the minimal loading for the inclusion

of an item in a scale, whereas 0.7 is often regarded as an “acceptably good” loading.

For the low reliability conditions, loadings were set to 0.7 for half the items and 0.3 for

the other half of the items in each factor, for a congeneric reliability of ω = .585 per

factor. This allowed us to set the reference indicator loading to 0.7 for the “good”

reference indicator condition, and 0.3 for the “poor” reference indicator conditions. For

the high reliability conditions, we following the same criteria, choosing loading values of

0.6 and 0.8, which fall on the two sides of the “acceptably good” 0.7, as the loadings for

the items, with a congeneric reliability of ω = .797. Thus, the reference indicator

loading was set to 0.8 for the “good” reference loading condition, and 0.6 for the “poor”

reference loading condition, for the high reliability conditions.

We simulated samples of the 12 indicator values (4 per factor for 3 factors) under

a multivariate normal distribution, where the indicator covariance is the model-implied

covariance matrix of CFA (e.g. Jöreskog, 1970; see code on OSF for technical details)

derived from the model defined above, and the means are all set to 0. In this case, this

would be equivalent to assuming both factor scores are multivariate normal and

measurement errors are normal. For each condition, 500 data sets were independently

generated for the following analyses.

Analysis

For the analysis, we included 7 approaches in total. 1) We included the unit

variance identification (UVI) as a control condition to establish the performance of CFA

in the absence of sign reflection handling. Due to sign reflection, we expected this

approach to perform poorly, but it was unclear to us precisely how poorly it would

perform, and how much of an improvement the other methods would be. 2) For

comparison, we also included unit loading identification (ULI). We expected ULI to

outperform UVI, but it could still yield poor performance when the reference indicator
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was poor. 3) We also included an approach directly employing the blavaan package,

which employs in-iterations relabeling automatically to handle sign switching. For

convenience, we refer to this approach simply as “blav”. 4) Furthermore, we included

Erosheva and Curtis (2017)’s posterior relabeling algorithm which handles sign

reflection in a more principled manner; we refer to this approach as “relab”. Finally, for

range restricted priors, because there is such a wide range of possible implementations,

we limited the study to include three alternatives. 5) Firstly, we included Ulitzsch et al.

(2023)’s approach that placed uniform priors on standardized parameters using a

marginal likelihood parameterization, which we will refer to as “margstd”. 6) Secondly,

we included a straightforward, more “brute force” approach of simply assigning

truncated halfnormal priors to all parameter loadings, which we refer to as “alltrunc”.

7) Lastly, we wanted to include an approach that would be more minimal, placing fewer

restrictions and using naturally bounded priors rather than truncated priors. To this

end, we included a condition where we placed a lognormal prior on the reference

indicator of each factor, and we refer to this condition as “logref”.

For 1) UVI, 2) ULI, 4) relab, 6) alltrunc, and 7) logref approaches, we

constructed Bayesian analysis models in Stan using conditional likelihoods,

implemented in R v4.4.0 (R Core Team, 2019) and Stan v2.32.2 (Stan Development

Team, 2025), with the R package cmdstanr v0.8.1 and CmdStan v2.36.0. The 4)

magstd approach was also constructed in Stan, except with code adapted from Ulitzsch

et al. (2023). For the 3) in-iterations relabeling approach (blav), we directly used the

blavaan package to construct a CFA model under unit variance identification following

lavaan syntax. The blavaan package then automatically converts lavaan CFA syntax

into a marginal likelihood Bayesian model (Merkle et al., 2021). For all 7 approaches,

5,000 burn-in iterations and 10,000 sampling iterations were performed with 3 chains for

each of the 500 replications.

Unit Variance Identification

For 1) UVI, we defined the likelihood of each indicator as N (aij + λijFj, ϵij),

where ϵij was the standard deviation of the measurement error eij. To facilitate more
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direct comparisons, we assigned priors to the model parameters similar to the defaults

in blavaan. The three sets of factor scores F1, F2, and F3 were assigned a multivariate

normal prior with a covariance of LKJ (1) (Lewandowski, Kurowicka, & Joe, 2009),

which always yields 1s as the diagonal elements on the covariance matrix, providing

unit variance identification for our model. Each λij was assigned a prior of N (0, 102),

each aij was given a prior of N (0, 322). Each measurement error standard deviations ϵij

was assigned a prior of Gamma(1, .5). To help keep the comparisons fair, starting

values were chosen to be similar to those in blavaan when performing CFA on variables

of a similar scale. Specifically, the loadings were assigned random starting values from

Uniform(.8, 1.2), measurement error standard deviations from Uniform(.4, .6), item

intercepts from Uniform(−0.05, 0.05). The factor correlation matrix was given the

identity matrix as the starting value.

Unit Loading Identification

The 2) ULI model was identical to the UVI model except for the following

aspects. First, the first loading of each factor was fixed to 1, rather than freely

estimated. Second, the covariance between factor scores was specified as τΩτ , where Ω

was the correlation matrix given a prior of LKJ (1), while τ was a diagonal matrix with

the standard deviations of F1, F2, and F3 on its diagonal, which are each in turn given

a prior of Gamma(1, .05). This frees the scale of the indicators so their variances are no

longer fixed to 1 and are freely estimated. Indicator loadings are no longer on a

standardized scale under ULI, so we set the initial value of the loadings to a wider range

of Uniform(.5, 1.5). Since the data generating model adopts a scale based on

standardized factors and indicators (i.e., indicators and factors have standard deviations

of 1), the unstandardized loadings from the ULI approach are not on the appropriate

scale for the evaluation of the loading estimates. Therefore, at each iteration of the

Bayesian Monte Carlo estimation, we computed partially standardized loadings (with

respect to the variance of the factors only) from the unstandardized loadings and factor

standard deviation. The posteriors of these partially standardized loadings are used for

the Bayesian estimation.
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In-Iterations Relabeling

For the 3) in-iterations relabeling strategy, we specified a three factor CFA with

standardized factors, free loadings, and free factor correlations for the bcfa function in

the blavaan package with default priors (code available on OSF). The default priors

were N (0, 102) for the loadings, LKJ (1) on the correlations, Gamma(1, .5) for the

standard deviation of measurement errors, and N (0, 322) for the indicator intercepts.

Internal functions of blavaan first convert the model specified in the lavaan syntax into

Stan code, before blavaan automatically uses Stan to perform the Bayesian estimation

(Merkle et al., 2021). It is worth noting that blavaan also uses a marginal likelihood

approach, similar to Ulitzsch et al. (2023), but the sign reflection handling is entirely

differently. Inside the Stan code for blavaan, a generated quantity block is used to, at

each iteration, multiply any sampled value of reference loadings below 1 by -1, which

may entail also reversing the sign of other associated loadings, path coefficients, or

factor covariances. This forces the reference indicator loadings to always be positive.

The default number of burn-in and sampling iterations are set to 500 and 1,000 in

blavaan, but we increased them to 5,000 and 10,000 to match our other analyses.

Posterior Relabeling

The 4) posterior relabeling approach was performed modifying a function

provided by Erosheva and Curtis (2017). First, Bayesian CFA was conducted in Stan

using the UVI approach with three chains as usual. Next, let Λ be a p × q matrix of

factor loadings, and ν(t,c) be a vector of length q that contains sign changes associated

with the q factors at iteration t = 1, . . . , N for chain c = 1, . . . , C of the MCMC

samples. The goal is to make changes to to them to minimize a function equivalent to

the following loss:

N∑
t=1

C∑
c=1

min
ν(t,c)

−
p∑

i=1

q∑
j=1

I
(
λ

(t,c)
ij ̸= 0

)
log

[
f

(
v

(t,c)
j λ

(t,c)
ij ; mij, s2

ij

)]
where mij and s2

ij are the interim posterior means and variances, respectively, for λij,

f(·; m, s2) is a normal density, and I
(
λ

(tc)
ij ̸= 0

)
is an indicator function that is 1 only

for loadings that were not fixed to zero, and zero otherwise. After randomly initializing
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the sign change vectors, ν(t,c), the algorithm attempts a new sign switch for one of the

factors to see if it improves the loss function. If a sign switch improves loss, it is

accepted as the new sign switch, and the process is repeated until no new proposed sign

switches further improve the loss.

Since the original relabeling function by Erosheva and Curtis (2017) did not

include the relabeling of factor covariances, we implemented a simple extension which

takes the sign switches for loadings from the relabeling function and computes the

corresponding sign switches on factor correlations. Specifically, for each factor

correlation, if one and only one of the factors switches sign due to the relabeling

algorithm, the sign of the corresponding factor correlation also switches (code available

on OSF). After the sign switches for the loadings and factor correlations are obtained,

the posteriors for each of these parameters are multiplied by the sign switches to

complete the relabeling, and summaries of these relabeled posteriors are used in the

estimation of the parameters.

Range Restricted Priors

For the range restricted priors approaches, 6) all trunc and 7) logref used

analysis models similar to the UVI model with slight modifications. With the alltrunc

approach, all loadings were instead assigned N (0, 52) and restricted to be greater than 0

in Stan, effectively assigning halfnormal priors N +(0, 52) to all loadings. With the

logref approach, the reference/first loading of each factor was instead assigned a prior of

Lognormal(0, 12) to ensure that it would be positive.

The 5) margstd approach from Ulitzsch et al. (2023)3 did not parameterize the

indicator scores or the factor scores. Instead, the means and covariances among the

indicators were modeled directly. First, let the model-implied covariance matrix be Σ.

Although, Σ is unstandardized, it is computed from standardized loadings and factor

correlations, rescaled by the standard deviations of the indicators. The factor

3 The original code specified structural regressions with 3 indicators per latent variable. We simplified

it to a CFA model with 4 indicators per factor and applied some bug fixes in the original code; code

and comments available on OSF.
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correlations were assigned Uniform(−.99, .99) priors. The first standardized loading of

each factor was assigned a Uniform(.01, .99) prior, restricting it to be positive. The

remaining standardized loadings were assigned Uniform(−.99, .99) priors. The

indicator standard deviations were assigned N (0, 102) priors. The scatter matrix of the

data S, i.e., the covariance matrix of the indicators multiplied by N − 1, where N was

the sample size, was assumed to follow a Wishart(N − 1, Σ) distribution. The means of

the indicators were assumed to follow a MVN (a, Σ
N

) distribution, where a were the

indicator intercepts assigned N (0, 102) priors. Following Ulitzsch et al. (2023), we

sampled the initial values of all loadings from Uniform(.01, .99), and relied on Stan

defaults for start values for other parameters. To compare the standardized loading

estimates produced by margstd to the unstandardized loading estimates produced by

other approaches in the study, we multiplied each loading with the estimated standard

deviation of its corresponding indicator.

Evaluation

For each method in each condition, the summary of the posteriors was used to

evaluate the performance of the approach. The primary evaluation method was

convergence. When sign reflection occurs in Bayesian latent variable models, the

posteriors across multiple chains would typically fail the convergence criteria. With the

converged replications, the means of the posteriors were used as the parameter

estimates, and their mean and standard deviations across the replications were used to

compute the average bias and the root mean square error (RMSE). Finally, we checked

the 95% credible interval coverage of the posteriors.

Convergence

Four converge criteria were examined, including the potential scale reduction

factor (r̂), Monte Carlo standard error (MCSE), and bulk and tail effective sample size

(ESS) (Stan Development Team, 2025). r̂ is the ratio of the between chain variance and

the within chain variance (Gelman & Rubin, 1992). We only treated a run as converged

under this criterion if r̂ < 1.1 for every loading, factor correlation, and measurement

error. The MCSE is the standard error of the posteriors, and it should be small relative
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to the standard deviation of the posteriors (MCSD). We used the threshold

MCSE/MCSD < .1 for convergence. ESS-bulk is an estimate of the average number of

independent draws in the posterior sample (Vehtari, Gelman, Simpson, Carpenter, &

Bürkner, 2021). ESS-tail is an estimate of independent draws for the 5% tails of the

posteriors (Vehtari et al., 2021). ESS bulk and tail should be at least 100 per chain as

an indication of convergence (Stan Development Team, 2025; Vehtari et al., 2021).

Bias, RMSE, and Coverage

The remaining statistics used for evaluation were computed from the converged

replications for each condition and each approach. To simplify the notation across all

parameters (loadings, factor covariance, and so on), we use θ to denote some parameter

in the model, and θ̂i to denote the sample estimate of that parameter in the ith

replication of the simulation study. θ̂i was computed from the mean of the posterior

distribution. The average relative bias is given by 1
R

ΣR
i=1

θ̂i−θ
θ

, where R is the number of

converged replications. RMSE is given by
√

1
R

ΣR
i=1(θ̂i − θ)2. In the case an estimate is

unbiased, lower RMSE indicates better efficiency. To make the results more

interpretable, we computed the relative RMSE for each approach compared to the

in-iterations relabeling approach used by blavaan (blav). For example, the relative

RMSE of the alltrunc approach is 1 − RMSEalltrunc

RMSEblav
. A value of 0.10 indicates the RMSE

is 10% larger compared to blavaan, while a value of -0.10 indicates the RMSE is 10%

lower compared to blavaan. The 95% coverage, with the exception of the univariate

approach, is given by the percentage of converged replications where the 2.5% to 97.5%

equal-tailed interval of the posterior distribution contains the true population value of

the parameter θ.

Results

Convergence

The proportion of converged runs out of 500 replications based on each criterion

can be seen in Figure 1. Consistent with expectations due to sign reflection, UVI

practically never converged under any criterion, with convergence below 3% according

to any criterion. Although ULI performed poorly based on the ESS criteria especially
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when reliability was low, it could achieve reasonable convergence with r̂ and MCSE

criteria under high reliability. Somewhat surprisingly, the more “natural” approach with

lognormal priors on reference loadings (logref) did not meaningfully improve

convergence, yielding between 0.05% and 30% convergence on the r̂ and MCSE ratio

criteria, and below 16% on ESS criteria. In contrast, assigning truncated priors to all

loadings led to generally acceptable convergence with r̂ and MCSE, but yielded lower

ESS under low reliability conditions, around 55% to 62%. The relabeling approach

yielded slightly better performance than the alltrunc approach, but the performances

for these two methods were similar. The two marginal likelihood approaches, one using

range restricted uniform priors on the reference indicators (margstd), and one using the

in-iterations relabeling strategy (blav), both performed best overall, although margstd

had poorer convergence when the sample size was small, reliability was low, and the

reference indicator was poor.

Bias, RMSE, and Coverage

To evaluate the performance of the parameter estimates, we examined the

aggregated relative bias, relative RMSE, and coverage. The number of converged runs

were too low for UVI and logref for meaningful summaries, so they were excluded from

the performance evaluation. Further, to include more available replications, especially

for ULI, ESS bulk and tail were not used as convergence criteria for the summaries

below. This means that for these analyses, replications were included as long as both

r̂ < 1.1 and MCSE/MCSD < .1. The number of converged runs under this set of

criteria is shown in Figure 2. Alternative analyses using all four criteria for convergence

are available on OSF, which yielded largely the same pattern of results, except under

low reliabilty conditions where ULI did not always provide meaningful performance

summaries due to low number of converged replications.

Figure 3 shows the average relative bias over the converged replications. While

ULI yielded overall acceptable performance, it underestimated the reference loading in

most conditions. First, when the sample size was small (100), ULI only yielded

unbiased estimates (below 10% absolute relative bias) when both the reliability was
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high and the reference indicator was good. Second, even when the sample size was

moderate (N = 200), under the low reliability and poor reference indicator condition,

ULI yielded a -0.26 relative bias. Lastly, under the condition of small sample size, low

reliability, and poor reference indicator, the relative bias was very large at -0.40. The

in-iterations relabeling marginal approach with blavaan (blav) yielded the best

convergence overall, but it also resulted in slightly larger negative relative bias for the

factor covariances compared to the other approaches, primarily when the sample size

was small and reliability was low. Other approaches also somewhat underestimated the

factor covariances, especially when the reliability is low, but these were not particularly

large absolute relative biases (close to 10% or below). The blavaan approach was also

more likely to underestimate the loadings when the sample size was small, the reference

indicator was poor, and reliability was low, but the absolute relative bias was also

reasonably small (between 5%-10%). Except for the small bias in blavaan and the

notable bias in the reference indicators for ULI, loading estimates were largely unbiased

under all other approaches.

In Figure 4, we present the relative RMSE of each condition in comparison to

blavaan. Generally, the relative RMSE reflected the bias in Figure 3, showing practically

little difference in the efficiency between any two methods when they both yielded

unbiased estimates. For example, ULI yielded larger RMSE in reference loadings except

when the reliability was high and the reference indicator was good, reflecting its biased

estimates in other conditions. Similarly, most conditions yielded RMSE lower compared

to blavaan under the condition where sample size was small, the reliability was low, and

the reference indicator was poor. The only exception is that the margstd approach

tended to yield slightly lower RMSE than all other approaches, regardless of conditions.

Finally, all approaches showed good coverage generally (Figure 5). The only

poor coverage occurred under ULI under low reliability, with either low sample size or

poor reference indicators, where the approach also struggled with convergence and

unbiased estimation.
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Discussion

Our study examined a range of extant approaches in the literature for handling

sign reflection in Bayesian latent variable models, in particular with a three factor CFA

model. In general, most approaches performed very well, even when the reliability of

the scales were fairly low (ω = .585), the reference indicator was quite poor (λ = .3),

and the sample size was quite small (N = 100). While the UVI approach consistently

encountered sign reflections, it was encouraging to find that most extant approaches

could handle the problem reasonably well.

A somewhat surprising finding was that assigning lognormal priors to the

reference indicator (logref) did not appropriately handle sign reflection under the

scenarios studied. With logref, we were trying to include a condition in which we impose

fewer constraints on the parameters and choose more “natural” priors by avoiding

improper priors. The lognormal priors could be suitable to other parameters, and

perhaps with larger sample sizes, but when assigned to just a single loading per factor

in a CFA model under our study conditions, convergence was hardly ever achieved.

With the alltrunc approach, we assigned truncated, halfnormal priors to all

loadings to ensure that loadings are positive. This led to good convergence overall,

except for low ESS bulk and tail when reliability was low, where the convergence rates

based on each of those criteria were around 60%. When reliabilities, and hence the

loadings, were low, the sampling of the posteriors was more likely to abut the truncated

boundary of 0, which may have increased the autocorrelation in the posteriors.

However, this did not seem to have an appreciable impact on r̂ and the MCSE ratio, or

notably affect the parameter estimates in terms of bias, RMSE, or the coverage of the

95% credible interval. The alltrunc approach presents a curious contrast with the logref

approach, where a more forceful approach outperformed one that could be deemed less

restrictive.

The margstd approach based on (Ulitzsch et al., 2023), similar to the alltrunc

approach, also imposes improper priors with restricted range on the loadings, but it is

different in three primary ways: 1) The Bayesian model is parameterized using a
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marginal likelihood approach, modeling the mean and covariance structure without

needing the factor scores; 2) The priors are placed on standardized loadings with

uniform distributions; and 3) Only one loading on each factor is constrained to be

positive. This resulted in good convergence in general, as well as unbiased parameter

estimation with good efficiency, along with coverage. Lastly, the marginal likelihood

approach also has the advantage of having a faster computation time, as fewer

parameters are involved in the model.

The posterior relabeling approach (relab) by (Erosheva & Curtis, 2017)

represents one of the more theoretically sound approaches, where signs are switched in

the posteriors so that each posterior distribution appears normal. Somewhat

surprisingly, it showed practically identical performance to alltrunc, having somewhat

low ESS bulk/tail when scale reliability was low, but performed very well otherwise. It

may be the case that when reliability is low, the MCMC samples with no constraints do

not necessarily settle into one of two normal distributions with either a positive or

negative mean that are reflections of each other around zero. Instead, the samples may

waver between different solutions, resulting in a posterior that cannot simply be fixed

by finding the best sign switch.

The blavaan also implements a marginal likelihood approach (blav) similar to

(Ulitzsch et al., 2023), but it uses an in-iterations relabeling approach with priors

without range restriction. This resulted in the best convergence overall, albeit with a

slightly higher negative bias on the factor covariance. The run time in blavaan tends to

be longer than in all other approaches, often twice as long in our simulation, possibly

due to the overhead of the more automated software.

Overall, it is a reassuring finding that despite the differences in a wide range of

approaches available for the handling of sign reflection, most of them yielded decent

performance. Out of all the approaches, ULI is the least recommended for the handling

of sign reflection because it performed very poorly under low reliability and poor

indicators and only yielded comparable performance to other approaches under ideal

conditions. For researchers who wish to use a more accessible and user friendly
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approach, blavaan’s automatic sign reflection handling will generally be able to avoid

nonconvergence and provide good estimates, but there may be a slight trade off in

increased bias and lower efficiency when the sample size is small and the scales are

poor. For researchers more willing to perform some custom coding in Stan, R, and

other statistical coding languages, we found that posterior relabeling, uniform priors on

standardized parameters, and truncated normal priors are all able to yield good

performances, with a computational speed advantage and potential slight advantage in

efficiency for the standardized parameterization.

Limitations and Future Directions

To our knowledge, our study is the first to directly compare the performance of a

wide range of sign switching handling approaches, and as such, we only focused on cases

without assumption violations and model misspecifications. Additionally, we used a

common 3-factor CFA model, and limited ourselves to relatively realistic scenarios when

selecting simulation parameters for low reliability and poor reference indicator

conditions. While we expect many results to generalize to many of these cases, for

example, CFA with a mix of negative and positive loadings for the same factor,

researchers need to be cautious about applying the incorrect range-restricted prior (e.g.,

alltrunc) for some loadings. Thus our findings may not represent what could happen

under more egregious conditions. For example, loadings of 0.1 may cause more difficulty

for handling sign reflection. Likewise, there is sometimes an interplay between sample

size, the number of factors and factor correlations, and the number of indicators. We

conjecture that more nontrivially correlated factors and/or decent indicators may

sometimes help stabilize estimation, provided that sample size is not too small.

Conversely then, too few indicators per factor may yield more difficulties. Future

studies may also explore more specific ways the sign switching handling methods could

be affected by assumption violations, such as different nonnormal distributions in the

factor scores and/or measurement errors, a mix of positive and negative loadings,

misspecified models with omitted cross loadings or correlated errors, etc.

An alternative software program for Bayesian estimation that we did not study
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is Mplus (Muthén & Muthén, 2017). Mplus does not explicitly document sign switching

handling in its User’s Guide and does not provide open source code, but according to a

webnote the software attempts to avoid between-chain label switching by running 50

identical iterations for each chain (Asparouhov & Muthén, 2010) and, according to later

presentation slides on the new features in Mplus 7 (Muthén & Asparouhov, 2012), the

software automatically handles sign switching by constraining the sum of all loadings in

each factor to 1. This constraint, unlike alltrunc, allows for negative loadings, but

ensures that the positive loadings are greater in magnitude in each factor, to prevent

sign switching within chains and encourage sign agreement across multiple chains.

While this constraint is weaker than alltrunc, given that Mplus assigns starting values

of 1 to loadings of continuous indicators by default, it should offer comparable

performance. As with all software, researchers are advised to examine trace plots to

ensure the chosen solution for label switching successfully prevented the issue.

Lastly, many approaches we studied also come with a wide range of possible

implementations based on researchers’ decisions. For example, our implementation of

assigning lognormal priors to reference loadings did not pan out for our model, but a

modified version of an approach following the same theoretical idea may work. A full

exploration of potential implementations is outside of the scope of the study, which

aims to provide an overview of a broad range of approaches, and we leave more

specialized investigations to future studies.
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Figure 1

The percentage of converged runs out of 500 replications.

Note. The criteria are: r̂ < 1.1, ESS (bulk or tail) > 300 (100 per chain), MCSE/MCSD <

10%. MCSD: Monte Carlo standard deviation.
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Figure 2

The number of converged replications.

Note. Convergence based only on r̂ and MCSE ratio.



EVALUATING APPROACHES FOR 25

F
ig

ur
e

3

T
he

av
er

ag
e

re
la

tiv
e

bi
as

ov
er

th
e

co
nv

er
ge

d
re

pl
ic

at
io

ns
.

N
ot

e.
C

on
ve

rg
en

ce
ba

se
d

on
ly

on
r̂

an
d

M
C

SE
ra

tio
.

U
ni

t
lo

ad
in

g
id

en
tifi

ca
tio

n
(U

V
I)

an
d

lo
gn

or
m

al
pr

io
rs

on
re

fe
re

nc
e

lo
ad

in
gs

(lo
gr

ef
)

ar
e

ex
cl

ud
ed

du
e

to
lo

w
co

nv
er

ge
nc

e.



EVALUATING APPROACHES FOR 26

F
igure

4

T
he

relative
R

M
SE

over
the

converged
replications

com
pared

to
the

in-iterations
relabeling

approach
in

blavaan.

N
ote.

C
onvergence

based
only

on
r̂

and
M

C
SE

ratio.
U

nit
loading

identification
(U

V
I)

and
lognorm

alpriors
on

reference
loadings

(logref)
are

excluded
due

to
low

convergence.
B

lue
denotes

low
er

(better)
R

M
SE

than
blavaan,w

here
red

denotes
higher

(w
orse)

R
M

SE
than

blavaan.



EVALUATING APPROACHES FOR 27

F
ig

ur
e

5

T
he

co
ve

ra
ge

of
th

e
95

%
cr

ed
ib

le
in

te
rv

al
ov

er
th

e
co

nv
er

ge
d

re
pl

ic
at

io
ns

.

N
ot

e.
C

on
ve

rg
en

ce
ba

se
d

on
ly

on
r̂

an
d

M
C

SE
ra

tio
.

U
ni

t
lo

ad
in

g
id

en
tifi

ca
tio

n
(U

V
I)

an
d

lo
gn

or
m

al
pr

io
rs

on
re

fe
re

nc
e

lo
ad

in
gs

(lo
gr

ef
)

ar
e

ex
cl

ud
ed

du
e

to
lo

w
co

nv
er

ge
nc

e.



EVALUATING APPROACHES FOR 28

References

Asparouhov, T., & Muthén, B. (2010). Bayesian analysis using mplus: Technical

implementation.

Bollen, K. A., Lilly, A. G., & Luo, L. (2022). Selecting scaling indicators in structural

equation models (SEMs). Psychological methods.

Chen, S. M., Bauer, D. J., Belzak, W. M., & Brandt, H. (2022). Advantages of spike

and slab priors for detecting differential item functioning relative to other

bayesian regularizing priors and frequentist lasso. Structural Equation Modeling:

A Multidisciplinary Journal, 29 (1), 122–139.

Conti, G., Frühwirth-Schnatter, S., Heckman, J. J., & Piatek, R. (2014). Bayesian

exploratory factor analysis. Journal of econometrics, 183 (1), 31–57.

Erosheva, E. A., & Curtis, S. M. (2017). Dealing with reflection invariance in bayesian

factor analysis. Psychometrika, 82 , 295–307.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple

sequences. Statistical science, 7 (4), 457–472.

Hayashi, K., & Marcoulides, G. A. (2006). Teacher’s corner: Examining identification

issues in factor analysis. Structural Equation Modeling, 13 (4), 631–645.

Jöreskog, K. G. (1970). A general method for estimating a linear structural equation

system. ETS Research Bulletin Series, 1970 (2), i–41.

Kim, C., Daniels, M., Li, Y., Milbury, K., & Cohen, L. (2018). A bayesian

semiparametric latent variable approach to causal mediation. Statistics in

medicine, 37 (7), 1149–1161.

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation

matrices based on vines and extended onion method. Journal of multivariate

analysis, 100 (9), 1989–2001.

Liu, H., Heo, I., Depaoli, S., & Ivanov, A. (2025). Parameter recovery for misspecified

latent mediation models in the bayesian framework. Structural Equation

Modeling: A Multidisciplinary Journal, 32 (4), 618–637.

Liu, H., Heo, I., Ivanov, A., & Depaoli, S. (2025). Model assumption violations in



EVALUATING APPROACHES FOR 29

bayesian latent mediation analysis: An exploration of bayesian sem fit indices and

ppp. Structural Equation Modeling: A Multidisciplinary Journal, 1–31.

Martin-Fernandez, M., & Revuelta, J. (2017). Bayesian estimation of multidimensional

item response models. a comparison of analytic and simulation algorithms.

Psicologica: International Journal of Methodology and Experimental Psychology,

38 (1), 25–55.

Merkle, E. C., Ariyo, O., Winter, S. D., & Garnier-Villarreal, M. (2023). Opaque prior

distributions in bayesian latent variable models. preprint arXiv:2301.08667 .

Merkle, E. C., Fitzsimmons, E., Uanhoro, J., & Goodrich, B. (2021). Efficient bayesian

structural equation modeling in stan. Journal of Statistical Software, 100 , 1–22.

Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models via

parameter expansion. Journal of Statistical Software, 85 (4), 1–30. doi:

10.18637/jss.v085.i04

Millsap, R. E. (2001). When trivial constraints are not trivial: The choice of uniqueness

constraints in confirmatory factor analysis. Structural Equation Modeling, 8 (1),

1–17.

Muthén, B., & Asparouhov, T. (2012). New developments in mplus version 7: Part 1.

Presentation at Utrecht University. Retrieved from https://www.statmodel.

Muthén, L. K., & Muthén, B. O. (2017). Mplus users guide. eighth edition. [Computer

software manual]. Los Angeles, CA: Muthén & Muthén.

R Core Team. (2019). R: A language and environment for statistical computing

[Computer software manual]. Vienna, Austria. Retrieved from

https://www.R-project.org/

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of

Statistical Software, 48 (2), 1–36. Retrieved from

http://www.jstatsoft.org/v48/i02/

Smid, S. C., & Winter, S. D. (2020). Dangers of the defaults: A tutorial on the impact

of default priors when using bayesian sem with small samples. Frontiers in

Psychology, 11 , 611963.

https://www.R-project.org/
http://www.jstatsoft.org/v48/i02/


EVALUATING APPROACHES FOR 30

Stan Development Team. (2025). Stan modeling language users guide and reference

manual, version 2.36 [Computer software manual]. Retrieved from

https://mc-stan.org

Sun, R., Zhou, X., & Song, X. (2021). Bayesian causal mediation analysis with latent

mediators and survival outcome. Structural Equation Modeling: A

Multidisciplinary Journal, 28 (5), 778–790.

Ulitzsch, E., Lüdtke, O., & Robitzsch, A. (2023). Alleviating estimation problems in

small sample structural equation modelinga comparison of constrained maximum

likelihood, bayesian estimation, and fixed reliability approaches. Psychological

Methods, 28 (3), 527.

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2021).

Rank-normalization, folding, and localization: An improved R̂ for assessing

convergence of MCMC (with discussion). Bayesian Analysis, 16 (2). Retrieved

from http://dx.doi.org/10.1214/20-BA1221 doi: 10.1214/20-ba1221

https://mc-stan.org
http://dx.doi.org/10.1214/20-BA1221

	Strategies for Sign Reflection
	Unit Loading Identification
	Range Restricted Priors
	Posterior Relabeling
	In-Iterations Relabeling

	Current Study
	Methods
	Data Generating Model
	Analysis
	Unit Variance Identification
	Unit Loading Identification
	In-Iterations Relabeling
	Posterior Relabeling
	Range Restricted Priors

	Evaluation
	Convergence
	Bias, RMSE, and Coverage


	Results
	Convergence
	Bias, RMSE, and Coverage


	Discussion
	Limitations and Future Directions

	References

