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Abstract

In Markov chain Monte Carlo estimation of Bayesian latent variable models, sign
reflection can cause multiple chains to settle onto equivalent but numerically different
solutions, resulting in poorly mixed chains and nonconvergence. Sign reflection can be
handled using various methods, such as adopting unit loading identification (ULI),
assigning range restricted prior distributions, or using a relabeling algorithm. Some
statistical software automatically handles sign reflection in the background, e.g., the
blavaan package in R. We conducted simulations to address the lack of comprehensive
studies on such a wide variety of approaches. Our results show that most solutions will
work well in confirmatory factor analysis given sufficient sample sizes and good
measurement models. However, low scale reliability and poor choice of reference
indicator can negatively impact the performance, especially with small sample sizes. In
particular, we do not recommend using ULI without additional sign reflection handling
for Bayesian latent variable models.

Keywords: Bayesian, structural equation model, confirmatory factor analysis,

sign indeterminacy
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Evaluating approaches for the handling of sign reflection in Bayesian latent

variable models.

Latent variable models with reflective measurement are often invariant to sign
reflection in the indicator loadings, which is to say, the model remains equivalent—with
the same fit statistics and the same model-implied mean and covariance
structures—when some loadings switch signs from positive to negative, or vice versa.
This phenomenon, also known as sign indeterminacy, is a type of identification problem
related to factor reflection in both exploratory and confirmatory factor analysis
contexts. Identification itself refers to whether a unique solution exists and can be found
for a model under some estimation approach (Hayashi & Marcoulides, 2006). Other
types of identification issues involve whether factor loading matrices can be rotated to
find an equivalent solution (e.g., including in a confirmatory framework; Millsap, 200T),
which also relates to the arbitrary order in which columns appear in such a rotated
matrix (for a review of identification issues, see Hayashi & Marcoulides, 20086).

To illustrate sign reflection, suppose latent variable A and B are positively
correlated, and a set of indicators positively load onto A, then an equivalent model can
be obtained with the same indicators negatively loading onto A, with A now negatively
correlated with B. In the empirical interpretation of the model under sign reflection, the
label of A is simply reversed, e.g., “high agreeableness is positively correlated with
well-being” becomes “low agreeableness is negatively correlated with well-being” under
sign reflection. Since the different solutions should lead to equivalent theoretical
interpretations, sign reflection is often not a substantive issue for maximum likelihood
estimation, where arbitrarily choosing one of the solutions would not affect the
conclusion of the analysis. For example, in structural equation model (SEM) software
such as lavaan (Rosseel, 20172), one loading of each factor may be automatically
restricted to positive values in order to present the more easily interpretable solution.
Such software programs typically proceed to employ local search algorithms to find the
maximum likelihood solution.

In Bayesian Markov chain Monte Carlo (MCMC) estimation, multiple
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independent chains are generally used to ensure the posterior space is sufficiently
explored. These chains may sample from different local solutions with different factors
reflected due to sign indeterminacy, leading to nonconvergence when pooling their
draws (Erosheva & Curfid, 2017). The sign reflection problem in Bayesian analysis is
related to a broader class of label switching problems that includes cluster labels in
Bayesian analysis (Kim, Daniels, Li, Milbury, & Cohen, P01R) and factor labels in
Bayesian exploratory factor analysis (Conti, Frihwirth-Schnatter, Heckman, & Piatek,
2014). Methodological and empirical researchers have adopted various approaches to
handle sign reflection, such as restricting the signs of the loadings in various ways,
including the use of range restricted priors on some or all of the loadings (Chen, Bauer]
Belzak, & Brandf, 2022), relabeling the signs in the posterior sample (Erosheva &
Curtid, 2017), or switching the signs during Monte Carlo iterations (Merkle & Rosseel,
POTR; Merkle, Fitzsimmons, Uanhoro, & Goodrich, 2021).

Confirmatory factor analysis (CFA) is used here as an example in order to
discuss sign reflection in more detail, with generality retained under most latent variable
models with “reflective” measurement models. In CFA, indicators are a function of their
underlying factor(s). For example, a participant’s score on an indicator may be
x = a+ AF + e, where F' is the factor score for that participant for the factor underlying
that indicator, A is the factor loading, e is the random measurement error, and a is the
indicator intercept. Since the factor score F' is not observed except indirectly through
the indicator z, the scale for F' must be fixed in some way for the CFA model to be
identifiable (see Millsap, 2001). In practice, a latent variable model is typically
identified through one of two approaches. The unit variance identification (UVI)
approach fixes the variance of all factors to 1. The unit loading identification (ULI),
fixes one indicator loading in each factor to 1, thus scaling the factor score to a reference
indicator (Bollen, Lilly, & Lud, 2022). Sign indeterminacy is primarily an issue under
UVI, where the indicator score x would remain the same, if for example, the values in A

and F were both reflected around 0 — suppose A = —\ and ' = —[F”, then NF” and \F’

will yield the exact same value. This indeterminacy in turn can cause multiple chains to
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sample from reflected equivalent solutions, resulting in poorly mixed chains with poor

convergence and invalid summary statistics for the Bayesian estimation of the loading .
Strategies for Sign Reflection

Quantitative and empirical researchers conducting Bayesian analysis on latent
variable models adopt a wide range of approaches for the handling of sign reflection.
Most of these approaches can be broadly divided into the following categories: 1) unit
loading identification (ULI); 2) range restricted priors, where the priors of some or all
loadings are restricted to the positive range to avoid sign reflection; 3) posterior
relabeling, such as the algorithm by [Erosheva and Curfid (2007), which takes the

posterior draws from multiple chains to switch the signs of reflected solutions; 4)

loadings during the MCMC sampling to ensure the solutions have the expected signs.

In what follows, we provide an overview of these approaches.
Unit Loading Identification

With ULI, because one reference indicator loading of each factor is chosen to be
fixed to 1, the sign of the solution to the factor scores is constrained to be in agreement
with the sign of that indicator. In theory, this should make a latent variable model
identified using this strategy resilient to issues caused by sign reflection. However, the
ULI has several downsides. First, if the chosen reference indicators are poor measures of
the factors, inefficiency may permeate other aspects of the model, such as instability in
the scaling of the factor scores and unreasonably large and highly varied loadings on
other indicators. Second, if an indicator has low reliability, a large portion of the
sampling distribution of its loading (had it been estimated) may be on the other side of
0. Thus, fixing reference loadings to 1 may cause the factor scaling itself to change signs
from sample to sample. Lastly, in many applications of the latent variable model, it is
important to establish measurement invariance, i.e., the scale works the same way
across different groups. ULI may not be desired in such a scenario, because the
identification strategy already assumes that the reference indicators are invariant across

groups. For these reasons, it is important to explore solutions to sign reflection in
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Bayesian latent variable models not identified using ULI.
Range Restricted Priors

In Bayesian estimation, loadings are often given diffuse normal priors centered
around 0. For example, the default prior for loadings in blavaan is N'(0,10?) (see Merkle
& Rosseel, POTR; Smid & Winfer, 2020). The range restricted priors approach handles
sign reflection in UVI latent variable models by ensuring that one or several loadings for
each factor are positive by assigning them priors that only have density in the positive
range. One common approach is through the use of truncated normal priors, specifically
half-normal priors, which are normal priors restricted to only positive values. For
example, in item response theory (IRT), a categorical variable counterpart to CFA,
half-normal priors N'*(0, 5?) are sometimes given to the slopes (similar to loadings in
CFA) (Chen_etall, 2027). Alternatively, for researchers who prefer to avoid potential
improper priors with truncated priors, a more natural choice could be lognormal priors,
which are naturally bounded at 0 (Marfin-Fernandez & Revnelfa, POT7).

Ulitzsch, Ludtke, and Robitzsch (2023) studied small sample Bayesian
estimation of SEMs. In their study, Bayesian models were used to estimate the
standardized loadings and latent variable correlations through the well-established
model-implied covariance matriz (Joreskog, T970) for SEM, using the sample covariance
matrix of indicators rather than individual participant data as input. By
parameterizing the model with standardized loadings rather than unstandardized
loadings and assuming very simple structure (each indicator loads on only one factor at
a time), each loading must fall into the range of [—1,1]. Thus, sign reflection can be
handled under this approach by assigning uniform priors Uniform(.01,.99) to the first
loading of every factor to ensure it is positive, and the remaining loadings can be
assigned uniform priors Uniform(—.99,.99).

Despite the intuitive appeal of range restricted priors, researchers are sometimes
advised against using this approach. When loadings are small or the sampling

distribution has high variability, the posterior distributions for loadings are likely to

have some probability density in both positive and negative regions if unrestricted



EVALUATING APPROACHES FOR 7

priors were used. Since priors bounded above zero cannot produce these posteriors
samples, they are unable to properly estimate these loadings. Instead, approaches such
as relabeling, which are in theory more robust to problems such as low reliability and
poor reference indicators, are often recommended as alternatives (Merkle, Ariyo.
Winter, & Garnier-Villarreal, 2023).

Posterior Relabeling

When sign reflection occurs without additional estimation issues, the reflected
posteriors of each parameter (e.g. loadings, factor covariances, path coefficients) are
theoretically sampled from distributions that are identical but for their reflected signs
across multiple chains. This allows us to pursue a post hoc relabeling approach, first
performing the multiple chain Bayesian estimation with UVI—temporarily tolerating
sign reflection—then multiplying the appropriate loadings and factor covariances (or
path coefficients) by -1. Erosheva_and Curfid (2017) proposed a relabeling algorithm for
Bayesian factor analysis. The algorithm leverages the assumption that the posterior
samples for a loading from multiple chains are pooled together, they should form a
roughly normal distribution when no sign reflection occurs. This assumption becomes
more reasonable as sample sizes increases as posterior distributions will approach
normality. Thus, this approach examines the posterior samples across all chains to
choose a set of sign changes that results in a pooled posterior distribution for each
parameter, which best fits a normal distribution. The sign changes are chosen by first
assigning a set of random initial sign changes, then iteratively finding new sign changes
that maximize a normal density for the posterior of each loading. Compared to range
restricted priors, relabeling has the advantage of being able to appropriately obtain
posteriors for loadings that overlap with zero. However, the success of this approach is
somewhat contingent on the pooled posterior across reflected chains for each parameter
having reasonably well separated modes (Erosheva & Curfis, 2017). If the modes are
not well separated, for example, if the loadings are too close to zero, or if other

estimation issues occur such as the chain being stuck in local extrema, the posterior

relabeling approach may not be able to appropriately handle sign reflection.
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In-Iterations Relabeling

The R package blavaan (Merkle & Rosseel, PUTR) handles sign reflection using an
in-iterations relabeling approach (Merkle et all, P021). Similar to some range restricted
priors approaches, in-iterations relabeling restricts one “reference” loading in each factor
to be positive, allowing remaining loadings to be freely estimated. Rather than placing
range restricted priors on the reference loadings, this approach ensures they are positive
by checking their sampled values during the MCMC iterations. At any iteration, if a
draw for a reference loading is negative, that reference loading is multiplied by -1 before
the MCMC estimation continues, as are other loadings for that factor and any
associated covariances and path coeflicients. Subsequent iterations thus typically get
back on track to a solution in which the sign of the referent loading is positive and
ensuring sign agreement across chains. While this is the automatic sign reflection

handling in blavaan, it is not documented in detail and its impact has not been

thoroughly studied™.
Current Study

To our knowledge, there has not been a comprehensive study on sign reflection
handling in Bayesian latent variable models that summarizes and evaluates the
effectiveness of such a wide variety of approaches. Here we conduct a simulation study
to evaluate the performance of a range of extant approaches, from ULI, Erosheva and
Curtid (2007)’s relabeling algorithm, blavaan’s in-iterations relabeling method, to
several range restricted prior approaches, including Ulifzsch et all (2023)’s marginal
likelihood approach placing restricted priors on standardized loadings and factor
corelations. We used a three factor CFA for the simulation, as CFA with two to three
factors are very common psychology and other social sciences. Additionally, a three
factor CFA is equivalent to a latent variable mediation model, which is also a commonly

used model in applied research and a focus of several recent simulation studies

evaluating Bayesian methods (e.g., Ulifzsch et all, 2023, [Liu, Heo, Ivanov, & Depaoli,

1 'We would like to thank Dr. Ed Merkle for making blavaan open source, as well as clarifying its sign

handling feature in private correspondence
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2075, Sun, Zhou, & Song, P021, (Liu, Heo, Depaoli, & Ivanovi, 2025)). For the
simulation, we varied the overall reliability of the scales (high vs. low), the strength of
the reference loadings (good vs. poor), and the sample size (high vs. low), to provide an

evaluation under a range of plausible scenarios.
Methods

The simulation study was conducted using the R programming language (R-Core

Teaml, 2019) and the Stan software (Stan Development Team, 2025). R code and Stan
code were adapted from Ulitzsch et all (2023) and [Erosheva and Curfid (2017),
respectively, for the marginal likelihood approach with restricted priors on standardized
loadings and the relabeling strategies. The blavaan package was used for the

in-iterations relabeling strategy (Merkle & Rosseel, 2UTR). All the code used to simulate

the data and perform the analyses are available on OSFZ.
Data Generating Model

The data generating model was a CFA with three factors and four indicators per
factor, X;; = a;; + A\i;F; + e;;, where j € [1,2, 3] for the three factors, i € [1,2,3,4] for
the four indicators. X;;, F;, and e;; were random normal variables each representing
indicator scores, factor scores, and measurement errors, respectively. \;; represent
indicator loadings, while a,; are the indicator intercepts and were set to 0. Correlations
between the factors were set to be .3. Measurement error was assigned to each indicator
so that they were standardized in the population, i.e. the variance of the measurement
error was set to var(e;) =1 — A}

For our study design, we wanted to evaluate as many approaches as possible,
although many of them can be somewhat computationally intensive. Therefore we
limited the number of data conditions, with three fully crossed factors of sample size,
reliability, and reference loading quality, leading to 2 (small vs. medium sample size) x
2 (low vs. high reliability) x 2 (good vs. poor reference loadings) = 8 conditions in
total for each of the 7 approaches.

For the sample size conditions, we chose N = 100 and 200. The sample size

2 Available at https://osf.i10/392ng/7view only=6e35f8676d87439ca67286ad9ca76dcO
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N = 100 was chosen to examine how methods can breakdown under a small, but
nevertheless realistic, sample size for CFA in psychological research. The N = 200 is
typically deemed as a minimum sufficient sample size under the same context. In the
factor analysis literature, 0.3 is often regarded as the minimal loading for the inclusion
of an item in a scale, whereas 0.7 is often regarded as an “acceptably good” loading.
For the low reliability conditions, loadings were set to 0.7 for half the items and 0.3 for
the other half of the items in each factor, for a congeneric reliability of w = .585 per
factor. This allowed us to set the reference indicator loading to 0.7 for the “good”
reference indicator condition, and 0.3 for the “poor” reference indicator conditions. For
the high reliability conditions, we following the same criteria, choosing loading values of
0.6 and 0.8, which fall on the two sides of the “acceptably good” 0.7, as the loadings for
the items, with a congeneric reliability of w = .797. Thus, the reference indicator
loading was set to 0.8 for the “good” reference loading condition, and 0.6 for the “poor”
reference loading condition, for the high reliability conditions.

We simulated samples of the 12 indicator values (4 per factor for 3 factors) under
a multivariate normal distribution, where the indicator covariance is the model-implied
covariance matrix of CFA (e.g. Uoreskog, 1970; see code on OSF for technical details)
derived from the model defined above, and the means are all set to 0. In this case, this
would be equivalent to assuming both factor scores are multivariate normal and
measurement errors are normal. For each condition, 500 data sets were independently
generated for the following analyses.
Analysis

For the analysis, we included 7 approaches in total. 1) We included the unit
variance identification (UVI) as a control condition to establish the performance of CFA
in the absence of sign reflection handling. Due to sign reflection, we expected this
approach to perform poorly, but it was unclear to us precisely how poorly it would
perform, and how much of an improvement the other methods would be. 2) For
comparison, we also included unit loading identification (ULI). We expected ULI to

outperform UVI, but it could still yield poor performance when the reference indicator
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was poor. 3) We also included an approach directly employing the blavaan package,
which employs in-iterations relabeling automatically to handle sign switching. For
convenience, we refer to this approach simply as “blav”. 4) Furthermore, we included
Erosheva and Curfis (2017)’s posterior relabeling algorithm which handles sign
reflection in a more principled manner; we refer to this approach as “relab”. Finally, for
range restricted priors, because there is such a wide range of possible implementations,
we limited the study to include three alternatives. 5) Firstly, we included Ulifzsch ef all
(2023)’s approach that placed uniform priors on standardized parameters using a
marginal likelihood parameterization, which we will refer to as “margstd”. 6) Secondly,
we included a straightforward, more “brute force” approach of simply assigning
truncated halfnormal priors to all parameter loadings, which we refer to as “alltrunc”.
7) Lastly, we wanted to include an approach that would be more minimal, placing fewer
restrictions and using naturally bounded priors rather than truncated priors. To this
end, we included a condition where we placed a lognormal prior on the reference
indicator of each factor, and we refer to this condition as “logref™.

For 1) UVI, 2) ULI, 4) relab, 6) alltrunc, and 7) logref approaches, we
constructed Bayesian analysis models in Stan using conditional likelihoods,
implemented in R v4.4.0 (R-Core Team, 2019) and Stan v2.32.2 (Stan Development
leam, 2025), with the R package emdstanr v0.8.1 and CmdStan v2.36.0. The 4)
magstd approach was also constructed in Stan, except with code adapted from Ulifzsch
ef_all (2023). For the 3) in-iterations relabeling approach (blav), we directly used the
blavaan package to construct a CFA model under unit variance identification following
lavaan syntax. The blavaan package then automatically converts lavaan CFA syntax
into a marginal likelihood Bayesian model (Merkle et all, P021). For all 7 approaches,
5,000 burn-in iterations and 10,000 sampling iterations were performed with 3 chains for

each of the 500 replications.
Unit Variance Identification

For 1) UVI, we defined the likelihood of each indicator as N(a;; + \i;F;, €:5),

where €;; was the standard deviation of the measurement error e;;. To facilitate more
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direct comparisons, we assigned priors to the model parameters similar to the defaults
in blavaan. The three sets of factor scores Fi, Fy, and F3 were assigned a multivariate
normal prior with a covariance of LK 7 (1) (Lewandowski, Kurowicka, & Jo€, 2009),
which always yields 1s as the diagonal elements on the covariance matrix, providing
unit variance identification for our model. Each \;; was assigned a prior of N(0,10?),
each a;; was given a prior of N'(0,32%). Each measurement error standard deviations €;;
was assigned a prior of Gamma(1,.5). To help keep the comparisons fair, starting
values were chosen to be similar to those in blavaan when performing CFA on variables
of a similar scale. Specifically, the loadings were assigned random starting values from
Uniform(.8,1.2), measurement error standard deviations from Uniform(.4,.6), item
intercepts from Uniform(—0.05,0.05). The factor correlation matrix was given the

identity matrix as the starting value.
Unit Loading Identification

The 2) ULI model was identical to the UVI model except for the following
aspects. First, the first loading of each factor was fixed to 1, rather than freely
estimated. Second, the covariance between factor scores was specified as 7€), where ()
was the correlation matrix given a prior of LI J (1), while 7 was a diagonal matrix with
the standard deviations of Fy, Fy, and F3 on its diagonal, which are each in turn given
a prior of Gamma(1,.05). This frees the scale of the indicators so their variances are no
longer fixed to 1 and are freely estimated. Indicator loadings are no longer on a
standardized scale under ULI, so we set the initial value of the loadings to a wider range
of Uniform(.5,1.5). Since the data generating model adopts a scale based on
standardized factors and indicators (i.e., indicators and factors have standard deviations
of 1), the unstandardized loadings from the ULI approach are not on the appropriate
scale for the evaluation of the loading estimates. Therefore, at each iteration of the
Bayesian Monte Carlo estimation, we computed partially standardized loadings (with
respect to the variance of the factors only) from the unstandardized loadings and factor
standard deviation. The posteriors of these partially standardized loadings are used for

the Bayesian estimation.
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In-Iterations Relabeling

For the 3) in-iterations relabeling strategy, we specified a three factor CFA with
standardized factors, free loadings, and free factor correlations for the bcfa function in
the blavaan package with default priors (code available on OSF). The default priors
were N(0,10%) for the loadings, LK J (1) on the correlations, Gammaf(1,.5) for the
standard deviation of measurement errors, and N (0, 32?) for the indicator intercepts.
Internal functions of blavaan first convert the model specified in the lavaan syntax into
Stan code, before blavaan automatically uses Stan to perform the Bayesian estimation
(Merkle et all, 2021). It is worth noting that blavaan also uses a marginal likelihood
approach, similar to Ulifzsch et all (2023), but the sign reflection handling is entirely
differently. Inside the Stan code for blavaan, a generated quantity block is used to, at
each iteration, multiply any sampled value of reference loadings below 1 by -1, which
may entail also reversing the sign of other associated loadings, path coefficients, or
factor covariances. This forces the reference indicator loadings to always be positive.
The default number of burn-in and sampling iterations are set to 500 and 1,000 in

blavaan, but we increased them to 5,000 and 10,000 to match our other analyses.
Posterior Relabeling

The 4) posterior relabeling approach was performed modifying a function
provided by Erosheva and Curfis (2017). First, Bayesian CFA was conducted in Stan
using the UVI approach with three chains as usual. Next, let A be a p X ¢ matrix of
factor loadings, and v be a vector of length ¢ that contains sign changes associated
with the ¢ factors at iteration t =1,..., N for chain ¢ =1,...,C of the MCMC
samples. The goal is to make changes to to them to minimize a function equivalent to

the following loss:
N _ L (t,c) (t,¢) \ (t,c) 2
S min f =33 1 (NS # 0) log [F (4N )]

where m;; and sgj are the interim posterior means and variances, respectively, for \;;,
f(+;m, s?) is a normal density, and T ()\g-c) #+ 0) is an indicator function that is 1 only

for loadings that were not fixed to zero, and zero otherwise. After randomly initializing
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the sign change vectors, v(“9 | the algorithm attempts a new sign switch for one of the
factors to see if it improves the loss function. If a sign switch improves loss, it is
accepted as the new sign switch, and the process is repeated until no new proposed sign
switches further improve the loss.

Since the original relabeling function by Erosheva and Curfid (2017) did not
include the relabeling of factor covariances, we implemented a simple extension which
takes the sign switches for loadings from the relabeling function and computes the
corresponding sign switches on factor correlations. Specifically, for each factor
correlation, if one and only one of the factors switches sign due to the relabeling
algorithm, the sign of the corresponding factor correlation also switches (code available
on OSF). After the sign switches for the loadings and factor correlations are obtained,
the posteriors for each of these parameters are multiplied by the sign switches to
complete the relabeling, and summaries of these relabeled posteriors are used in the

estimation of the parameters.
Range Restricted Priors

For the range restricted priors approaches, 6) all trunc and 7) logref used
analysis models similar to the UVI model with slight modifications. With the alltrunc
approach, all loadings were instead assigned N'(0,5%) and restricted to be greater than 0
in Stan, effectively assigning halfnormal priors N (0, 5?) to all loadings. With the
logref approach, the reference/first loading of each factor was instead assigned a prior of
Lognormal(0,1?%) to ensure that it would be positive.

The 5) margstd approach from Ulifzsch ef all (2023)® did not parameterize the
indicator scores or the factor scores. Instead, the means and covariances among the
indicators were modeled directly. First, let the model-implied covariance matrix be ..
Although, ¥ is unstandardized, it is computed from standardized loadings and factor

correlations, rescaled by the standard deviations of the indicators. The factor

3 The original code specified structural regressions with 3 indicators per latent variable. We simplified
it to a CFA model with 4 indicators per factor and applied some bug fixes in the original code; code

and comments available on OSF.
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correlations were assigned Uni form(—.99,.99) priors. The first standardized loading of
each factor was assigned a Uniform(.01,.99) prior, restricting it to be positive. The
remaining standardized loadings were assigned Uni form(—.99,.99) priors. The
indicator standard deviations were assigned N (0, 10%) priors. The scatter matrix of the
data S, i.e., the covariance matrix of the indicators multiplied by N — 1, where N was
the sample size, was assumed to follow a Wishart(N — 1,%) distribution. The means of
the indicators were assumed to follow a MVN (a, %) distribution, where a were the
indicator intercepts assigned A/ (0, 10?) priors. Following [lifzsch ef all (2023), we
sampled the initial values of all loadings from Uniform(.01,.99), and relied on Stan
defaults for start values for other parameters. To compare the standardized loading
estimates produced by margstd to the unstandardized loading estimates produced by

other approaches in the study, we multiplied each loading with the estimated standard

deviation of its corresponding indicator.
Evaluation

For each method in each condition, the summary of the posteriors was used to
evaluate the performance of the approach. The primary evaluation method was
convergence. When sign reflection occurs in Bayesian latent variable models, the
posteriors across multiple chains would typically fail the convergence criteria. With the
converged replications, the means of the posteriors were used as the parameter
estimates, and their mean and standard deviations across the replications were used to
compute the average bias and the root mean square error (RMSE). Finally, we checked

the 95% credible interval coverage of the posteriors.
Convergence

Four converge criteria were examined, including the potential scale reduction
factor (1), Monte Carlo standard error (MCSE), and bulk and tail effective sample size
(ESS) (Stan Development Team, 2025). 7 is the ratio of the between chain variance and
the within chain variance (Gelman & Rubin, 1992). We only treated a run as converged

under this criterion if 7 < 1.1 for every loading, factor correlation, and measurement

error. The MCSE is the standard error of the posteriors, and it should be small relative
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to the standard deviation of the posteriors (MCSD). We used the threshold
MCSE/MCSD < .1 for convergence. ESS-bulk is an estimate of the average number of

independent draws in the posterior sample ([Vehtari, Gelman, Simpson, Carpenter, &

posteriors (Nehfari ef all, 2021). ESS bulk and tail should be at least 100 per chain as

an indication of convergence (Stan Development Teaml, P025; Vehfariet all, 2O2T).
Bias, RMSE, and Coverage

The remaining statistics used for evaluation were computed from the converged
replications for each condition and each approach. To simplify the notation across all
parameters (loadings, factor covariance, and so on), we use 6 to denote some parameter
in the model, and 0; to denote the sample estimate of that parameter in the ith
replication of the simulation study. 6; was computed from the mean of the posterior

0;—0
0

distribution. The average relative bias is given by %Ef;l , where R is the number of

converged replications. RMSE is given by \/ %Ef’;l(@- — 6)2. In the case an estimate is
unbiased, lower RMSE indicates better efficiency. To make the results more
interpretable, we computed the relative RMSE for each approach compared to the
in-iterations relabeling approach used by blavaan (blav). For example, the relative
RMSE of the alltrunc approach is 1 — %W. A value of 0.10 indicates the RMSE
is 10% larger compared to blavaan, while a value of -0.10 indicates the RMSE is 10%
lower compared to blavaan. The 95% coverage, with the exception of the univariate
approach, is given by the percentage of converged replications where the 2.5% to 97.5%

equal-tailed interval of the posterior distribution contains the true population value of

the parameter 6.
Results
Convergence
The proportion of converged runs out of 500 replications based on each criterion
can be seen in Figure 0. Consistent with expectations due to sign reflection, UVI

practically never converged under any criterion, with convergence below 3% according

to any criterion. Although ULI performed poorly based on the ESS criteria especially
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when reliability was low, it could achieve reasonable convergence with 7 and MCSFE
criteria under high reliability. Somewhat surprisingly, the more “natural” approach with
lognormal priors on reference loadings (logref) did not meaningfully improve
convergence, yielding between 0.05% and 30% convergence on the 7 and MCSE ratio
criteria, and below 16% on ESS criteria. In contrast, assigning truncated priors to all
loadings led to generally acceptable convergence with # and MCSFE, but yielded lower
ESS under low reliability conditions, around 55% to 62%. The relabeling approach
yielded slightly better performance than the alltrunc approach, but the performances
for these two methods were similar. The two marginal likelihood approaches, one using
range restricted uniform priors on the reference indicators (margstd), and one using the
in-iterations relabeling strategy (blav), both performed best overall, although margstd
had poorer convergence when the sample size was small, reliability was low, and the

reference indicator was poor.
Bias, RMSE, and Coverage

To evaluate the performance of the parameter estimates, we examined the
aggregated relative bias, relative RMSE, and coverage. The number of converged runs
were too low for UVI and logref for meaningful summaries, so they were excluded from
the performance evaluation. Further, to include more available replications, especially
for ULI, ESS bulk and tail were not used as convergence criteria for the summaries
below. This means that for these analyses, replications were included as long as both
7 < 1.1 and MCSE/MCSD < .1. The number of converged runs under this set of
criteria is shown in Figure B. Alternative analyses using all four criteria for convergence
are available on OSF, which yielded largely the same pattern of results, except under
low reliabilty conditions where ULI did not always provide meaningful performance
summaries due to low number of converged replications.

Figure B shows the average relative bias over the converged replications. While
ULI yielded overall acceptable performance, it underestimated the reference loading in
most conditions. First, when the sample size was small (100), ULI only yielded

unbiased estimates (below 10% absolute relative bias) when both the reliability was
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high and the reference indicator was good. Second, even when the sample size was
moderate (N = 200), under the low reliability and poor reference indicator condition,
ULI yielded a -0.26 relative bias. Lastly, under the condition of small sample size, low
reliability, and poor reference indicator, the relative bias was very large at -0.40. The
in-iterations relabeling marginal approach with blavaan (blav) yielded the best
convergence overall, but it also resulted in slightly larger negative relative bias for the
factor covariances compared to the other approaches, primarily when the sample size
was small and reliability was low. Other approaches also somewhat underestimated the
factor covariances, especially when the reliability is low, but these were not particularly
large absolute relative biases (close to 10% or below). The blavaan approach was also
more likely to underestimate the loadings when the sample size was small, the reference
indicator was poor, and reliability was low, but the absolute relative bias was also
reasonably small (between 5%-10%). Except for the small bias in blavaan and the
notable bias in the reference indicators for ULI, loading estimates were largely unbiased
under all other approaches.

In Figure @, we present the relative RMSE of each condition in comparison to
blavaan. Generally, the relative RMSE reflected the bias in Figure B, showing practically
little difference in the efficiency between any two methods when they both yielded
unbiased estimates. For example, ULI yielded larger RMSE in reference loadings except
when the reliability was high and the reference indicator was good, reflecting its biased
estimates in other conditions. Similarly, most conditions yielded RMSE lower compared
to blavaan under the condition where sample size was small, the reliability was low, and
the reference indicator was poor. The only exception is that the margstd approach
tended to yield slightly lower RMSE than all other approaches, regardless of conditions.

Finally, all approaches showed good coverage generally (Figure B). The only
poor coverage occurred under ULI under low reliability, with either low sample size or
poor reference indicators, where the approach also struggled with convergence and

unbiased estimation.
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Discussion

Our study examined a range of extant approaches in the literature for handling
sign reflection in Bayesian latent variable models, in particular with a three factor CFA
model. In general, most approaches performed very well, even when the reliability of
the scales were fairly low (w = .585), the reference indicator was quite poor (A = .3),
and the sample size was quite small (N = 100). While the UVI approach consistently
encountered sign reflections, it was encouraging to find that most extant approaches
could handle the problem reasonably well.

A somewhat surprising finding was that assigning lognormal priors to the
reference indicator (logref) did not appropriately handle sign reflection under the
scenarios studied. With logref, we were trying to include a condition in which we impose
fewer constraints on the parameters and choose more “natural” priors by avoiding
improper priors. The lognormal priors could be suitable to other parameters, and
perhaps with larger sample sizes, but when assigned to just a single loading per factor
in a CFA model under our study conditions, convergence was hardly ever achieved.

With the alltrunc approach, we assigned truncated, halfnormal priors to all
loadings to ensure that loadings are positive. This led to good convergence overall,
except for low ESS bulk and tail when reliability was low, where the convergence rates
based on each of those criteria were around 60%. When reliabilities, and hence the
loadings, were low, the sampling of the posteriors was more likely to abut the truncated
boundary of 0, which may have increased the autocorrelation in the posteriors.
However, this did not seem to have an appreciable impact on # and the MCSE ratio, or
notably affect the parameter estimates in terms of bias, RMSE, or the coverage of the
95% credible interval. The alltrunc approach presents a curious contrast with the logref
approach, where a more forceful approach outperformed one that could be deemed less
restrictive.

The margstd approach based on (Ulifzsch ef all, P023), similar to the alltrunc
approach, also imposes improper priors with restricted range on the loadings, but it is

different in three primary ways: 1) The Bayesian model is parameterized using a
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marginal likelihood approach, modeling the mean and covariance structure without
needing the factor scores; 2) The priors are placed on standardized loadings with
uniform distributions; and 3) Only one loading on each factor is constrained to be
positive. This resulted in good convergence in general, as well as unbiased parameter
estimation with good efficiency, along with coverage. Lastly, the marginal likelihood
approach also has the advantage of having a faster computation time, as fewer
parameters are involved in the model.

The posterior relabeling approach (relab) by (Erosheva & Curfid, 2OT7)
represents one of the more theoretically sound approaches, where signs are switched in
the posteriors so that each posterior distribution appears normal. Somewhat
surprisingly, it showed practically identical performance to alltrunc, having somewhat
low ESS bulk/tail when scale reliability was low, but performed very well otherwise. It
may be the case that when reliability is low, the MCMC samples with no constraints do
not necessarily settle into one of two normal distributions with either a positive or
negative mean that are reflections of each other around zero. Instead, the samples may
waver between different solutions, resulting in a posterior that cannot simply be fixed
by finding the best sign switch.

The blavaan also implements a marginal likelihood approach (blav) similar to
(Ulitzsch ef all, 2023), but it uses an in-iterations relabeling approach with priors
without range restriction. This resulted in the best convergence overall, albeit with a
slightly higher negative bias on the factor covariance. The run time in blavaan tends to
be longer than in all other approaches, often twice as long in our simulation, possibly
due to the overhead of the more automated software.

Overall, it is a reassuring finding that despite the differences in a wide range of
approaches available for the handling of sign reflection, most of them yielded decent
performance. Out of all the approaches, ULI is the least recommended for the handling
of sign reflection because it performed very poorly under low reliability and poor
indicators and only yielded comparable performance to other approaches under ideal

conditions. For researchers who wish to use a more accessible and user friendly
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approach, blavaan’s automatic sign reflection handling will generally be able to avoid
nonconvergence and provide good estimates, but there may be a slight trade off in
increased bias and lower efficiency when the sample size is small and the scales are
poor. For researchers more willing to perform some custom coding in Stan, R, and
other statistical coding languages, we found that posterior relabeling, uniform priors on
standardized parameters, and truncated normal priors are all able to yield good
performances, with a computational speed advantage and potential slight advantage in

efficiency for the standardized parameterization.
Limitations and Future Directions

To our knowledge, our study is the first to directly compare the performance of a
wide range of sign switching handling approaches, and as such, we only focused on cases
without assumption violations and model misspecifications. Additionally, we used a
common 3-factor CFA model, and limited ourselves to relatively realistic scenarios when
selecting simulation parameters for low reliability and poor reference indicator
conditions. While we expect many results to generalize to many of these cases, for
example, CFA with a mix of negative and positive loadings for the same factor,
researchers need to be cautious about applying the incorrect range-restricted prior (e.g.,
alltrunc) for some loadings. Thus our findings may not represent what could happen
under more egregious conditions. For example, loadings of 0.1 may cause more difficulty
for handling sign reflection. Likewise, there is sometimes an interplay between sample
size, the number of factors and factor correlations, and the number of indicators. We
conjecture that more nontrivially correlated factors and/or decent indicators may
sometimes help stabilize estimation, provided that sample size is not too small.
Conversely then, too few indicators per factor may yield more difficulties. Future
studies may also explore more specific ways the sign switching handling methods could
be affected by assumption violations, such as different nonnormal distributions in the
factor scores and/or measurement errors, a mix of positive and negative loadings,
misspecified models with omitted cross loadings or correlated errors, etc.

An alternative software program for Bayesian estimation that we did not study
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is Mplus (Muthén & Muthén, 2007). Mplus does not explicitly document sign switching
handling in its User’s Guide and does not provide open source code, but according to a
webnote the software attempts to avoid between-chain label switching by running 50
identical iterations for each chain (Asparouhov & Muthén, 2010) and, according to later
presentation slides on the new features in Mplus 7 (Muthén & Asparouhovi, 2012), the
software automatically handles sign switching by constraining the sum of all loadings in
each factor to 1. This constraint, unlike alltrunc, allows for negative loadings, but
ensures that the positive loadings are greater in magnitude in each factor, to prevent
sign switching within chains and encourage sign agreement across multiple chains.
While this constraint is weaker than alltrunc, given that Mplus assigns starting values
of 1 to loadings of continuous indicators by default, it should offer comparable
performance. As with all software, researchers are advised to examine trace plots to
ensure the chosen solution for label switching successfully prevented the issue.

Lastly, many approaches we studied also come with a wide range of possible
implementations based on researchers’ decisions. For example, our implementation of
assigning lognormal priors to reference loadings did not pan out for our model, but a
modified version of an approach following the same theoretical idea may work. A full
exploration of potential implementations is outside of the scope of the study, which
aims to provide an overview of a broad range of approaches, and we leave more

specialized investigations to future studies.
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Figure 1

The percentage of converged runs out of 500 replications.

uvi uli blav marg relab alltrunc logref
Low Rel, Poor Ind 4 942 100.0 86.2 906 96.8 98.0 956 98.6
Low Rel, Good Ind+ 946 100.0 990 958 978 978 964 98.0
o)
=2
2
High Rel, Poor Ind 100.0 100.0 972 970 99.0 100.0 99.6 100.0
High Rel, Good Ind 100.0 100.0 984 96.6 99.2 100.0 99.6 998
Low Rel, Poor Ind 4 924 100.0 816 90.6 628 61.8 58.4 622
Low Rel, Good Ind - 922 100.0 99.0 95.6 594 56.8 556 61.0 m
@
o
=
High Rel, Poor Ind 4 100.0 100.0 972 970 96.8 100.0 97.6 100.0 ~
Convergence
Rate
High Rel, Good Ind - 100.0 100.0 984 96.6 96.4 100.0 968 99.6 100
75
50
Low Rel, Poor Ind 930 998 81.0 90.6 604 59.0 558 59.6
25
0
Low Rel, Good Ind - 928 99.8 986 95.6 618 55.6 558 59.6 m
(9}
1%}
8
High Rel, Poor Ind - 100.0 100.0 972 97.0 95.6 100.0 952 998
High Rel, Good Ind 100.0 100.0 98.4 96.6 934 99.4 936 99.4
Low Rel, Poor Ind 4 926 100.0 816 906 904 912 83.6 908
Low Rel, Good Ind 93.0 100.0 988 956 89.2 896 858 884
=
(9}
[}
m
High Rel, Poor Ind 100.0 100.0 972 970 98.0 100.0 98.6 100.0
High Rel, Good Ind - 100.0 100.0 984 96.6 98.0 100.0 988 99.6
100 200 100 200 100 200 100 200 100 200 100 200 100 200
N

Note. The criteria are: 7 < 1.1, ESS (bulk or tail) > 300 (100 per chain), MCSE/MCSD <

10%. MCSD: Monte Carlo standard deviation.
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Figure 2

The number of converged replications.

Low Rel, Poor Ind 4

Low Rel, Good Ind A

High Rel, Poor Ind o

High Rel, Good Ind -

Note. Convergence based only on 7 and MCSE ratio.

uvi uli blav marg relab alltrunc logref
284 295 | | 463 500 | | 408 453 || 452 456 | | 418 454
335 428 | | 465 500 | | 494 478 || 446 448 | | 420 442
433 495 | | 500 500 | | 486 485 || 490 500 | | 493 500
489 498 | | 500 500 | | 492 483 || 490 500 | | 494 498
100 200 100 200 100 200 100 200 100 200 100 200 100 200
N

24
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Figure 4

The relative RMSE over the converged replications compared to the in-iterations relabeling approach in blavaan.

Loading 1 Loading 2 Loading 3 Loading 4 Loading 5 Loading 6 Loading 7 Loading 8 Loading 9 Loading 10 Loading 11 Loading 12 Cov1,2 Cov 1,3 Cov23
Low Rel, Poor Ind < 1.264 1.009 0.888 | | 0.854 0.846 | | 0.891 0.916 | | 1.249 0.914 0.965 | {0.735 0.968 | | 0.710 0.959 | | 1.206 1.840/| | 0.979 0.913 | | 0.808 0.899 | | 0.753 0.895 | | 0.772 0.967 | | 0.830 0.987 | | 0.734 0.963
Low Rel, Good Ind < 1.208 1.088 | | 1.012 0.997 | | 0.975 1.012 | | 0.997 1.052 | [ 1.180 1.075 | | 1.021 1.023 | | 1.061 0.881 | | 0.947 1.100 | | 1.214 1.066 | [ 0.991 1.002 | | 1.042 0.951 | | 1.026 0.918 | | 0.931 0.990 | | 0.966 1.004 | | 0.925 1.026
c
High Rel, Poor Ind{ 1.180 1.078 | | 0.983 1.002 | | 1.050 0.956 | | 0.948 1.022 | | 1.114 1071 | | 1.022 1.035 | | 1.005 0.949 | | 0.974 0.051 | | 1215 1.008 | | 0.966 1.001 | | 0.925 0.961 | | 0.980 0.960 | | 0.986 0.996 | | 0.980 0.980 | | 0.963 0.995 |
High Rel, Good Ind 4 1.007 1.009 | [ 0.922 0.969 | | 1.012 0.954 | | 0.924 1.008 | | 1.009 0.952 | | 0.924 0.953 | | 0.949 0.978 | | 0.963 0.966 | | 1.050 1.009 | | 0.939 0.980 | [ 0.949 0.911 | | 1.060 0.973 | [ 0.924 0.967 | | 1.020 1.016 | | 1.004 1.031
Low Rel, Poor Ind < 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000
Low Rel, Good Ind{ 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | |1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | |1.000 1.000 | | 1.000 1.000 | | 1000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | _
High Rel, Poor Ind 4 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 :
High Rel, Good Ind 4 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000 | | 1.000 1.000
Relative RMSE
Low Rel, Poor Ind < 0.932 0.993 | | 0.965 0.906 | |/0.690 0.816 | |(0.689 0.878 | | 0.846 0.958 | | 0.934 0.976 0.883 | |10.683 0.893 | | 0.820 0.990 | | 1.020 0.931 | | 0.720 0.840 | | 0.692 0.798 | | 0.719/0.975 | | 0.796 1.009 | |(0.716 0.964 AOoijaQ to Blavaan)
Low Rel, Good Ind 4 0.871 0.802 | | 0.884 0.907 | | 0.850 1.029 | | 0.993 1.017 | | 0.887 0.886 | | 0.867 0.906 | | 1.062 0.885 | | 0.932 1.073 | | 0.868 0.903 | | 0.884 0.914 | | 0.972 0.949 | | 1.004 0.901 | [ 0.951 0.990 | | 0.891 1.016 | | 0.932 1.018 | g | 125
5
High Rel, Poor Ind{ 0.950 0.992 | | 0.984 0.988 | [ 1.010 0.944 | | 0.812 0.997 | | 0.884 0.969 | | 0.981 1.023 | | 0.965 0.941 | | 0.920 0.944 | | 0.908 0.967 | | 0.968 0.989 | | 0.887 0.954 | | 0.957 0.928 | | 0.978 0.994 | | 0.989 0.971 | | 0.985 0.993 | © 1.00
High Rel, Good Ind < 0.909 0.964 | | 0.908 0.947 | | 0.990 0.953 | | 0.910 0.997 | | 0.911 0.926 | | 0.905 0.944 | | 0.925 0.972 | | 0.934 0.949 | | 0.949 0.968 | | 0.914 0.968 | | 0.940 0.904 | | 1.036 0.967 | [ 0.914 0.967 | | 1.018 1.029 | | 1.010 1.034 0.75
- 0.50
Low Rel, Poor Ind< 1.105 1.014 | | 0.967 1.008 | | 0.778 0.938 | | 0.762 0.940 | | 1.082 1.006 | | 0.949 0.996 | | 0.696 0.926 | | 0.717 0.946 | | 1.071 1.016 | | 0.990 0.985 | | 0.802 0.901 | | 0.802 0.941 | (/0697 0.970 | | 0.811 0.996 | | 0.744 0.964
Low Rel, Good Ind{ 0.966 0.979 | | 0.972 0.958 | | 0.999 1.020 | | 0.994 0.992 | | 0.996 0.988 | | 0.994 0.984 | | 1.014 0.999 | | 1.008 0.992 | | 0.981 0.982 | | 0.975 0.988 | | 0.978 0.991 | | 1.013 0.990 | | 0.943 0.990 | | 0.979 1.016 | | 0.918 0.989 |
High Rel, Poor Ind 4 0.995 1.000 | | 1.004 1.000 | | 1.003 1.000 | | 0.996 1.001 | | 0.995 1.000 | | 1.005 1.000 | | 1.001 1.001 | | 1.001 1.000 | | 0.997 1.001 | | 1.001 1.000 | | 0.984 0.999 | | 0.992 1.001 | | 0.997 1.000 | | 0.995 1.000 | | 1.004 1.000 &
High Rel, Good Ind 4 0.996 1.000 | | 1.003 1.001 | | 1.006 1.000 | | 1.001 1.000 | | 0.998 1.000 | | 0.996 1.001 | | 0.999 1.000 | | 1.003 1.000 | | 0.998 1.001 | | 0.995 1.000 | | 0.997 1.000 | | 0.996 1.000 | | 0.998 1.000 | | 1.005 1.000 | | 1.008 1.000
Low Rel, Poor Ind 0.992 0.976 | | 0.869 0.991 | [ 0.779 0.964 | [ 0.751 0.948 | | 0.961 0.987 | | 0.876 0.981 ﬂmmo 0.930 | | 0.724 0.944 | | 0.999 0.980 | | 0.873 0.948 | | 0.817 0.951 | | 0.797 0.936 | | 0.703|1.003 | | 0.810 0.988 | |(0.731 0.968
Low Rel, Good Ind - 1.002 0.985 | | 0.983 0.980 | | 0.920 0.990 | | 0.886 0.976 | | 0.976 0.943 | | 0.999 0.961 waw 0.959 | | 0.884 0969 | | 1.011 0.977 | | 0.984 0.996 | | 0.906 0.963 | | 0915 0.977 | | 0.961 0.951 | | 0.996 0.987 | | 0.893 0978 |
High Rel, Poor Ind 4 0.999 1.000 | | 0.997 1.000 | | 0.987 1.001 | | 0.995 1.001 | | 0.996 0.999 | [ 0.991 0.999 | | 1.000 1.001 | | 0.994 1.001 | | 0.998 1.000 | | 0.997 1.000 | | 1.000 1.000 | | 0.988 1.000 | | 0.997 1.000 | | 0.999 1.000 | | 0.990 0.999 3
High Rel, Good Ind 4 0.994 0.978 | | 1.000 0.999 | | 1.002 1.001 | | 1.000 1.000 | | 0.997 1.003 | | 1.000 1.002 | | 1.001 1.001 | | 0.997 0.994 | | 1.001 0.998 | | 1.001 1.000 | | 1.004 0.998 | | 1.005 1.001 | [ 0.994 1.001 | | 1.004 1.002 | | 1.008 0.997

100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200
N

Note. Convergence based only on # and MCSE ratio. Unit loading identification (UVI) and lognormal priors on reference loadings (logref) are

excluded due to low convergence. Blue denotes lower (better) RMSE than blavaan, where red denotes higher (worse) RMSE than blavaan.
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