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1. The goal of principal components
analysis

• PCA is usually used when we want to find the dominant
modes of variation in the data, usually after subtracting
the mean from each observation.

• We want to know how many of these modes of variation
are required to achieve a satisfactory approximation to
the original data.

• It may be assumed that keeping only dominant modes
will improve the signal–to–noise ratio of what we keep.

• We usually want to know what these modes represent
in terms that we can explain to non–statisticians. Rota-
tion of the principal components can help at this point.
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2. Defining functional PCA

• Let’s see what changes when we go from the multivari-
ate version to the functional version.

• The short answer: Summations change into integra-
tions
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Multivariate PCA

1. Find principal component weight vector ξ1 =
(ξ11, . . . , ξp1)

′ for which the principal components scores

fi1 =
∑

j

ξj1xij = ξ′
1xi

maximize
∑

i f
2
i1 subject to∑

j

ξ2
j1 = ‖ξ1‖2 = 1.

2. Next, compute weight vector ξ2 with components ξj2
and principal component scores maximizing

∑
i f

2
i2,

subject to the constraint ‖ξ2‖2 = 1 and the additional
constraint ∑

j

ξj2ξj1 = ξ′
2ξ1 = 0.

3. and so on as required.
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Functional PCA

1. Find principal component weight function ξ1(s) for which
the principal components scores

fi1 =

∫
ξ1(s)xi(s) ds

maximize
∑

i f
2
i1 subject to∫

ξ2
1(s) ds = ‖ξ1‖2 = 1.

2. Next, compute weight function ξ2(s) and principal com-
ponent scores maximizing

∑
i f

2
i2, subject to the con-

straint ‖ξ2‖2 = 1 and the additional constraint∫
ξ2(s)ξ1(s) ds = 0.

3. and so on as required.
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3. A PCA of monthly temperature
curves

• We have 30-year average temperatures for each month
and for each of 35 Canadian weather stations.
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The centered monthly temperature
curves
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What do we see?

• An impression that some curves are high (warm) and
that some curves are low (cold).

• Also that some curves have larger variation between
summer and winter than others.

• How much of the variation do these two types of varia-
tion account for?
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The correlation surface
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What do we see?

• The diagonal ridge corresponding to unit correlation be-
tween temperatures at identical times.

• The ridge perpendicular to this corresponding to cor-
relations between temperatures symmetrically placed
around mid–summer.

• Correlations fall off much more rapidly for times sym-
metric about March and September 21.
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The first four principal components
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What do we see?

• The two components that we saw in the centered
curves account for about 98% of the variation.

• The first four components account for 99.8% of the vari-
ation.

• The first four components tend to look like linear,
quadratic, cubic and quartic polynomials, respectively.
Why is that?

• It can help to plot the components by adding and sub-
tracting a multiple of them from the mean function.
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The first four principal components +/-
mean
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The first two principal component
scores
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What do we see?

• Most stations are along a curved line running from lower
center to top right.

• At the top end of the banana are maritime stations with
less variation between winter and summer, and high av-
erage temperatures.

• At the lower end are the continental stations with large
seasonal variation and lower average temperatures.

• The Arctic stations are in their own space with large
seasonal variation and very low average temperatures.
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4. Perspectives and rotations

Principal components as empirical
orthogonal functions

• We can think of principal components as a set of or-
thogonal basis functions constructed so as to account
for as much variation at each stage as possible.

• In fact, they are often used as just that: A compact basis
for approximating the data with as few basis functions
as possible.

• They come out looking like polynomials of increasing
degree because dominant variation tends to be smooth
(i. e. nearly constant or linear), and subsequent com-
ponents pick up variation that declines in smoothness,
and is also required to be orthogonal to previous com-
ponents. Just like orthogonal polynomials!
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Rotating principal components

• Once we have a set of orthogonal components span-
ning as much variation as we desire, we can always
rotate these orthogonally to get a new set spanning the
same space.

• The advantage is that rotated components may be eas-
ier to interpret.

• The VARIMAX rotation method is often used in the so-
cial sciences to improve interpretability.

• Functional principal components can be rotated in this
way as well.
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Rotated principal components for
temperature
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What do we see?

• The total variation accounted for remains the same,
99.8%.

• The first two components now account for a less over-
whelming amount of the variation.

• Each rotated component now accounts for departure
from the mean for a small part of the year.

• These are much easier to interpret. Components 1 and
3 are the most important, and account for deviation from
the mean in mid–winter and in the fall, respectively.
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How many principal components can
be computed?

• In the multivariate case, the upper limit is the number of
variables.

• In the function case, “variables” correspond to values of
t, and there is no limit to these.

• Instead, the upper limit is the number N of observa-
tions, or N − 1 if the functions are centered.

• But in some cases, the number of basis functions K will
be less than N , and in this case K is the upper limit.

• We usually stop far short of either of these limits, how-
ever.
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What if the functions are themselves
multivariate?

• This often arises if the functions are spatial coordinates,
[X(t), Y (t), Z(t)] or angular coordinates. Then we want
to study their simultaneous variation, rather than sepa-
rately.

• The solution is simple: Make a single synthetic function
by joining them together, compute it’s principal compo-
nents, and separate out the parts belong to each coor-
dinate.
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What if I had a mixture of functional
and scalar variables?

• This often happens. We could study the components of
simultaneous variation in temperature profiles and log
total annual precipitation, for example.

• Or the simultaneous variation in growth acceleration
curves and the parents’ adult stature.

• Ramsay and Silverman (1997, 2004) show that this,
too, can be converted to a matrix eigenequation.
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5. How are functional principal com-
ponents computed?

• In multivariate statistics, we solve the eigenequation

Vξ = ρξ

where

– V is the sample variance-covariance matrix

V = N−1X′X

where, in turn, X is the centered data matrix.

– ξ is an eigenvector of V.

– ρ is an eigenvalue of V.

• Usually, however, we actually use the correlation matrix
R instead of V so as to eliminate uninteresting scale
differences between variables.



The goal of principal . . .

Defining functional . . .

Home Page

Title Page

JJ II

J I

Page 24 of 28

Go Back

Full Screen

Close

Quit

What is the function version of the
eigenequation?

• Let

v(s, t) = N−1
N∑
i

xi(s)xi(t)

where usually functions xi(t) have been first centered.

• v(s, t) is the sample variance-covariance function.

• The functional eigenequation is∫
v(s, t)ξ(t) dt = ρξ(s)

• ρ is still an eigenvalue, but now ξ(s) is an eigenfunction
of the variance-covariance function.

• There is much less reason for using the correlation
function r(s, t) since function values all have the same
units or scale.
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How do we solve for pairs of
eigenvalues and eigenfunctions?

• Suppose that the observed functions are expanded in
terms of a vector φ(t) of K basis functions

x(t) = Cφ(t)

• and the jth eigenfunction the expansion

ξj(s) = b′
jφ(s) .

• Substituting these expansions into the equation for
v(s, t) gives us

v(s, t) = N−1φ′(s)C′Cφ(t)
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• The eigenequation becomes

N−1φ′(s)C′C

∫
φ(t)φ′(t) dt bj = ρφ′(s)bj

• Define order K matrix

J =

∫
φ(t)φ′(t) dt

so that the eigenequation is now

N−1φ′(s)C′CJbj = ρφ′(s)bj

• This equation has to be true for all argument values s,
and consequently,

N−1C′CJbj = ρbj

• subject to the constraint ‖ξ‖2 = 1, which becomes

b′Jb = 1 .



The goal of principal . . .

Defining functional . . .

Home Page

Title Page

JJ II

J I

Page 27 of 28

Go Back

Full Screen

Close

Quit

• if we define
uj = J1/2bj

• then we have the symmetric eigenequation

N−1J1/2C′CJ1/2uj = ρuj

subject to the constraint

u′
juj = 1

• We can then use standard software to solve for the
eigenvectors uj and back–solve to get the required co-
efficient vectors

bj = J−1/2uj

for computing the eigenfunctions ξj(s).
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Suppose that I wanted to impose a
roughness penalty onξj(s)

• Indeed. If the data are rough, the eigenfunctions will be,
too, unless we force them to be smooth.

• Skipping some technicalities, if we penalize ‖D2ξ‖2,
for example, we find that ξ satisfies the modified
eigenequation∫

v(s, t)ξ(t) dt = ρ[ξ(s) + λD4ξ(s)]

• This, too, can be converted to an equivalent matrix
equation that is solvable with standard software.
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