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Chapter 1

Introduction, Installation and

Operation

Throughout this manual it will be necessary to display material as it actually
is entered into the computer or as it is output by MULTISCALE. Typewriter
font is used for this purpose, a sample of which is as follows:

This is an example of typewriter font.

Some material displayed in this way is set aside as a Figure, and referred
to by the number of the �gure.

This manual presupposes a certain level of knowledge of both statistics
and analytic geometry. Readers with very limited backgrounds in these areas
should consider consulting references such as Schi�man, Reynolds and Young
(1981) or Kruskal and Wish (1978).

Those already familiar with multidimensional scaling and interested in
moving as quickly as possible to some basic analyses may want to scan
through Sections 2.1, 2.2, and 2.9 in the next chapter, read Chapter 6, and
browse through Chapter 7 before attempting to set up an analysis. They can
return to a more in depth reading of these and other chapters subsequently.

1.1 Installation

MULTISCALE is distributed on a set of 
oppy diskettes (usually 3 1/2 inch
high density), and to install the MS/DOS personal computer version it is

8



1. Introduction, Installation and Operation 9

su�cient to merely copy these diskettes into the appropriate directory us-
ing the DOS COPY or XCOPY command. For example, the following two
DOS commands will create a directory in the hard disk drive c: called MUL-
TISCL.DIR and copy a single distribution diskette in drive a: into that
directory:

mkdir multiscl.dir

xcopy a: c:

After this step is completed, one can usually proceed immediately to the next
section which explains how to run the MS/DOS version of MULTISCALE.

It will not be necessary to compile the program in order to execute the
program. Note, however, that some distributed versions may require a math
coprocessor. Most newer MS/DOS machines come equipped with a math
coprocessor, and if one is not present, it would be highly desirable to in-
stall one, since MULTISCALE performs rather lengthy calculations for many
problems.

1.1.1 HALO Versions:

Some distributed versions of MULTISCALE use the HALO Professional
Graphics library to produce graphics output on the computer screen, a plotter
using the HP-GL plotting language, a dot-matrix printer, or a laser printer
processing the Adobe Postscript language. Use of such a version presup-
poses that a license has been obtained from Media Cybernetics to use this
software. The HALO package should be obtained from Media Cybernetics
before attempting to use MULTISCALE if the HALO version is the one be-
ing installed. The following HALO �les should be accessible to the program
either by being included in the directory containing MULTISCALE or having
the directory appear in the DOS PATH command.
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ahd102 .fnt
ahd104 .fnt
ahd106 .fnt
ahd201 .fnt
ahdbw8 .prt
ahdibme .dsp
ahdibmg .dsp
ahdibmv .dsp
ahdms
 .krn

In addition, if HP-GL or Postscript plotting commands are to be produced,
the following two HALO �les must also be available:
ahdhp .exe
ahdps .exe

Other HALO �les may also be necessary for certain types of computer and
plotting hardware. The manuals accompanying the HALO package should
be consulted for further details.

1.1.2 Systems other than MS/DOS:

If the program is to be run on a computer with a FORTRAN 77 compiler in an
operating system other than MS/DOS, or even if it is to be used on MS/DOS
systems, but it is desired to use a compiler other than Microsoft FORTRAN
Version 5.0 or higher, than the program will have to be compiled from the
source code. Moreover, the main or driver routine, in �le MSCLMAIN.FOR,
will have to be altered in order to use the program. Instructions on how to
alter the program are including in the comment section of this �le, and are
as follows:

C FOR THE UNIX VERSION, (1) SET LOGICAL DOSWRD TO .FALSE.,

C (2) COMMENT OUT THE DIMENSION STATEMENT MAKING

C INTEGER ARRAY Z ALLOCATABLE

C IN LINE 30

C (3) REMOVE COMMENT CHARACTER FROM DIMENSION

C STATEMENT IN LINE 31. THE SIZE OF THE

C ARRAY Z MAY BE INCREASED IF NEEDED.

C (4) COMMENT OUT LINE 268 CALLING

C MICROSOFT FORTRAN NARGS STATEMENT
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C (5) COMMENT OUT LINE 772 CALLING

C MICROSOFT FORTRAN ALLOCATE STATEMENT

Although these instructions refer to the version for the Unix operating sys-
tem, this version should run on most systems.

1.2 Executing MULTISCALE

The steps involved in carrying out a MULTISCALE analysis are as follows:

1. Use an editor to set up a �le containing the data to be analyzed and
information required by MULTISCALE to perform the analysis. An
example is given in Chapter 6, and a complete discussion of the setup
of a MULTISCALE input �le is in Chapter 7.

2. Save this �le with an appropriate �le name. If the extension part of
the �le is .msl then invoking the program is particularly simple, as
discussed below. However, any �le name can be used.

3. Invoke MULTISCALE as described below.

4. MULTISCALE produces an output �le that can be printed, editted,
saved, or processed in any way desired. If graphics output to be pro-
cessed on plotting equipment using the HP-GL plotting language of
Hewlett-Packard plotters or the Adobe Postscript language of laser
printers, another �le will also be produced which may need further
processing or directing the appropriate output port.

1.2.1 Invoking MULTISCALE in MS/DOS Systems

If step 1 above has been completed, the second step requires executing the
program. There are two ways to do this:

Interactive: Simply enter the command

multiscl
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and the program will prompt for an input �le name and for an output
�le name. If, in addition, HP-GL or Postscript plotting commands are
to be output, the program will prompt for a �le name for storing these
commands.

Processing .msl Files: If the input �le is saved with the extension .msl,
then the program can be invoked with the name of the stem of the �le
name. For example, the �le set up for the data described in Chapter 6
is including on the distribution diskette as funseekr.msl. To analyze
these data, enter the command

multiscl funseekr

and the program will look for this input �le. Rather than prompting for
the output �le (and plotting �le) the program will output the results
to �le funseekr.out.

On MS/DOS systems MULTISCALE uses the Microsoft FORTRAN AL-
LOCATE function to allocate the amount of memory needed for the problem
at hand at execution time. On some problems the amount of available RAM
memory available may not be su�cient, and an error message will result.
In such cases it may be possible to reboot the system eliminating \termi-
nate and stay resident (TSR)" software, often used for communications and
notebook programs, to free up additional memory.

If the version calling HALO graphics routines is used, the program will
attempt to load a font into RAM. At this point the program also may fail
due to insu�cient memory. Aside from the advice given above, one may also
try graphics output with the PLOt-HPGl command (which will also produce
screen graphics and can be processed to produce Postscript plots) since this
uses a font requiring substantially less memory.

Further information on processing graphics output is given in Chapter 8.

1.2.2 Invoking MULTISCALE in Systems Other than
MS/DOS

With the modi�cations indicated above to the source code of the driver or
main routine, and after compilation and linking, MULTISCALE expects the
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input �le to be the standard input �le (usually �le number 5 in FORTRAN
languages) and the output to be the standard output �le (usually �le number
6). Operating systems vary in terms how these �les are identi�ed to the
program. On Unix and many other systems, the appropriate command would
be

multiscl <funseekr.msl >funseekr.out

assuming that the executable �le had been given the name multiscl.
There is no provision for graphics output in non-MS/DOS versions of the

program. The author can be consulted about possible versions for speci�c
systems such as the Sun Sparcstation series.



Chapter 2

Modelling Dissimilarity Data

The purpose of this chapter is to introduce the essentials of multidimensional
scaling to the beginner. An overview of the chapter is as follows:

� In Section 2.1 we discuss the characteristics of measures of dissimilarity.
These closely parallel the mathematical properties of distance, and the
goal of multidimensional scaling can be simply stated as the approxi-
mation of dissimilarities by distances. Some commonly used measures
of dissimilarity are mentioned in Section 2.2.

� MULTISCALE works with Euclidean or straight-line distances, and
Section 2.3 of this chapter delves into the properties of these distances,
including questions about coordinate systems and metrics.

� The �t of distance to dissimilarity will generally improve if some de-
gree of order-preserving or monotone transformation of one or the other
is allowed. In Section 2.4 various transformation possibilities are dis-
cussed.

� Most sets of data have sources of variation which cannot be approxi-
mated by distances even after transformation; possible characteristics
of this noise, residual, or error variation are discussed in Sections 2.5
and 2.6.

� MULTISCALE allows the user to impose linear constraint conditions on
the coordinates of the points representing the stimuli, a topic discussed
in Section 2.7.

14



2. Modelling Dissimilarity Data 15

� In the �nal section the multidimensional scaling problem is summarized
compactly in mathematical notation.

2.1 Properties of Dissimilarity and Distance

Multidimensional scaling is based on an assumed relationship between the
psychological concept of dissimilarity and the mathematical concept of dis-
tance. There are certain features that these two ideas have in common. Dis-
similarity is the subjective unlikeness of two objects for a particular perceiver.
The term di�erence is often used in casual communication, but because it
also can mean something like the arithmetic di�erence between two numbers,
we shall stick to the longer but less ambiguous term. The concept similarity

has an inverse relation to dissimilarity: two very similar objects have little
dissimilarity. The term proximity is often used instead of similarity. The
relations between dissimilarity and similarity or proximity will be discussed
more carefully subsequently.

The close connection between the intuitive or subjective characteristics
of dissimilarity and the mathematical properties of distance which form the
logical basis for multidimensional scaling. At the most basic level, both are
properties of pairs of objects: dissimilarity describes a pair of stimuli and
distance a pair of points. Even when we refer to a single thing as \very
di�erent" we usually have in mind a standard or reference stimulus to which
it is being compared. The two concepts share the following features:

Origin: A judgment of no dissimilarity is applied to two identical stimuli.
Likewise a distance of zero is assigned to two coincident points.

Positivity: When two stimuli are not identical in some relevant way, we to
assume that they have a positive amount of dissimilarity. Likewise the
distance between two noncoincident points is always positive.

Symmetry: Usually the order in which two stimuli are speci�ed has little
or no e�ect on their perceived dissimilarity, especially when the stimuli
have the same level of generality: the dissimilarity of a Chevrolet and a
Cadillac doesn't change when the names are reversed. Some problems
may arise when the dissimilarity of a Chevrolet and a \typical French
automobile" is judged, since the latter concept may depend on whether



2. Modelling Dissimilarity Data 16

or not the former was considered �rst. Symmetry is also an essential
property of distance, and for two points i and j the distances dij and
dji are equal.

Consistency: The most important characteristic of dissimilarity is a re-
quirement that three or more judgments of dissimilarity be consistent
with one another in the following sense: Two stimuli each judged very
similar to any third cannot be seen to be mutually very dissimilar.
Otherwise something changed during the judgments: perhaps the cri-
teria for judging were not the same for all judgments, or perhaps the
judge was not able to judge consistently. Distances, too, obey an anal-
ogous internal consistency principle called the triangle inequality. In
considering points i, j, and k it is always true that

dij � dik + djk:

This inequality says the same thing as the statement above about dis-
similarity judgments since dij cannot be large if both dik and djk are
small.

A supplementary property of dissimilarity, not essential in general but is
necessary to use MULTISCALE, is the property ofmagnitude. Dissimilarities
must be quanti�ed at some level that reasonably approximates a continuous
scale of measurement.

The goal, then, of multidimensional scaling is to generate a set of distances
which correspond to or approximate a set of dissimilarities. Consider the
simple example in Figure 2.1. Of the three faces presented at the top of
the �gure, the �rst and third are much more similar than either the �rst
and second or the second and third. This relation can be represented in the
display at the bottom of the �gure where the second face has been moved
away from the other two so that its distance from each of them corresponds
its dissimilarities with respect to them.

A rather more challenging example is provided in Figure 2.2. Here a
particular subject judged every one of the 105 possible dissimilarities among
a set of 15 forms of recreation. He recorded his judgments by choosing among
25 categories presented to him for each pair presented as follows:

Museum and Hockey
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Figure 2.1: The three faces above are rearranged below so that the distances
among them correspond to the perceptual dissimilarities among them.
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Very Very

Similar Different

These categories were subsequently numbered from 1 to 25, and the po-
sition of the chosen category used as a measure or index of his perceived
similarity for that pair. The order of pairs was carefully randomized, but
Figure 2.2 contains the judgments sorted into tabular form. Note that, be-
cause of the assumed symmetry of judgments and because dissimilarities for
identical pairs were assumed to be zero, only the lower right triangle exclud-
ing the diagonal of the table is presented.

Figure 2.3 displays a set of points arranged on a plane so that the dis-
tance between any two points corresponds as closely as possible to the cor-
responding entry in Figure 2.2. For example, it can be seen that the points
corresponding to hockey and ballet are far apart in the display and that the
corresponding index of dissimilarity is 25. On the other hand, the points
for ballet and theatre are close together and the corresponding dissimilarity
value is only 6. Just how one achieves this arrangement is, of course, what
multidimensional scaling in general and MULTISCALE in particular is all
about.

2.2 Some Types of Dissimilarity Measures

Before discussing the mathematics of distance in more detail, it is worth
reviewing some of the ways that dissimilarity measures arise in experimental
and �eld situations, and what some of their characteristics are. In many
cases, the measures available are actually similarity or proximity measures,
and in such cases a preliminary transformation is necessary to convert them
to dissimilarity measures for analysis by MULTISCALE. The following list
of dissimilarity or similarity measures is not at all exhaustive, but mentions
those commonly used.

Direct Ratings: With human subjects who can be counted upon to give
reasonably careful judgments, some form of direct rating of dissimilar-
ity is natural and e�cient. The most popular choice is probably the
ordered category scale such as displayed in the previous chapter and in



2. Modelling Dissimilarity Data 19

Figure 2.2: Ratings of Dissimilarity for 15 Recreations
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Fashion show 9 7 13 15 12 19 20 22 8 25 m t h
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Exhibition 7 3 13 12 21 13 10 22 13 12 7 18 p

Window shopping 21 22 22 12 23 21 18 18 21 22 9 22 12

Restaurant 8 8 7 9 21 21 12 22 5 25 9 23 10 8
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Figure 2.3: Fifteen forms of recreation as represented by a MULTISCALE
analysis of the recreation dissimilarity data.
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Figure 2.2. One of the extreme categories can be labelled \very similar"
while the other might be labelled \very di�erent." It is then a simple
matter to number the categories so that the numbers become indices
of dissimilarity. In cases where the indices from 1 to n are in similarity
order, so that 1 really means \very di�erent", it is usually su�cient
to subtract the indices from n + 1 to produce corresponding dissimi-
larity indices. Note that it is wise in general to use a large number
of categories. It has been observed in practice and shown statistically
(Ramsay 1973) that reducing a potentially continuous variable to less
than 7 categories results in a substantial loss of precision in estimating
a location on the scale. It should also be noted that subjects vary con-
siderably in their ability or desire to make judgments in a graduated
manner. Some subjects never use more than two or three of the cat-
egories provided. Their data inevitably contain less information and,
in extreme cases, may pose serious computational problems. These
problems notwithstanding, direct ratings can be obtained rapidly and
cheaply from a wide range of individuals.

Normal adult subjects can make about 100 such judgments per hour, al-
though fatigue and boredom become serious problems beyond an hour.
The wise investigator encourages the subject to respond carefully and
to take his time. Some preliminary exposure to the task is often im-
portant as well. Takane (1981) has developed a technique speci�cally
appropriate when the number of categories is small (say less than 7).

Other forms of direct rating include techniques such as ratio produc-
tion (Ramsay, 1968), magnitude estimation, placing check marks on a
continuous line, and the use of physical response devices.

Rankings of Dissimilarity: A relatively little used but potentially useful
form of data are the rankings of a stimulus in terms of its dissimilarity
with respect to each of a number of other stimuli. Takane and Carroll
(1982) have developed an approach to data of this sort.

Confusion or Transition Frequencies: In studies involving animals or in
psychophysical studies one can often collect the number or proportion
of times a stimulus is associated with a particular response. These are
actually proximitymeasures, and a well known example is the Rothkopf
(1957) morse code confusion data analyzed by a number of authors
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(Kruskal, 1964; Shepard, 1962). Among the possible transformations
which can convert such data to dissimilarity indices are the reciprocal
of the square root of the frequencies, and one minus the confusion pro-
portions. Asymmetry is usually apparent in such data, and any index
will have a correlation with other indices even when the approximat-
ing distances are subtracted out. Shepard (1957) and Nakatani (1972)
have techniques speci�cally appropriate to such data.

Co-occurrence Frequencies: Closely related to confusion frequencies, co-
occurrence frequencies are the number of associations where the upper
limit on such associations is not known or experimentally controlled.
For example, one might count the number of times residents of one
city move to another city within a �xed period. Again asymmetry is
common in such data, and multidimensional scaling as realized in MUL-
TISCALE can only hope to approximate the symmetric components of
variation. Again some order-reversing transformation to dissimilarity
form is necessary.

A variant on such data arises when each subject is asked to sort the
stimuli into a number of piles or groupings. The frequency with which
two stimuli occur in the same grouping then is a measure of similar-
ity. The number of groups may or may not be left to the subject to
determine. The advantage of such data is that a very large number of
stimuli can be judged at one time.

Dissimilarities from Multivariate Observations: When each stimulus
has associated with it a variety of measurements, it may seem natu-
ral to compute a coe�cient of distance between pairs by viewing each
measure as de�ning a dimension or axis in a Euclidean space. Unfortu-
nately, the problem of choosing a metric for evaluating distance (see the
next chapter for more details) is seldom easy to resolve, and there are
better techniques such as principal components analysis better suited
to representing the objects in a space of reduced dimensionality.

Table 2.1 summarizes the notation that has been used to this point.
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Table 2.1: Symbols Introduced in this Section

Symbol Meaning
I Number of stimuli or objects
i; j Indices of particular stimuli
R Number of subjects or replications
r Index of a particular subject
dij Dissimilarity observed for stimuli i and j

2.3 Types of Distances and Metrics

The distance between two points can be de�ned in many ways that satisfy
the origin, positivity, symmetry, and triangle inequality conditions. For ex-
ample, assigning a distance of one to all points which are not coincident is
a perfectly valid rule and corresponds to binary same-di�erent dissimilarity
judgements. However, multidimensional scaling requires a more discriminat-
ing measure, and most programs are based on the familiar \straight line" or
Euclidean distance measure. From a numerical point of view the de�nition
and computation of Euclidean distance requires a coordinate system. This is
a rule for locating points in space. The coordinate system is in fact a func-
tion which assigns to each point M numbers, called the coordinates of the
point. The numberM is called the dimensionality of the space. It represents
the amount of information required to locate each point in space. Euclidean
distance then requires another function which takes a pair of M -tuples and
from them computes a single nonnegative number having the distance prop-
erties. What makes the distance Euclidean as opposed to something else
is the way in which Euclidean distances vary or do not vary with respect
to certain transformations of the points. These additional features will be
reviewed below after we have considered some possible coordinate systems.

It is important to understand both the role of a coordinate system and
that many alternative coordinate systems are possible for a given con�gu-
ration of points. A coordinate system can function simply as a convenient
numerical procedure for locating points in space and for computing the dis-
tances among them. That is, once the points are located and distances
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computed, the coordinate system can be discarded or ignored. For example,
a multidimensional scaling program such as MULTISCALE uses a particular
coordinate system during the course of its computations, but in most appli-
cations this coordinate system is best discarded when the �nal results are
computed.

A coordinate system may also have a substantive interpretation and thus
form part of the descriptive system used to explain the results. In selecting
an interpretive coordinate system it is helpful to be aware of some of the
possibilities. Three of these are as follows.

Orthogonal Cartesian Coordinates: This is the most familiar system
and is illustrated in Figure 2.4. One begins by choosing M directions
in space which are mutually at right angles or orthogonal. In addi-
tion an arbitrary point in space is speci�ed as the origin of the system.
From this origin one can draw lines or axes which go in these mutu-
ally orthogonal directions. These reference lines are called dimensions.

Each point is located by computing the location of the perpendicular
projection of the point on each axis. The number of such axes de�nes
the dimensionality of the space. Of course, it is di�cult to plot points
with respect to more than two dimensions, and very di�cult to even
visualize points when more than three dimensions are involved. How-
ever, this limitation in our capacity for visual imagery has nothing to
do with mathematics, and in principle any numberM of dimensions is
possible.

The distance dij between two points i and j is particularly simple
to compute in this system. If the points are located by coordinates
(xi1; : : : ; xiM) and (xj1; : : : ; xjM), respectively, then distance is com-
puted according to the equation

d2ij =
MX
m=1

(xim � xjm)
2: (2:1)

According to this rule we use the \root-sum-square" procedure for com-
bining the distances jxim � xjmj between points with respect to each
dimension.

It will be very useful to modify the distance formula (2.1) so as to permit
di�erent weights or saliences to be applied to di�erent dimensions. We
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Figure 2.4: An orthogonal Cartesian Coordinate system for determining the
locations of two points.



2. Modelling Dissimilarity Data 26

do this as follows:

d2ij =
MX

m=1

wm(xim � xjm)
2: (2:2)

The coe�cient wm de�nes the sensitivity to variation along axis or
dimension m. When wm is large, a �xed di�erence (xim � xjm) has a
greater impact on the size of d2ij in (2.2) than if this weighting coe�cient
is small.

The set of coe�cients wm is referred to as the metric of the Cartesian
coordinate system. When we are using these di�erential weights, we
shall say that we are using the diagonal metric for distance.

Polar or Spherical coordinates: Points can also be located by choosing a
single �xed direction and then specifying one or more angles of rotation
from this direction and a distance from the origin. Speci�cally, the
polar coordinate system is the two dimensional system in which a point
is located in terms of number of degrees from the horizontal and the
displacement or radius from the origin. Figure 2.5 shows an example
of how points representing 21 standard colors in the Munsell system
can be located by either an orthogonal Cartesian system or a polar
coordinate system. In this instance, the polar coordinate system is
the more natural from an interpretive point of view since hue can be
de�ned in terms of angle and saturation in terms of distance from the
origin. More generally, a spherical coordinate system for M dimensions
requires M � 1 angles and a single radius. Although for most purposes
a Cartesian coordinate system is computationally more convenient, a
spherical system does have one important advantage: a rotation of a
con�guration of points about the origin is simply a matter of adding
constants to one or more of the angles.

Hybrid systems are possible: one plane in an M -dimensional system can
be represented in polar coordinates and the remaining M � 2 dimensions
in Cartesion coordinates. Such systems are called cylindrical. There are
also elliptical coordinate systems which are analagous to oblique Cartesian
coordinates.

What de�nes a distance measure as Euclidean is not the coordinate sys-
tem, in spite of the popular tendency to confuse Euclidean distance with
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Figure 2.5: A representation of 21 colours in the Munsell system by Cartesian
and polar coordinate systems.
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orthogonal Cartesian coordinates. Rather, Euclidean distance is de�ned by
an invariance with respect to two kinds of transformations of the points and
coordinate system: translations or changes of origin and rotations. Both of
these transformations leave the angles between points and dimensions un-
changed. A distance measure is not Euclidean if it is not invariant with
respect to these transformations, or if it is invariant with respect to other
transformations.

2.4 Individualized Metrics

The most important reason for considering the diagonal metric distance
model (2.2) is the possibility that subjects may generate dissimilarities which
are best �t by allowing the metric to vary from subject to subject. This nat-
urally implies that distances for any particular pair of points will vary from
subject to subject according to the values of the weights wm. MULTISCALE
permits this possibility.

Let us consider more closely how to interpret individualized metrics. Fig-
ure 2.6 contains a two-dimensional con�guration in terms of its coordinates
with respect to the identity metric matrix. That is, distance between points
is to be computed using equation (2.1). Also in Table 2.6 are two other
metrics, both of which are diagonal.

Any direction in space can be interpreted as a point of view with respect
to the stimuli. The extent of the spread of the points in this direction de�nes
the variation of the stimuli from that point of view. In particular, a direction
that is used as a dimension for locating points corresponds to just such a point
of view. According to this interpretation, the square root of the elements in
the diagonal of a metric matrix de�nes the sensitivity to variation from this
point of view. This is so because a particular coordinate di�erence de�ned
with respect to a standard reference coordinate system is multiplied by this
coe�cient in computing distance within this individual's metric. If, as is
the case for the �rst dimension for the �rst person, the coe�cient is larger
than unity, variation in this direction contributes more heavily or tends to
increase distance relative to the standard metric. Conversely, a small value
in the diagonal corresponding to a dimension results in less contribution by
variation in this direction.

We can see this in Table 2.6 if we examine the distances between points



2. Modelling Dissimilarity Data 29

Figure 2.6: Coordinates for Four Points and Two Diagonal Metrics

Configuration Metric 1

Dim 1 Dim 2 Dim 1 Dim 2

Point 1 -1 1 4 .25

Point 2 1 1

Point 3 1 -1

Point 4 -1 -1 Metric 2

Dim 1 Dim 2

.25 4

1 and 2, which vary only with respect to the �rst dimension. In the identity
metric the distance is 2 units. But for individual 1 the distance is 4 units
since he is twice as sensitive (w1 = 4) to variation in this direction, while for
individual 2 the distance is only 1 unit since he is half as sensitive (w2 = :25).
On the other hand, the relative sensitivities to the second dimension are
reversed, and the distances between points 2 and 3 are 1 and 4, respectively.

We can graphically depict each coordinate system by plotting a line for
each dimension which extends a unit distance out from the origin. If a metric
is diagonal, these lines will be orthogonal to each other. The length of a line
is inversely proportional to the corresponding diagonal entry in the metric
matrix; a unit distance for sensitive directions being smaller than for less
sensitive directions. The �rst two �gures in Figure 2.4 show the relation
between metric weights and this graphical representation for the two sets of
metric weights in Figure 2.6. (Disregard the �nal �gure in Figure 2.4).

The possibility of allowing the metric to vary from subject to subject
makes psychological sense and may enrich the interpretation of results as
well as substantially improve the �t of data. Wish and Carroll (1974) discuss
a number of examples where variation in diagonal metrics led to interesting
insights.

We saw in Section 1.3 that the coordinate system was de�ned only to
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Figure 2.7: A representation of three sets of metric weights by drawing axes
of unit length, with an angular orientation corresponding to the o�-diagonal
entries.
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within a translation and rotation. Therefore MULTISCALE must impose
additional constraints on the coordinate system used to compute distances.
These constraints are

IX
i=1

xim = 0; m = 1; : : : ;M

PI
i=1 ximxin = 0;m 6= n: (2:3)

The �rst equation implies that the origin for the coordinate system is at
the centroid or center of the con�guration. The second equation implies that
the con�guration is in principal axis orientation; that is, the �rst dimension
will have the greatest possible variability in its coordinates, the second the
greatest possible variability given the �rst, and so on. This second constraint
cannot be applied when the metric is diagonal, however, since distances com-
puted with this model are not invariant under rotations.

In addition to constraining the coordinates by equations (2.3) it is also
necessary to constrain the dimension weights wrm since multiplying these by a
constant could be compensated for by dividing the coordinates by the square
root of that constant. An additional constraint is also necessary to de�ne
the across-subject average of these diagonal entries. Thus MULTISCALE
imposes the following two constraints:

MX
m=1

w2
rm =M; r = 1; : : : ; R;

PR
r=1 w

2
rm = R; m = 1; : : : ;M: (2:4)

If the weights are arranged in an R by M matrix W, these equations imply
that both the row and column average squares are one.

In order for the distance properties to hold, it is necessary that the weights
wrm be positive. MULTISCALE achieves this by setting a lower bound of
approximately 0.01 on these diagonal entries.

The mathematical concepts used introduced in this section are summa-
rized in Table 2.2.

2.5 Some Transformations of Dissimilarity

As we have seen, many di�erent indices of dissimilarity are possible. By
contrast, Euclidean distance is very rigidly de�ned, even given the latitude
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Table 2.2: More Symbols Introduced in this Section on Coordinate Systems

Symbol Meaning
M Number of dimensions for computing distance
m;n Indices of particular dimensions
xim Coordinate of point i for dimension m
X I by M matrix of coordinates xim
xi Row i of X
wm Weight for dimension m
wrm Weight for dimension m and subject r

in choice of metric. Often in practice a particular dissimilarity measure and
the best-�tting distances are related curvilinearly. Figure 2.8 shows a plot
for the dissimilarity data in Figure 2.2 against distances generated from the
con�guration displayed in Figure 2.3. This chapter examines ways in which
the �t can be \tuned" by estimating a transformation of the dissimilarity
data to provide a more linear relationship to distance.

When a transformation improves the �t of distances to dissimilarities, the
nature or degree of curvilinearity of this transformations usually varies from
subject to subject. Thus, separate transformations must be estimated for
each subject in the analysis.

The transformation problem is often considerably simpler after applying
a logarithmic transformation to both the dissimilarities and the distances.
Since the logarithmic transformation is an order-preserving or monotone
transformation, it is as valid in principle to approximate log dissimilarity
on the basis of log distance as it is to work with the original scales. More-
over, as mentioned in the next chapter, the logarithmic transformation also
often simpli�es other aspects of the �tting problem by making the error vari-
ances more nearly constant. MULTISCALE permits the approximation to
take place in either the original scale or in the logarithmic scale. When
we discuss various transformations it will be assumed that the logarithmic
transformation may already have been made.

At this point we must introduce appropriate notation to distinguish be-
tween the dissimilarity data and the computed distances. Let dijr be the
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Figure 2.8: Dissimilarity plotted against distance for a MULTISCALE anal-
ysis of the recreation data.
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dissimilarity measure for stimuli i and j produced by subject r. Let I denote
the total number of stimuli and R the total number of subjects or replica-
tions. It is not necessary to assume that we have an observation for every
possible pair (i; j) or subject r, although obviously there must be at least a
few observations for each stimulus and subject. By contrast, let us indicate
a computed distance corresponding to dissimilarity dijr as d̂ijr. The \hat"

reminds us that d̂ijr is a mathematically generated as opposed to a \real
world" quantity. This notation is also used in statistics to indicate some-
thing that is an approximation to something else, as distance is in this case
with respect to dissimilarity.

The transformation to be estimated will be denoted by fr(d), with the
subscript r indicating that it will be estimated independently or uniquely for
each subject r. The transformation problem then is to estimate function fr
for each subject r so that

either fr(dijr) � d̂ijr
or fr(log dijr) � log d̂ijr ;

(2:5)

where the symbol � mean \approximates".
In MULTISCALE three levels of estimated transformation are possible.

Since the default condition in the program is one in which the logarithmic
transformation is applied �rst, these levels are named in terms of the trans-
formation implied for dissimilarity when the transformation is in fact applied
to the logarithm of dissimilarity. Thus,

� adding a constant to log dijr amounts to multiplying dijr by a constant,
and this is referred to as a scale transformation, and

� multiplying log dijr by a constant amounts to taking dijr to the corre-
sponding power, and this is referred to as a power transformation.

Scale: In this case

fr(log dijr) = log dijr + vr (2:6)

or
fr(dijr) = dijr + vr :
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The constant vr estimated separately for each subject changes the lo-
cation or origin of the log dissimilarity data. This changes the scale
or unit of measurement for the dissimilarity data. Thus, each dissim-
ilarity observation dijr is multiplied by the quantity exp(vr), and this
quantity is termed the regression coe�cient for the dissimilarities for
the rth subject.

Power:

fr(log dijr) = pr log dijr + vr (2:7)

or
fr(dijr) = prdijr + vr :

The estimated transformation amounts to changing both the scale and
location of the log dissimilarities. The e�ect is equivalent to taking dijr
to the power pr and multiplying it by the regression coe�cient exp(vr).
Thus pr is referred to as the exponent or power when the dissimilarity
data is �rst log-transformed.

Because this transformation is very easy to estimate, and because it
captures at least some of the nonlinearity typically observed between
dissimilarity and distance, it is the default transformation in MULTI-
SCALE. Most analyses should begin by using the power transformation.

Spline: A considerably more powerful and sophisticated transformation is
possible using monotone splines. A detailed discussion of monotone
splines is deferred to the �nal section in this chapter.

Figure 2.9 shows a very simple example of a spline transformation.
These are produced by joining polynomials smoothly at junction points
called knots. In the case shown the polynomials are quadratic. The two
quadratic functions in this case are constrained to join so that they
have one level of derivative. In Figure 2.9a the derivative is shown.
Since the transformation must be monotone, the derivative is always
positive, but note that it changes direction abruptly at the knot (its
own derivative is discontinuous at the knot). We say that the derivative
of the transformation is a positive piece-wise linear function, and this
implies that the transformation itself is a piecewise quadratic function.
This is shown in Figure 2.9b. Figure 2.9c displays the transformation
at the level of the dissimilarity data.
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Figure 2.9: An example of a monotone spline transformation f(log d). The
leftmost �gure displays the �rst derivative of the function f . The central
�gure displays f itself The rightmost �gure displays the corresponding trans-
formation of dissimilarity.
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In general the 
exibility of a spline function is determined by the degree
of the polynomials and by the number of knots. In MULTISCALE the
degree is always two (only quadratic functions are used) but the loca-
tion and number of knots can be controlled by the user. By default the
program uses a single knot and positions it so that the greatest 
exibil-
ity is obtained in the upper range of the scale. Note that the number
of parameters to estimate is two more than the number of knots. The
estimation of these parameters is somewhat more complicated and re-
quires considerably more computation time than the two parameters
in the power transformation case. Although spline transformations of-
ten dramatically improve the �t, they should be reserved for the �nal
stages of the analysis when other basic decisions have been made.

Finally, the constant vr is automatically estimated in addition to the
monotone spline transformation, so that the mathematical form of the
transformation is

fr(log dijr) = sr(log dijr) + vr (2:8)

or
fr(dijr) = sr(dijr) + vr ;

where sr(�) is a monotone spline function.

For all three levels of transformation the coe�cients vr are estimated for
each subject. To de�ne these uniquely, MULTISCALE applies the location
constraint

RX
r=1

vr = 0 : (2:9)

The three levels of transformation provide considerable 
exibility com-
bined with parsimony in terms of number of parameters to be estimated. A
number of programs exist such as KYST (Kruskal, Young, & Seery, 1973)
and ALSCAL (Takane, Young, & de Leeuw, 1977) which use step functions
as transformations. They have acquired the somewhat misleading adjective
of \nonmetric" even though they �t Euclidean distances to transformed dis-
similarity data. Since step functions are neither smooth nor de�ned in terms
of a �xed number of explicit parameters, there are serious problems assess-
ing the quality of the �nal �t and interpreting the resulting transformations.
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Table 2.3: More Symbols Introduced in this Section on Transformations

Symbol Meaning
d� A distance or model value
fr(d) The value of a transformation of dissimilarity d
fr(log d) The value of a transformation of log dissimilarity
vr A change of origin for log dissimilarity for subject r,

or evr is a change of scale for dissimilarity
pr A change of scale for log dissimilarity for subject r,

or a power for dissimilarity
sr(d) A monotone spline transformation of dissimilarity

for subject r

With monotone spline functions MULTISCALE provides all the 
exibility
most users will need while avoiding these di�culties.

The symbols introduced in this section on transformations are in Table
2.3.

2.6 Sources of Variation in the Data

Even with the best transformations the distances will not �t the transformed
dissimilarities perfectly. The factors that make a residual, de�ned mathe-
matically as

eijr = fr(log dijr)� log d̂ijr ; (2:10)

something other than zero are many and complex. There are two reasons
why we should ponder these sources of variation in residuals or errors. First,
taking various components of variation into account can further tune the
analysis, enabling more precise estimates and better statements of the preci-
sion of estimation. Secondly, a summary of the components of variation can
add an important aspect to the interpretation of the data.

The basic problem, then, is to further analyze the variance of eijr, denoted
by Var(eijr). We do this by splitting this quantity into simpler components
which are speci�c to subjects and speci�c to stimuli and pairs. This is done
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in MULTISCALE by considering the variance component model

Var(eijr) = �2r : (2:11)

We shall refer to the quantity �r as the within-subject standard error.

Permitting this component to vary from subject to subject implies that the
variation in a residual or the size of the typical deviation from best-�tting
distance depends on the subject. In short, some subjects will tend on the
whole to produce dissimilarity judgments deviating relatively little from the
�tted distances, while others will tend to produce relative larger deviations.
This is a generally reasonable assumption and is usually obvious from an
inspection of the residuals following an analysis. Thus the subject-speci�c
variance component �2r is an index of the relative lack of precision (from the
point of view of the model) of a certain subject's data and thus has a variety
of practical uses. For example, a relatively large value might indicate that
a subject should be removed from the sample for closer individual scrutiny
and analysis. A relatively large value might indicate a radically idiosyncratic
view of the stimuli, a failure to understand the instructions, a change of point
of view during the ratings, or a failure to judge dissimilarity appropriately.

MULTISCALE allows the user to assume either that the �0

rs are variable
and therefore to be estimated along with other aspects of the �t or that
they are all equal to a common value �. Since the assumption of �r vari-
able is realistic, and since it costs very little to estimate them, this is the
default choice in MULTISCALE. However, even if the �r's are speci�ed as
constant, MULTISCALE will provide after-the-fact or post-hoc estimates of
them conditional on all other parameter estimates.

In summary, MULTISCALE defaults to the variance component model

Var(eijr) = �2r : (2:12)

The average of the within-subject variances �2r is an over-all index of the
variability of the data. This quantity is referred to in the program and the
manual as the global error variance and its square root as the global standard
error.

2.7 The Distribution of Errors

MULTISCALE estimates distances by the statistical procedure maximum

likelihood estimation. A more detailed discussion this technique is provided
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in the next chapter. However, what is important here is that maximum
likelihood estimation requires the user to state explicitly how the errors are
distributed in the hypothetical population of possible judgments on a speci�c
pair. That is, the statistical model is one in which a hypothetical sequence
of independent judgments of a given pair by a given subject would be a sam-
ple from a population having a speci�ed distribution. For most designs any
subject gives only one judgment per pair, so the sample size is only one. Nev-
ertheless, each residual is supposed to have the same characteristics except
for a possible change in location and dispersion, so that all the residuals can
be taken as providing information about this assumed distribution.

Figure 2.10 displays in three di�erent ways the distribution of residuals for
the data in Figure 2.2. In Figure 2.10a we see dissimilarity plotted against
distance for these data. An examination of this plot indicates that large
distances are associated with larger residuals than small distances. This is
natural enough: when two nearly identical stimuli are presented, the range
of plausible dissimilarity judgments is bounded below by zero, so the range
is generally tighter than when two very di�erent stimuli are presented. This
�nding is a very general one in psychophysics, where stimuli eliciting large
judgments will also produce large variability. This is the celebrated Weber's
Law. We can remove this e�ect by plotting dissimilarity against distance on
the logarithmic scale. Figure 2.10b shows that the variability in such a plot
tends to be much more homogeneous. Figure 2.10c provides a very useful
alternative way to plot the residuals. This is called a q-q or quantile plot,

and consists in plotting the normalized residuals

zijr = [fr(log dijr)� log d̂ijr]=�r ; (2:13)

where �r is the estimated standard deviation of the residuals on the log
scale, against the associated quantiles or points marking o� equal areas for
the standard normal distribution. The quantiles are, in a sense, idealized
standard normal deviates, and by plotting the actual zijr's against them, we
can assess the extent to which the zijr's act like standard normal deviates.
The plot in Figure 2.10c indicates that the log dissimilarities are distributed
fairly normally around the log distances. The logarithmic transformation
played the important role of stabilizing variance. Of course the variance
component models discussed in the previous chapter may also play some role
in variance stabilization as well.
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Figure 2.10: Three plots of the relationship between dissimilarity and dis-
tance for the data in Figure 1. The rightmost �gure is a quantile or q-q plot
of the ordered residuals against quantiles of the standard normal distribution.
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No one assumption about the distribution of residuals is going to work for
all sets of data. Consequently MULTISCALE permits four possible distribu-
tion assumptions in the hopes of accommodating a wider range of possible
data. These are discussed below.

Lognormal distribution: If the log transformation of a random variable
has a normal distribution, we say that the random variable has a log-
normal distribution. This is approximately what is happening in Figure
2.10. Figure 2.11 displays the probability density functions correspond-
ing to various locations or central tendencies for a �xed spread. A
comparison of these indicates that the lognormal distribution has the
following characteristics:

1. Positivity: only positive random variables can be lognormally dis-
tributed.

2. Spread proportional to location: roughly speaking, the spread or
dispersion increases with the location of the distribution.

3. Skewness: the distribution has a longer tail in the positive direc-
tion than in the negative direction.

As already indicated, dissimilarity data frequently display the �rst two
characteristics. The third is more problematical, especially since the
response continuum for direct ratings usually has an upper bound.
However, since the lognormal distribution is also very convenient to
work with from a computational point of view, and since the absence
of the long positive tail in practice does not greatly a�ect the results,
MULTISCALE assumes the lognormal distribution by default.

Normal distribution: For some sets of data the distribution of dissimilar-
ity about distance appears to be more symmetric than is consistent with
a lognormal distribution. The familiar normal distribution is perfectly
symmetric, although having the unrealistic feature of always assigning
positive probability to negative values of dissimilarity. The usual form
of the normal distribution also has the more serious 
aw of stating that
error variance does not depend on the mean.

Further remarks on the question of which distribution to select are made
in the next chapter in the discussion of the statistical basis for MULTI-
SCALE. It can be noted here, however, that one may view the selection
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Figure 2.11: Two lognormal distributions plotted in terms of their probability
density functions. Both have a scale value of 0.2 but the left distribution has
a location parameter of 1/3 and the right a location parameter of 1.
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Table 2.4: More Symbols Introduced in this Section on Variation

Symbol Meaning
eijr A residual or error for stimulus pair (i; j)

and subject r
�r Within-subject standard error for subject r
� Global standard error for all the data

of the distribution in an entirely nonstatistical way. In fact choice of the
lognormal distributon results in MULTISCALE computing a least squares
approximation in the log scale, and choice of thenormal distribution results
in a least squares approximation in the original scale. This nonstatistical in-
terpretation of what MULTISCALE does determines how one will interpret
the results, especially when comparing �ts using di�erent models or assessing
precision of estimation.

Table 2.4 o�ers a summary of the mathematical notation used in the
discussion of error variation and distribution.

2.8 Mathematical Summary

Let I indicate the number of stimuli and R indicate the number of subjects.
For stimulus pair (i; j) and subject r the dissimilarity judgment or index will
be denoted by dijr and the corresponding distance by d̂ijr: It will be assumed
that all dissimilarity observations are positive.

The most general distance model �t by MULTISCALE is

d̂ijr =
MX
m

wrm(xim � xjm)
2 ;

where the number of dimensions is indicated by M . There are two special
cases of this model �t by MULTISCALE:

1. The weights wrm are unrestricted, except for being required to be non-
negative, called the diagonal metric model, and
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2. The weights wrm are equal to one for all subjects, called the identity

metric model. This last case is the default one for MULTISCALE.

MULTISCALE computes distances d̂ijr so as to provide optimal �t of
either

1. log d̂ijr to log dijr or

2. d̂ijr to dijr.

The �rst case is the default one. In addition to computing the best-�tting
distances, the program also computes a monotone transformation fr(�) for
each subject which is applied to either log dijr or to dijr according the choice

above. Thus, in case (1) what is actually optimized is the �t of log d̂ijr to
fr(log dijr) with both the distances and the monotone transformations being
estimated from the data. The corresponding situations hold for case (2).

There are three levels of monotone transformation that are possible in
MULTISCALE. These are presented below as applied to the case of �tting
log dissimilarity.

Scale transformation:

fr(log dijr) = log dijr + vr :

The coe�cient vr has the e�ect of changing the unit of measurement
for the dijr's for subject r and is estimated separately for each subject.

Power transformation:

fr(log dijr) = pr log dijr + vr :

The transformation is equivalent to taking the dijr's for subject r to a
power pr and altering their unit of measurement.

Spline transformation:

fr(log dijr) = sr(log dijr) + vr ;

where the function sr(�) is a monotone spline function. Such functions
are constructed by joining monotone increasing quadratic functions end
to end so that the polynomials join smoothly. The values of log dijr at
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which these junctions take place are called knots. They can either be
set by the user or left to MULTISCALE to choose. MULTISCALE
chooses only a single point of junction by default. Further discussion
of the spline transformation option can be found in Appendix 1.

The manner in which log d̂ijr is �t to fr(log dijr) or d̂ijr to fr(dijr) is
determined by assumptions made about the distributions of the residuals,
de�ned in the log transformation case as

eijr = fr(log dijr)� log d̂ijr :

These are speci�ed in two ways: �rst, by indicating the nature of the variance
of the eijr's in a hypothetical population of independently replicated judg-
ments, and second, by specifying the type of distribution that these have.
The most general formula for the variance of the residuals used in MULTI-
SCALE is

Var(eijr) = �r :

This states that error variance is a subject-speci�c component �2r . The
subject-speci�c component can either be unrestricted and thus estimated
uniquely for each subject, or may be required to be constant across subjects.
The former case is the default one. The square root of the average of the
subject-speci�c variances is referred to in the program as the global standard
error.

The actual distribution of errors can be chosen to be one of the following:

lognormal: This says that the values of eijr de�ned in terms of log dijr and

log d̂ijr are normally distributed with mean zero and variance deter-
mined as above. This is the default choice.

normal: In this case the residuals eijr = fr(dijr) � d̂ijr are assumed dis-
tributed with mean zero and variance

Var(eijr) = �2r :

The interaction between the three types of transformation and the two
types of distribution options are summarized in Table 2.5.
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Table 2.5: Transformations under the Two Distribution Options

Transformation Lognormal Distn. Normal Distn.
Scale fr(log dijr) = log dijr + vr fr(dijr) = dijr + vr
Power fr(log dijr) = pr log dijr + vr fr(dijr) = prdijr + vr
Spline fr(log dijr) = sr(log dijr) + vr fr(dijr) = sr(dijr) + vr

2.9 Monotone Spline Transformations

In this section the class of monotone spline transformations are described
from a mathematical point of view. Monotone splines are discussed in greater
detail in Ramsay (1988) and Winsberg and Ramsay (1982), and more general
references on splines are de Boor (1978) and Schumaker (1981).

In the most general terms a spline function is simply a set of polynomials
joined end to end. The points at which they join are called knots. Between
knots the spline is a polynomial and as a rule the degree of all polynomial
segments are �xed in advance and identical. The interest and applicability of
spline functions depends on their behavior at the knots themselves. Here they
are generally required to exhibit a degree of smoothness which is determined
by the number of derivatives that exist at the knot. If the polynomials merely
join, they may not have any derivatives at the knot. On the other hand,
they have have up to one less than the degree of the polynomials if the two
segments are not part of the same polynomial. Figure 2.12 illustrates a spline
function composed of three quadratic or degree two polynomial segments.
Notice that at the �rst junction point there are no derivatives, but that
at the second junction point the two polynomials have the same slope and
therefore that the spline function has one derivative. The degree plus one
of each polynomial segment is known as the order of the spline, and will be
indicated by k: The number of polynomial segments less one will be indicated
by N: Thus, if N = 0, the spline function reduces to a single polynomial
segment.

A knot sequence t1; : : : ; tN+2k is an integral part of the de�nition of a
particular spline function. This sequence must obey certain rules. For the
purposes of understanding MULTISCALE these rules can be given in the
following more specialized version:

1. The �rst k values are equal and strictly less than the remaining values,
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Figure 2.12: A piecewise quadratic function (solid line) constructed by joining
three quadratic functions at the positions indicated by vertical dashed lines.
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2. the last k values are equal and strictly greater than all previous values,

3. and values between the �rst and last k are in strictly increasing order.

These rules ensure that there are N+1 nonempty intervals between knots.
There are a number of ways of mathematically de�ning a spline function

given a knot sequence. Each of these involves taking a linear combination of
N + k primitive spline functions. What di�ers from one scheme to another
is how these primitive spline functions are de�ned. One of the most useful
schemes from a practical point of view is the use of B-splines (short for basis
splines). We shall denote the nth B- spline of order k by Bnk(x). These
special spline functions have the following properties:

1. The nth B-spline is zero except between tn and tn+k where it is positive,

2. In any interval there are only k B-splines which are positive. The
remainder are zero.

3. The nth B-spline of order 1 has the value one between knots tn and tn+1
and is zero elsewhere.

4. The value of the nth B-spline of order k for argument x lying between
knots tn and tn+k is given in terms of the B-splines of order k � 1 by
the recursion formula

Bnk(x) = Bn;k�1(x)
(x� tn)

(tn+k � tn)
+Bn+1;k�1(x)

(tn+k � x)

(tn+k � tn+1)

Properties (c) and (d) permit us to compute the value of an B-spline
function at any point relatively cheaply. Figure 2.13 displays some B- spline
functions of order 2 and 3.

It turns out that any spline function joining with maximal smoothness
at the knots (with k � 2 derivatives) can be expressed as a weighted sum of
B-spline functions. Thus, a spline function f(x) can be represented as

f(x) =
N+KX
n=1

cnBnk(x) :

Because of property (1) of B-spline functions this function will always be
nonnegative provided that all the coe�cients cn are nonnegative. Note, too,
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Figure 2.13: Two sets of B-spline functions. B-splines of order 2 are piece-
wise linear and B-splines of order 3 are piece-wise quadratic
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that because of property (2) only k of the B- spline functions need to be
evaluated at any value of x:

We may now move easily to the de�nition of a family of monotone spline
functions. When a spline function f(x) is nonnegative, its integral

s(x) =
Z x

tk

f(u)du

will be a monotonically increasing function. Expressing s(x) in terms of the
B-splines, we have that

s(x) =
Z x

tk

cnBnk(u)du

=
N+KX
n=1

cn

Z x

tk
cnBnk(u)du : (2:14)

Monotonicity depends on all of the coe�cients cn being either positive or
zero. Moreover, the integral of a B-spline function is not at all di�cult to
compute since, after all, a B-spline is still a polynomial between knots and the
integral of a polynomial of degree k � 1 is a polynomial of degree k. In fact,
the integral of a B-spline function of order k can be simply expressed as a
linear combination of B-splines of order k+1: Thus we have in equation (2.14)
a family of monotonic splines which are easy to compute given coe�cients
cn:

The shape of the monotone spline de�ned by (2.14) depends on the coef-
�cients cn: MULTISCALE computes these so as to maximize log likelihood
while keeping them nonnegative. In statistical work it seems best in most sit-
uations to work with the lowest possible order of splines, and MULTISCALE
employs order two splines. An order two spline is actually a piecewise linear
function or a polygonal line. Its integral is a piecewise quadratic function.
Thus, the monotonic spline computed by MULTISCALE are piecewise poly-
nomials of degree two joining at knots so as to have a single derivative. The
number of coe�cients required is then equal to the numberof intervals plus
one. The knot sequence will consist of two equal knots at the beginning of
the interval over which the transformation is to be performed, some num-
ber (MULTISCALE requires at least one) of interior knots, and two �nal
knots at the upper end of the transformation domain. Finally, note that the
number of knots will be two more than the number of coe�cients, which in
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turn will be two more than the number of interior knots. The default situ-
ation in MULTISCALE is one in which there is a single interior knot, three
coe�cients to compute, and �ve knots in all.



Chapter 3

Auxiliary Variables

While dissimilarity data yield rich information about how the subjects per-
ceive the stimuli, they provide rather uncertain information about the way in
which subjects value or prefer some stimuli over others. The auxiliary vari-
ables pairwise preference or direct ratings can provide this complementary
information, and MULTISCALE provides a means of linking dissimilarity
with one or the other of these auxiliary data by means of a common geomet-
ric model.

In this chapter we �rst discuss the data themselves, and then move to
describe the two types of models which MULTISCALE can �t to them.

3.1 The Auxiliary Data

3.1.1 Pairwise Preferences

Although the term preference is used in a wide variety of ways in the behav-
ioral sciences, we shall be quite restrictive in this manual. Preference refers
to a judgement speci�c to a pair of stimuli in which

� the stimulus which is valued more is indicated,

� the degree to which it is valued more is also indicated, and

� if two stimuli are equally valued, the judgment is zero.

If we code such a judgment for stimulus pair (i; j) and subject r as a
number pijr, then it is natural to use a signed number such that if

53
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� pijr > 0, then stimulus i is valued more highly than j,

� pijr < 0, then stimulus i is valued less highly than j,

� pijr = 0, then stimulus i and j are equally valued, and

� jpijrj indicates the degree to which one is valued over the other.

Such a judgment might be made using the following rating scale:

ice apple

cream pie

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1

5 4 3 2 1 0 0 1 2 3 4 5

The subject is invited to place a check mark or \X" in one of the 31 blanks on
this scale. The numbers positioned below the each blank indicate the value
that pijr would assume if the mark is placed in that blank. Normally these
coding values would not be actually presented to the subject.

For example, if the response is

ice apple

cream pie

X

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

then this subject values the two deserts equally, has no preference for one
over the other, and would receive pijr = 0. On the other hand, if

ice apple

cream pie

X

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

then the subject has a fairly strong preference for ice cream over apple pie,
and would receive an observation pijr = �11, meaning that the preference for
apple pie over icecream is -11 units, or that ice cream is actually preferred.
Finally,
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ice apple

cream pie

X

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

indicates a slight preference for apple, and is coded pijr = 3.
Pairwise preference data may be collect in ways other than the use of a

rating scale of this nature. MULTISCALE does assume, however, that the
observations are signed numbers whose magnitude indicates the degree of
preference, and for which zero has the special signi�cance of no preference.
HenceMULTISCALE assumes that pairwise preferences are on the ratio scale
of measurement.

3.1.2 Direct Ratings

The stimuli can also be evaluated or rated one by one rather than as pairs.
Such ratings are very common, and can be carried out in many di�erent ways.
All that MULTISCALE assumes in this case is that the bigger the number
used to code the judgment, the more that stimulus is preferred. Such a
judgment can be indicated as uij.

Here is an example of a direct rating scale:

X

apple pie _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

X

ice cream _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Each stimulus has 15 categories, and in this case, uir = 3 for apple pie and
uir = 11 for ice cream, indicating that ice cream is more highly valued than
apple pie.

A code of zero has no special signifcance for direct ratings, and MULTI-
SCALE assumes an interval scale for these data.

For direct rating data, but not for pairwise preference data, it is possible
to use ratings or judgments with respect to multiple attributes at the same
time. That is, we might be judging possible sweets with respect to being
a dessert, a late evening snack, or a replacement for lunch. When multiple
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attributes are involved, we use the notation ukir to indicate the evaluation
by subject r of stimulus i with respect to attribute k, where k = 1; : : : ;K:

When the number of stimuli I is large (15 or more, for example), the
number of pairs to judge with respect to pairwise preference is also large,
and it seems unlikely that studies involving pairwise preference data would
consider more than one attribute at a time.

Although direct ratings involve less time to collect, preferences have the
advantage of providing more information per stimulus, and hence of poten-
tially providing more accurate assessments of subject utilities.

3.2 Models for Auxiliary Variables

For either pairwise preferences or direct ratings MULTISCALE proposes two
geometrical models: the ideal direction and the ideal point models.

3.2.1 Ideal Direction Model

This is the model most often used in market research and other areas of
psychometrics. According to this model, there is a direction in the space
used to represent the stimuli such that the further a point is along this
direction, the more highly the subject values the stimulus.

Consider Figure 3.1 in which the ten forms of recreation introduced in
Chapter 2 in Figures 2.2 and 2.3 are again represented as points. This time,
however, each subject is also displayed in the �gure as an arrow. This ar-
row indicates that subject's direction of greatest utility. Points far along in
this direction are estimated to be highly valued by this subject, and points
by contrast which are in the opposite direction are little or even negatively
values. We see in this display that subject 13 is the only one with a strong
positive value for television, fashion shows and window shopping. Presum-
ably the same subject has little taste for or even strongly dislikes attending
conferences or reading.

This model is expressed algebraically for direct ratings on a single at-
tribute as follows:

uir =
MX
m=1

yrmxim + vr (3:1)

In this equation
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Figure 3.1: The ideal direction representation of the recreation dissimilarities
and pairwise preferences.
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� xim is the coordinate of the point representing stimulus i on dimension
m, and is primarily determined by the dissimilarity data,

� yrm is the value placed by subject r on variation along dimension m,
and

� vr is merely a constant or intercept that permits direct ratings to be
on an interval scale.

Coe�cient yrm determines by its size how closely the ideal direction will
line up with dimension m in the coordinate system. Because of the structure
of the model and this role of yrm, the model is often called the scalar product
model.

MULTISCALE assumes implicitly that pairwise preferences and direct
ratings are related very simply by the following di�erence model:

pijr = uir � ujr : (3:2)

This model expresses algebraically the signi�cance of zero preference, since
this implies that the two utilities are equal.

Of course, both types of data are not present at the same time, but it
follows from the di�erence model (3.2) and the ideal direction direct rating
model (3.1) that the model for pairwise preferences will be

pijr =
MX

m=1

yrm(xim � xjm) : (3:3)

Thus either set of auxiliary data are used by MULTISCALE to estimate
the dimension utilities yrm. While these auxiliary data do provide some
information about the point coordinates xim as well, this is very limited
relative to that available in the dissimilarities.

Finally, when multiple direct ratings are involved, the model (3.1) requires
an extra subscript for the rating variable, and becomes

ukir =
MX
m=1

yrmkxim + vrk (3:4)

In this equation yrkm is now the utility or value for dimension m for subject
r with respect to property or attribute k. Constant vrk is an intercept term
speci�c to a subject and property.
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3.2.2 Ideal Point Model

It can also be seen as natural to represent subjects as points in the same
manner as stimuli. In the ideal point model subject points are positioned
close to stimuli which are highly valued, and far from stimuli which have
little or negative value.

Figure 3.2 shows a display of this type. We can see that subjects are
indicated in this display as points, just as stimuli are. The closer a subject is
to a given stimulus, the more that stimulus is preferred, and for pairs of points
the ideal point model implies that a subject will prefer the stimulus which is
closer. For example, we now see that subject 13 is very close to television,
while at the same time time being more distant from fashion shows and
window shopping. Also, note that 1, 2, and 15 are now portrayed as having
little preference for conferences, in contrast to what was indicated in the
ideal direction model, but that they are seen as liking reading. A weakness
of the ideal direction model was that any direction favoring reading would
also favor conference going, but the ideal point model is able to circumvent
this di�culty.

Since distance and dissimilarities are on ratio scales with �xed origins,
while direct ratings are on an interval scale as a rule, we �rst take the log-
arithm of distance to put it into interval scale form, and then use a linear
transformation to yield the model

uir = pr log(1=dir) + vr = �pr log dir + vr (3:5)

where dir is the distance from subject r to point i computed by either

identity metric:

d2ir =
MX
m

(yrm � xim)
2

or

diagonal metric:

d2ir =
MX
m

wrm(yrm � xim)
2
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Figure 3.2: The ideal point representation of the recreation dissimilarities
and pairwise preferences.
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Correspondingly, the model for pairwise preference data is, using the
di�erence model (3.2),

pijr = (�pr log dir)� (�pr log djr) = pr log djr=dir : (3:6)

In e�ect, the ideal direction model can be viewed as a special case of the
ideal point model. The latter behaves more and more like the former as a
subject's ideal point gets further and further away from the con�guration of
points, in which case it basically de�nes a direction of preference. Moreover,
the ideal point model has one more parameter per subject (pr) than the ideal
direction model.



Chapter 4

Some Important Statistical

Concepts

MULTISCALE approaches the multidimensional scaling problem from a sta-
tistical point of view. Although this point of view is not essential for the
use of MULTISCALE, it is important to understand a number of statistical
terms and concepts that appear throughout this manual and on the output.
Several important results can often be obtained with MULTISCALE which
are not possible with nonstatistical programs. The advantages of a statistical
approach are broadly speaking three:

� Improved precision of estimation: Taking explicit account of the nature
of random variation in the data leads to \best possible" estimates

� Hypothesis tests: Assuming the account of random variation is rea-
sonable, it is possible to test a wide variety of hypotheses about the
data. Usually this takes the form of comparing two or more models by
calculating an index of improvement of �t which can be assessed with
familiar statistical tables.

� Estimates of precision of estimation: Not only are parameter estimates
optimal, but the precision with which corresponding population val-
ues are estimated can be assessed numerically and graphically. This
gives the investigator an idea of how much information the data have
provided with respect to these parameters.

62
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In this chapter a number of statistical notions such as maximumlikelihood
estimation and asymptotic chi squared tests are introduced. Readers already
familiar with these ideas may want to either skim or skip this discussion. A
more technical account of these matters may also be found in Ramsay (1977,
1978, 1982).

4.1 Maximum Likelihood Estimation

Any process of �tting a model to data must employ a criterion to assess
the �t. Those parameter estimates which optimize the criterion are then
computed. The optimized value of the �tting criterion is then evaluated in
various ways. The best known example of this process is probably the use of
summed squared errors from a regression line as a �tting criterion and the
computation of the slope and intercept parameters which minimize this, a
process known as least squares estimation. The �nal error sum of squares can
then be assessed in a variety of ways, especially when an alternative value is
available.

MULTISCALE is based on the principle of maximum likelihood estima-

tion. As the term implies, a �tting criterion called the likelihood is maximized
by determining the parameter values yielding its highest possible value. Ex-
cept for a scale factor, likelihood is essentially the probability of obtaining the
data given the parameter values. The parameters include everthing that must
be estimated: the Cartesian coordinates of the points, the individual metric
matrices if required, parameters determining the estimated data transforma-
tions fr(d), and the variance component parameters. For any speci�c set of
values for these parameters, the likelihood of the data can be determined.
MULTISCALE �nds those parameter values which maximize likelihood.

The maximum likelihood process is based on the following rationale: If
the data are \typical", that is, a true random sample from the population,
then their probability with respect to the population parameter values will
be relatively high. Thus the parameter values that actually maximize this
probability de�ne a pseudo population for which the data are the most typi-
cal possible. Since the data are also assumed to be very typical with respect
to the actual population, the parameter values in the population and those
maximizing the data probability ought to be fairly similar. In fact, when
an arbitrarily large amount of data are available, the maximum likelihood
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estimates and the population parameters are arbitrarily close to one another,
a property known as consistency. Moreover, maximum likelihood estihation
leads to the best possible estimates in the sense that when large sample sizes
are involved no other estimation process provides estimates which are consis-
tently closer to the population values. For large samples maximum likelihood
estimates are distributed normally with a mean equal to the population val-
ues and a variance-covariance matrix that can be easily estimated.

Any useful appreciation of maximum likelihood estimation must include
an understanding of what it does not imply. Most importantly, all the desir-
able properties of maximum likelihood estimation relate to large, not small,
samples; that is, it is asymptotically optimal. In fact there are many sit-
uations where in small samples maximum likelihood estimates have rather
undesirable properties. For example, dividing the sum of squared deviations
from the sample mean by the sample size is the maximum likelihood estimate
of variance, but this estimate tends to be too small (biassed) in small samples,
and dividing by one less than sample size is preferable (unbiassed.) Neverthe-
less, any estimation procedure which fails to be competitive for large sample
sizes is less likely to be interesting for small samples, unless nonstatistical
considerations such as economy are critical.

A second important caveat about maximum likelihood estimation is that
its optimal characteristics become irrelevant if the sample cannot be reason-
ably considered to come from the hypothesized population. The requirement
of explicitly stating the nature of random variation in maximum likelihood
estimation is both a strength and a weakness. If one wishes to use the advan-
tages that this process makes possible it becomes very important to critically
examine the actual behavior of the data in various ways. MULTISCALE has
a number of such diagnostic procedures available for the serious data ana-
lyst. Again, however, even a nonstatistical approach should involve serious
considerion of how the data are actually distributed. For example, the use of
a �tting process which places heaviest emphasis on large dissimilarities when
these are the noisiest parts of the data is ill-advised in most applications.

From a numerical point of view, it is much more natural to maximize the
logarithm of the likelihood than the likelihood itself. Since the logarithmic
transformation preserves order or is monotone, it follows that any parameter
values which maximize the likelihood will also maximize the log likelihood
and vice versa. Moreover, the log likelihood has a number of uses which are
outlined below.
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4.2 The Independence Assumption

An important statistical assumption incorporated into MULTISCALE is in-
dependence of residuals. This means that the size and direction of the lack
of �t, error, or residual for any judgment or datum does not depend on that
for any other datum. This is a rather strong assumption and needs some
special comment. Most well-known statistical procedures such as analysis
of variance and multiple regression analysis also involve the independence
assumption. In fact it is often not completely justi�ed. For example, if the
data are direct ratings, subjects' memory of previous judgments can a�ect
the current judgment, so that if one suspects that one overrated the previous
dissimilarity one may compensate by underrating the present one. Depen-
dencies of this sort are usually relatively mild, however. Much more serious
are dependencies due to the data being derived from other data or due to
mathematical constraints. For example, confusion frequencies are interde-
pendent because the frequencies in any row of the data matrix must sum to
the total number of presentations. Similar remarks pertain to dissimilarity
indices derived from combining various univariate measures.

The e�ects of violation of the independence assumption are complex and
di�cult to assess. Most immediately a�ected are estimates of variance, which
will be under- or over-estimated depending on the nature of the dependencies.
A goodness-of-�t measure such as the likelihood or error sum of squares
is usually directly related to variance estimates and therefore is similarly
a�ected. However, estimates of what one might call structural parameters
such as coordinates of points are not usually very sensitive to violations of
independence.

With rating scale data, the dependencies are usually not serious enough
to warrant concern. In fact, one of the important reasons for \tuning" the
�t by the use of spline transformations and individual metrics is to remove
such dependencies. However, with derived dissimilarity indices, it is probably
better avoid the statistical statements based on a MULTISCALE analysis,
and to adopt a nonstatistical point of view in interpreting the results.
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4.3 Log Likelihood and Least Squares

An important practical implication of the independence assumption is that
the log likelihood for the total set of observations is simply the sum of the log
likelihoods for each individual observation. It is also a sum of the log like-
lihoods for the data for each subject. For further discussion of how the log
likelihood is de�ned for the various distributions and types of data transfor-
mation consult Ramsay (1982). However, it may be informative to see how
log likelihood is described mathematically in the default case of the lognormal
distribution with estimated power transformations and only subject-speci�c
variance components. If we denote the log likelihood for subject r by Lr ,
then

Lr = �(Mr=2) log �
2
r � 0:5

X
ij

e2ijr=�
2
r +Mr log pr ; (4:1)

where
eijr = pr log dijr + vr � log d�ijr;

and where Mr is the total number of judgments for subject r. This can be
expressed more simply if one substitutes in (4.1) the maximum likelihood
estimate of �̂2r , given by

�̂2r = M�1
r

X
i

X
j

e2ijr: (4:2)

Then (4.1) reduces to

Lr = �(Mr=2)(log �̂
2
r + 1) +Mr log pr:

Since �̂2r is simply a multiple of the error sum of squares in the log scale
for subject r, the log likelihood can be seen to be very simply related to
this quantity. The �nal term, called the Jacobian term, corrects for the
e�ect of estimating the data transformation. Thus, �Lr is a function to be
minimized which can be easily understood in relation to least squares �tting
criteria commonly used in other programs.

The log likelihood for the total sample is then computed by summing log
likelihoods across subjects:

L =
RX
r=1

Lr (4:3)
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The log likelihood cannot be interpreted by itself. It may be either posi-
tive or negative, and its size will depend on the number of observations and
the number of parameters in the model for �tting the data. Under some
circumstances two log likelihoods can be compared, and this is discussed in
section 2 of this chapter.

4.4 AIC and BIC Measures of Fit

Fitting criteria like log likelihood and least squares have the practical prob-
lem that their value depends on the number of parameters being estimated;
the more parameters one uses to de�ne the model, the larger log likelihood
usually is. Two log likelihoods can be compared only when the model produc-
ing one is a specialization or subset of the model yielding the other. However,
the log likelihood can be modi�ed slightly to approximately correct for num-
ber of parameters so that two models can be compared at a descriptive level
even though they involve di�ering numbers of parameters. The AIC statistic

is one such modi�cation described by Akaike (1974). If L denotes the log
likelihood, then the AIC statistic is

AIC = �2L+ 2Np ; (4:4)

where Np is the number of mathematically independent parameters being
estimated. Another modi�cation proposed by Schwarz (1978) is the BIC
statistic:

BIC = �2L+Np logNo ; (4:5)

where No is the total number of observations. Obviously the smaller both
statistics are, the better the �t of the model, since they are related to the
negative of the log likelihood. Both involve adding a correction term to the
negative of the log likelihood. The model yielding the smallest value of one or
the other statistics is to be preferred. BIC is usually more conservative in the
sense of favoring models having smaller numbers of parameters than those
favored by AIC, although both yield similar conclusions in most situations.
Both are intended for descriptive use only; they cannot be used in hypothesis
testing.
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4.5 Comparing Models or Hypothesis Test-

ing

As introduced in the previous section, maximum likelihood estimates have
very desirable properties when the sample is large and the statistical assump-
tions are justi�ed. Under these circumstances, the log likelihood can be used
in a simple way to test hypotheses concerning which of two models provides
the better �t to the data.

This can be done when one of the models is a special case of the other,
when the simpler model is derived by �xing or constraining the parameters
of the more general model in some way. We say in this case that the simple
model is nested within the more general model.

Here are some useful examples of nested multidimensional scaling models:

� the comparison between a distance model using M dimensions and one
using M � 1 dimensions. The former reduces to the latter if all the
coordinates with respect to the M th dimension are set to zero.

� the identity metric model is a special case of the diagonal metric model
in which all weights wrm are equal to one.

� The power transform of data reduces to the scale transform when the
exponent pr becomes one.

� The power transform model in turn is a special case of the spline trans-
form model.

� Yet another example arises when one wishes to ask whether two or more
groups di�er with respect to the con�guration generating the respec-
tive distances. The general model involves estimating all parameters
uniquely for each group and then simply summing the log likelihoods.
This corresponds to the hypothesis that the data in any group have
nothing to do with the data in any other group. The special case arises
when all the data are combined together and �t by one common model.

Let us denote the log likelihood for the more general model by L
 and
that for the simpler or more speci�c special case by L!. Then the quantity

�2 = 2(L
 � L!) (4:6)
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provides a convenient test criterion. When sample size is large and the statis-
tical assumptions are justi�ed, and under the null hypothesis that the simpler
model describes the population, this criterion has a chi squared distribution.
The degrees of freedom of this distribution are simply the di�erence between
the number of parameters for the general model and the number of param-
eters for the simpler model. One may then consult a table of the critical
values of chi squared to determine whether the computed value is signi�cant
at some level. Signi�cance constitutes a statistical argument that the more
general model adds something substantial to the �t of the data.

Of course, many things, some of which are hard to detect in practice, can
perturb this principle. The wise user neither bases his decision about which
model to use solely on such a test nor takes overly seriously a value which
barely achieves a modest level of signi�cance. Ramsay (1980b) describes
in more detail how this criterion behaves in the speci�c context of testing
dimensionality.

Since one of the assumptions underlying the use of (4.6) is that of a
\large" sample, it is important to explain what is meant by this. Large
refers to the excess of data over parameters. One may have a large num-
ber of observations but use up most of the degrees of freedom for error in
a very extravagant model (full metrics, spline transformations, high dimen-
sional distances, complicated variance component models, etc.). Then the
large number of observations is nevertheless a small sample. A useful rule
of thumb in a wide range of applications is that the data-to-parameter ratio
should be at least ten. Models such as multidimensional scaling can prolifer-
ate parameters very rapidly and the sensible investigator is cautious in this
matter. Again consult Ramsay (1978, 1982) for more details.

Even when one feels uncomfortable about the interpretation of (4.6) as a
chi squared variable, it is possible to use it in a descriptive way to compare
the degree of improvement of various extensions of a baseline model. We shall
provide examples of this later. The AIC and BIC statistics are also useful in
this regard, and experience has shown that AIC is particular helpful. In gen-
eral, experience indicates that hypothesis tests tend to favor more complex
models than most users of the results of the analysis want to contemplate,
whereas choosing the model which yields the minimumAIC criterion usually
results in a model of modest complexity.

The critical value of a chi squared variable depends on its degrees of free-
dom. A statistic which can be used in the same way can be computed using
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the following transformation of chi squared to a standard normal deviate
(Wilson & Hilferty, 1934):

z = [(�2=k)1=3 � 1 + q]=
p
q ; (4:7)

where q = 2=(9k) and k is the number of degrees of freedom. The advantage
of this transformation is that z does not depend on the number of degrees
of freedom and thus one can compare via the respect z-values two or more
ways in which �t has been improved.

4.6 Assessing Precision of Estimation

As noted above, when sample size and reality of the statistical assumptions
permit, it is possible to estimate the variance-covariance matrix for param-
eter estimates. The matrix summarizes the nature of the variation of these
estimates from sample to sample and provides an indication of how far wrong
the estimates are likely to be.

The variance-covariance matrix is estimated by computing the negative
inverse of the expected value of the matrix of second derivatives of the log
likelihood function. This matrix is not di�cult to compute in general, and is
used in other ways by MULTISCALE. However, when the number of param-
eters is large, as would be the case when data transformations are estimated
for each subject and there are many subjects, this would be a very large ma-
trix indeed and the computation of the inverse would be unduly expensive.
Thus, MULTISCALE uses only the matrix associated with the coordinate
estimates. It therefore produces a conditional variance-covariance matrix;
that is, the estimated variance-covariance matrix in e�ect assumes all other
parameters �xed rather than estimated. This is obviously a compromise, and
the user of MULTISCALE should realize that this process tends to produce
estimates of sampling variance which are somewhat smaller than is realistic.
Nevertheless, when substantial numbers of subjects are involved, the under-
estimation is not serious, and Ramsay (1980b) describes a correction that
can o�set this tendency.

One way in which the variance-covariance matrix of the coordinate esti-
mates can be used is to provide con�dence ellipsoids surrounding each point
indicating a region within which the population point is included with a spec-



4. Statistical Concepts 71

i�ed level of probability. If the reader wishes to turn ahead to Chapter 6, an
example of such a display can be seen.



Chapter 5

How MULTISCALE Works

This chapter presents the general strategies adopted by MULTISCALE to
compute maximum likelihood estimates. Computing these estimates is not
a simple matter, and it is essential to understand some aspects of how this
is done to determine if the computation has reached a successful conclusion
and to modify or control the computation when necessary.

The computational problems posed by multidimensional scaling derive
from two facts: there is no direct or analytic solution for the coordinates
yielding the best distances, and in a typical application a very large number
of parameters must be estimated. In response to this MULTISCALE in
common with most other multidimensional scaling programs does two things:
�rst, it proceeds to a �nal solution incrementally or iteratively by successively
improving an initial set of parameter values; and secondly it separates the
parameters into groups and improves each group in turn leaving the others
�xed. In this way it carves the computational problem into manageable
portions and proceeds by modest steps to the �nal desired result.

The parameters in a MULTISCALE analysis are grouped as follows:

1. Con�guration X or Coordinates xim: These are the IM coordinates,
one for each point and each dimension, from which the distances are
computed.

2. Metric weights wrm: There are M per subject.

3. Transformation parameters: These are the parameters for each subject
determining the dissimilarity transformations. In the scale transforma-
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tion case they are the coe�cients vr, in the power case they are the
coe�cients vr and and pr, and in the spline case they are vr plus the
coe�cients determining the monotone spline transformations.

4. Variance parameters: In the subject-speci�c variance case they are
the variances �2r and in the constant variance option it is the global
standard error �.

We can de�ne a main iteration as a cycle in which the parameters in each
block are updated. For example, a main iteration in MULTISCALE may con-
sist in �rst computing better point coordinates, then improving the parame-
ters de�ning the dissimilarity transformations while holding the coordinates
�xed, and then �nishing by improving the variance components parameters
while �xing the coordinates and transformation parameters. The parameter
blocks are processed in the order in which they are shown above. A typical
MULTISCALE analysis will carry out 20 to 30 of these main iterations.

The entire computational process begins with initial values for each block
of parameters computed by procedures that provide reasonable �rst guesses.
For example, when required, MULTISCALE begins by setting each metric
matrix to the identity matrix. Coordinates are initially estimated using the
procedure described by Torgerson (1958). These starting values can be said
to be the consequence of iteration 0. Starting values can also be set by
the user and may come from previous MULTISCALE analyses or analyses
by other programs. MULTISCALE provides convenient procedures whereby
results from one analysis can be passed on to the next analysis as starting
values.

Within each main iteration, any block of parameters can be updated one
or more times. The number of iterations of a particular block of parameters
within a main iteration is termed that block's secondary iterations. For ex-
ample, within any one main iteration one may choose to iterate four times
on the coordinates while holding all other parameters �xed. Of course, mul-
tiple secondary iterations can be expected to decrease the total number of
main iterations required. The e�ectiveness of the trade-o� will depend on
the particular data and model involved. MULTISCALE defaults to a single
updating for each parameter block.

A critical part of any iterative process is determining when to stop it.
This introduces the problem of de�ning convergence criteria. Convergence is
reached when any iterative process, main or secondary, satis�es a numerical
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test. There are many numerical tests possible. For example, one may decide
to terminate an iterative process when the parameters being updated do
not change by more than a certain amount from one iteration to the next.
Alternatively, one may examine the function being maximized or minimized.
For example, if the log likelihood function is not improved by more than
a certain amount from one iteration to the next, one may decide to quit.
Another feature of the function that can be tested is its rate of increase
or slope. If, at any point, the function is not increasing very rapidly as a
function of the parameters being updated, the iterations can be terminated.

In MULTISCALE convergence criteria are based on the behavior of the
log likelihood or a function derived from it rather than on the behavior of
parameters. The user can control the various criteria used or can accept the
default criteria built into MULTISCALE. The criteria used in each iterative
process are described below.

Convergence for Main Iterations: The change in log likelihood from one
iteration to the next is tested. As mentioned in the previous chapter,
the primary application of the log likelihood is in terms of computing
di�erences between two values and then assessing twice this di�erence
against tabled values of the chi-squared variable. One does not re-
ally need much accuracy in this test; as a rule it su�ces to know a
chi-squared variable with anything more than 5 degrees of freedom
(almost always the case in multidimensional scaling) to the nearest
whole number. Consequently MULTISCALE defaults to terminating
the main iterations when the log likelihood does not change by more
than 0.05 from one iteration to the next. It is often practical to ac-
cept results well short of reaching this criterion, however, especially in
more exploratory phases of the investigation. The user can override
this criterion if desired.

Convergence for Con�guration Iterations: In the lognormal distribu-
tion option, the log likelihood depends on the coordinates xim only
through the error sum of squares,

SSE =
RX
r

IX
i

IX
j

(fr(log dijr)� log d�ijr)
2 =

RX
r

IX
i

IX
j

e2ijr :

This must be minimized in order to maximize the log likelihood. It
is simple to work out the criterion for SSE which is equivalent to the
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criterion of a change of .05 in log likelihihood. MULTISCALE uses
this equivalent SSE criterion in assessing on iteration � whether the
relative change (SSE(��1)� SSE�)=SSE(��1) is su�ciently small. An
analagous criterion is applied in the normal distribution case.

Convergence for Metric Weight Iterations: The log likelihood depends
on the metric weights wrm for subject r only on the error sum of squares
for that subject. The main iteration criterion of .05 (or whatever the
user supplies) then determines the criterion for relative change in this
subject's error sum of squares.

Convergence for Transformation Parameters: The process here is it-
erative only in the spline transformation case. In that case the relative
change in the contribution to the log likelihood of the rth subject is
tested.

Convergence for Subject-speci�c Variance Components: This is not
an issue since these can be solved for exactly.

The convergence criterion for each parameter block or secondary iteration
can be determined by the user. All convergence criteria are displayed at the
beginning of the analysis.

We now come to the updating process itself for any particular parameter
block. MULTISCALE always improves parameters by seeking to decrease the
relevant function. This implies that when log likelihood is to be increased
with respect to a parameter block, MULTISCALE seeks to decrease the
negative of log likellihood.

There are many possible ways of modifying parameters so that the rel-
evant function is decreased. In general, however, an updating process must
take two things into account. The �rst is the rate of decrease of the function
for a particular set of parameter values. The second is the nature of the
in�nitismal change in parameters that will decrease the function the most
rapidly. These are assessed by the gradient of the function, or the set of �rst
partial derivatives of the function with respect to each of the parameters.
The rate of decrease can be assessed in various ways, of which two are:

1. gradient length: If the gradient has elements g1; :::; gN , where N is the
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number of parameters in the block, then this is given by

GL =
X
n

g2n

2. relative gradient length: If the parameters themselves are y1; :::; yN,
then this is

RGL =
X
n

(g2n)(y
2
n)=N :

This has the practical advantage of not depending on the scale or num-
ber of parameters in the way that the simple gradient length does.
When MULTISCALE refers to gradient length, it is in fact using this
measure.

One procedure for updating parameters is simply to subtract from each
parameter a constant times the corresponding gradient element. This tech-
nique, known as the gradient method or the method of steepest descent in
e�ect is a movement in parameter space in the direction of the most rapid
decrease.

Although the gradient method can be used optionally in MULTISCALE,
it is generally better to do something more sophisticated. This involves not
only taking into account the rate and direction of decrease, but also the
rate of change of this direction itself. This requires some use of the second
partial derivatives with respect to the parameters in the block. If there are
N parameters in a block, there are N �rst partial derivatives and N2 second
partial derivatives. The latter can be assembled in a square symmetricmatrix
called the Hessian. In fact, it turns out that the average or expected value
of the Hessian serves just as well and is much cheaper to compute. If we
indicate the expected Hessian by E and the gradient vector by g, then the
direction of increment � is determined by solving the equation

E� = �g (5:1)

For some parameters, most notably the con�guration matrix, E will not be
of full rank. In such cases MULTISCALE uses the minimum norm solution
for �. The process of using (5.1) to compute the best increment is known as
the scoring method. It has been proven to be very e�ective in a wide range
of problems.
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The primary argument against the scoring method is that it can require
substantial computer time and memory to compute the increment vector
�. Thus, when the con�guration matrix has a very large number of elements
(perhaps more than 100) it may be desirable to revert to the gradient method,
which will in general require substantially more iterations but cost less per
iteration and use less memory.

Once MULTISCALE has determined the appropriate increment vector or
search direction in parameter space, it then attempts to minimize the func-
tion by moving from the current point in this direction. This is the line search
step. MULTISCALE �rst checks that the function is changing su�ciently
rapidly along this line. If not, it terminates the iteration. If the initial slope,
called the directional derivative, is su�ciently large, it then uses a sophisti-
cated procedure for locating the minimum of the function on this line. This
is in turn an iterative procedure, and these iterations can be called tertiary

iterations. MULTISCALE permits a maximum of 5 of these. Convergence
usually takes place in two or three tertiary iterations, and the history of these
iterations is not normally displayed. Occasionally, however, there will be a
failure to attain the optimum in 5 iterations, and then a warning message
will be output and the history of the line search iterations displayed. As a
rule this is not serious and the program will continue unimpeded to the �nal
result.



Chapter 6

An Introductory

MULTISCALE Analysis

The next two chapters discuss in detail how to set up a MULTISCALE
analysis and how to control and interpret the results. It is often helpful,
however, to see what a simple job looks like in terms of its input and output
before considering more complex possibilities. This chapter presents the job
setup and output for the data in Figure 2.2. A simple two-dimensional �t
employing the various default options of MULTISCALE is used.

Table 2 presents the data in Table 1 as set up for a MULTISCALE run.
The reader may recall that a single subject rated all 105 possible pairs of
15 forms of recreation using a category rating scale containing 25 categories.
The job displayed in Figure 6.1 does not have any system control statements.

The �rst thing to note is that some lines begin with the \at" sign (@).
This special symbol tells MULTISCALE that an input block is beginning.
Immediately following the symbol @ is the name of the block. Block names
and all other names or keywords in a job are identi�ed by the program using
only the �rst three letters. Aside from this restriction, the block name can
be as long as desired and spelled in any way. In this manual we shall name
blocks by capitalizing the �rst three letters to remind you of this fact. The
input blocks ocurring in this job are

1. The TITle block which gives the title of the job.

2. The PARameters block which speci�es the dimensions of the problem
and the type of model to be �t. In this example MULTISCALE is told
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Figure 6.1: Recreation Data Set Up for MULTISCALE Analysis

@title;

Judgments of 15 Recreations by Subject FUNSEEKER

@parameters nstim=15, ndim=2, nsub=1;

@disdata;

(14F3.0)

16

3 18

12 12 11

16 21 16 2

20 10 19 15 12

15 12 13 9 19 6

21 23 23 19 7 22 20

7 10 6 18 19 25 15 25

19 22 25 22 14 8 22 23 25

9 7 13 15 12 19 20 22 8 25

22 16 16 19 13 7 13 15 23 13 25

7 3 13 12 21 13 10 22 13 12 7 18

21 22 22 12 23 21 18 18 21 22 9 22 12

8 8 7 9 21 21 12 22 5 25 9 23 10 8

@stimlabels;

(56A1)

CONCERT MUSEUM THEATRE MOVIE TV CONFRNCEREADING

HOCKEY BALLET DEBATE FASH SHODOC FILMEXHIBITNWINSHOP

RESTAURT

@subjlabel;

(8A1)

FUNSEEKR

@compute itmax=50;
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that there are 15 stimuli and one subject and that the �t is to be in
two dimensions. The EJECT item instructs MULTISCALE to skip to
a new page before each output section.

3. The DISdata block in which the data to be analyzed are input. In this
example the data are in the form of the lower triangle of the dissimi-
larity matrix excluding the diagonal and are preceded by a FORTRAN
format speci�cation.

4. The STImulus labels block containing 8-character labels for the stimuli,
seven of them per line. The labels are preceded by a FORTRAN format
speci�cation.

5. The SUBject labels block containing an 8-character label for the sub-
ject.

6. The COMpute block in which instructions for computation are given.
In this example the maximum number of main iterations is set to 50.

These blocks can occur in any order with the following two exceptions:

� PARameters block must appear either �rst, or following the TITle block
if the latter appears �rst,

� and the last block must be the COMpute block.

Within a block information is input in array form and/or using keywords
and logical items. A keyword is a string followed by an equal sign such as
NSTIM above. Again only the �rst three letters are signi�cant for MULTI-
SCALE. A logical item is a string ocurring without an equal sign. Keywords
and logical items can occur in any order and are separated from each other
and the block name by blanks or commas. The occurrence of a semicolon or
a slash (/) signals the end of the keywords and logical items in a block.

Arrays are input following keywords and logical items. They may be
input in a variety of ways. In this example the common procedure of giving
a FORTRAN format speci�cation is employed, but array information can
also be input in free format or binary form. Note that character arrays are
input one character at a time. In the following chapter other possible ways
in which dissimilarity data can be arranged (and rearranged) are described.
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The output from a MULTISCALE job is also arranged into sections.
There are 18 possible output sections, but most jobs will not generate all of
these. MULTISCALE permits considerable control over the output, includ-
ing the possibility of supressing certain sections or directing them to special
output �les. Output can also be made to be left-justi�ed and a maximum
of 80 columns wide for terminal users. The output which the example in
Table 6.1 generates is given in Appendix B. After printing out the title and
analysis number, Section 1 speci�es the model chosen and the dimensions of
the problem along with initial or starting values of various parameters. Sec-
tion 2 contains a detailed history of the computation, iteration by iteration,
showing within each iteration the secondary iterations performed for various
parameter estimates. Section 4 presents global results for the job including
the �nal log likelihood, AIC, and BIC statistics. Also included are the same
statistics for a simpler \benchmark" model in which the data are �t by a
single constant along with a chi-squared test of the improvement of �t that
the distance model a�ords. Section 5 presents the �nal con�guration in three
ways: in 
oating point form, in rounded integer form, and in polar coordi-
nates. Section 6 displays the �tted interpoint distances in rounded integers.
Section 8 displays post-hoc estimates of the stimulus standard error weights
�i computed on the basis of the �nal con�guration. Section 10 indicates
the �nal exponent pr for the subject, but omits the value of vr since this is
automatically set to one for data from a single subject. Section 12 provides
the �nal correlation between the log dissimilarity judgments and the log dis-
tances. Section 13 indicates the estimated standard errors and correlations of
estimate for the coordinates. Sections 15 and 16 plot the �nal con�guration
in two ways: �rst by plotting the points for each dimension separately, and
then plotting the points for each pair of dimensions. The �nal con�guration
is also displayed in Figure 2.3..

In this introductory analysis heavy use has been made of the default
values of various options in MULTISCALE. Among these are the use of the
lognormal distribution, the identity metric for distance (this is necessary
when only one subject is involved), the power transformation option, and
the supression of variance component options. The possible options and
their default values are described in the next chapter.



Chapter 7

MULTISCALE Input

This chapter presents a detailed discussion of how to set up a MULTISCALE
analysis. It begins with two examples of job setups, and proceeds to describe
each possible section of a input �le for MULTISCALE.

In the personal computer version of MULTISCALE, the name of the
input �le is requested by the program when it is invoked. In the mainframe
version the input �le is FORTRAN �le number 5, the usual default �le in
most computer systems.

7.1 Dissimilarity Analysis for Recreation Data

Figure 7.1 displays an example of an analysis of some dissimilarity judgments
on pairs among 15 forms of recreation. The number of subjects is 10 in this
case.

This example is designed to show how to set up MULTISCALE in a
typical situation in which only dissimilarity data are to be analyzed. The
data are dissimilarity judgements for recreations, but this time by 15 subjects,
and only with respect to the �rst 10 stimuli presented in Figure 2.2.

A detailed discussion of what each line in this job means follows below.
Before launching into this, however, we provide a second example.

82
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Figure 7.1: Job Setup for the Analysis of Recreation Data (Dissimilarities
Only)

@TITLE;

10 RECREATIONS

@PAR NSTIM=10, NDIM=2, NSUB=15;

@DISDATA VECTOR;

(15F3.0)

8 23 2 24 18 25 7 20 25 8 12 23 25 2 12 1

21 3 24 4 9 5 11 10 25 20 20 12 22 17 22

25 25 8 25 21 25 25 6 12 10 11 22 18 25 1

1 2 9 11 11 11 5 13 8 14 10 10 10 16 15 2

1 4 8 12 3 12 5 16 13 14 10 6 7 15 18

19 17 23 13 18 19 20 14 25 16 25 16 19 19 8

... and so on ...

16 17 6 18 21 21 8 24 19 8 10 8 20 2 5 15

7 7 16 2 7 4 3 23 19 19 9 15 23 10 5

17 18 10 6 9 23 17 14 22 17 3 6 4 20 3

@STIMLAB;

(64A1)

READING TV HOCKEY BALLET ARTMUSM CONCERT THEATRE CONFEREN

WINDOWSHFASHSHOW

@SUBJLAB;

(64A1)

AYOTTE BAKER BAXTER CORONEL DEMPSEY FOREY HABIB HANLEY

KIRKWOODLIGHT MARR PERREAULPOWIOZNYSHAKIN TARINI

@COMPUTE ITMAX=50;
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7.2 Dissimilarity and Preference Analysis for

Recreation Data

In this example, each subject has also given a judgment of pairwise preference
for each pair of stimuli.

Note that pairwise preferences are signed numbers, unlike dissimilarities,
which are positive.

In this analysis the metric for distance is the diagonal metric. The model
for preferences is the ideal point model, set by the AMO=POI command. Unlike
the previous example, neither the dissimilarities nore the preverences require
re-ordering.

7.3 The Block Structure of MULTISCALE
INPUT

In these two examples, note that input to MULTISCALE is organized into
input blocks. Each block begins with a name starting with the @ symbol. In
both examples, the initial block de�nes a title for the analysis, and the second
block gives essential information about the dimensions of the data (number
of stimuli, subjects, dimensions, and etc.) and types of models. The actual
data are input in subsequent blocks, and other blocks are used for inputting
stimulus and subject labels.

MULTISCALE recognizes 19 types of input blocks. These are given in
Table 7.1. In the setup of an analysis, MULTISCALE only uses the �rst
three letters to identify a block or other keyword items, and consequently
the �rst three letters are capitalized in the block name.

Each block begins with an initial portion beginning with an @ and termi-
nating with a semicolon (;). Following this initial portion there may or may
not be further records containing additional information. On some operat-
ing systems the symbol @ may be reserved for special purposes. The initial
portion of a block may also be terminated by a slash (/).

For the most part these input blocks may occur in any order. Blank lines
can also be inserted between blocks, although no more than two blank lines
can appear within a block.
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Figure 7.2: Job Setup for the Analysis of Recreation Data Involving Both
Dissimilarities and Pairwise Preferences

@TITLE;

10 RECREATIONS

@PAR NSTIM=10, NDIM=2, NSUB=15, AUX=PREF, AMO=POINT, METRIC=DIAGONAL;

@DISDATA VECTOR;

(15F3.0)

8 23 2 24 18 25 7 20 25 8 12 23 25 2 12 1

21 3 24 4 9 5 11 10 25 20 20 12 22 17 22

25 25 8 25 21 25 25 6 12 10 11 22 18 25 1

1 2 9 11 11 11 5 13 8 14 10 10 10 16 15 2

1 4 8 12 3 12 5 16 13 14 10 6 7 15 18

19 17 23 13 18 19 20 14 25 16 25 16 19 19 8

... and so on ...

@PRFDATA VECTOR;

(15F5.0)

10 -12 0 -12 -11 8 12 -12 9 -1 -12 -12 5 12 -8 1

5 -10 12 11 11 -2 -12 -11 9 2 0 9 -10 -8 0

12 10 3 -1 -10 0 0 -12 -12 -1 1 -8 12 -6 8

4 -12 12 -12 -7 0 -12 0 -9 4 -8 0 -3 -5 10 2

-12 5 -2 -6 -1 2 -12 10 7 0 12 1 10 -12 3

-6 4 3 0 7 0 -4 -12 0 -8 2 -12 8 -10 12

... and so on ...

@STIMLAB;

(64A1)

READING TV HOCKEY BALLET ARTMUSM CONCERT THEATRE CONFEREN

WINDOWSHFASHSHOW

@SUBJLAB;

(64A1)

AYOTTE BAKER BAXTER CORONEL DEMPSEY FOREY HABIB HANLEY

KIRKWOODLIGHT MARR PERREAULPOWIOZNYSHAKIN TARINI

@COMPUTE ITMAX=50, ITXMAX=1, ITWMAX=1, ITYMAX=1;
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Table 7.1: Blocks of Parameters and Data in a MULTISCALE Analysis

Block Name Contents
PARameter Parameters de�ning size of data and type of model
TITle Title for analysis
DISdata Dissimilarity input data
PRFdata Preference input data
RATdata Direct rating input data
OLDdata Dissimilarity data analyzed previously
TRAnsformation Type of a priori transformation of data
STImlabels Labels for stimuli
SUBlabels Labels for subjects
CON�guration Initial coordinates for con�guration X
IDEalpoint Initial ideal points or directions
METric Initial metric weights wrm

DORder Indices for re-ordering dissimilarity data
PORder Indices for re-ordering preference data
KNOt Knot values determining spline transformations
SPLine Initial spline parameters or regression coe�s.
COMpute Parameters controlling computation
WTDiss Dissimilarity standard errors for each subject
WTPref Preference or rating std. errors for each subject
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The two exceptions to the arbitrariness of block order are the PARAM-
ETERS block, which must either be �rst or come second immediately after
the TITLE block, and the COMPUTE block which must be the last block
before analysis is to take place. Thus, all the blocks beginning with the ini-
tial PARAMETERS (or TITLE) block and ending with the �rst COMPUTE
block de�ne a single run or analysis of the data. Multiple runs are achieved
by subsequent blocks, each run always being de�ned by an initial PARAM-
ETERS (or TITLE) block and the next COMPUTE block. In the example
above a second run has been de�ned by the last three blocks.

7.4 Within-block Structure

Within any block there is an initial portion containing a number of pieces of
information in \keyword" format, and terminating with a semicolon or slash.
These will be referred to as block items.

The �rst item in a block must be separated from the block name by one or
more blanks or commas. Items within the initial portion are also separated
by one or more commas or blanks. No more than 50 consecutive blanks or
commas is permitted. When more than one line is required, an item must
not be broken up by the end of the line, since the end of a line is also taken
as separating two items. As many cards as required may be used. Blank
lines (to an upper limit of three) may be inserted between blocks. If the
semicolon or slash ending this initial portion is omitted, the program will
usually recover appropriately but will issue a warning message.

There are four types of items within any block. In the description of
each type below, capital letters will be used to indicate a speci�c item. Some
computer systems di�erentiate between upper and lower case characters, and
on such systems these items will actually be typed in lower case when entering
information into the computer.

logical: These items are a single word, which can be abbreviated to their
three leading characters. MULTISCALE II uses only these three char-
acters in any case to identify a logical item. An example would be
NARROW in the �rst PARAMETERS block, which could have been
abbreviated to NAR. Logical items must be separated from both a
previous item and a following item by one or more blanks or commas
(blanks and commas are treated the same).
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keyword: These precede an equal sign (=), and identify the role in MUL-
TISCALE of the following value. An example is NSTIM in the �rst
PARAMETERS block. Keywords can also be abbreviated to their three
leading characters. They must be separated from the previous item by
one or more blanks or commas.

literal: These are strings of characters like logical items. However, they ei-
ther follow an equal sign (and hence a keyword item) when occurring
within the initial statement of a block, or occur in an array (such as a
set of labels). They may be abbreviated to their �rst three characters.
An example of a literal item would be DIAGONAL in the second PA-
RAMETERS block. Literal itemsmust be separated from a subsequent
item by one or more blanks or commas.

numerical: These are either integer or real numbers. Some numbers follow a
keyword, as does the number of stimuli, 15, in the �rst PARAMETERS
block, and others are entered as an array, as are the observations in the
NEWDATA block.

Within any block the information in the initial portion can appear in any
order. In some cases there will be no information, in which case the block
name is followed by a semicolon or slash.

Following the initial statement, sets of literals or numbers may be entered
as arrays. The observations in the NEWDATA block, the stimulus labels in
the STIMLABELS block, and the re-ordering indices in the ORDER block
are examples of arrays. There are three ways to input arrays:

�xed format: A FORTRAN format speci�cation precedes the array, and
the array is then input under the control of this speci�cation. This is
the usual mode of entering arrays in statistical programs.

free format: No format speci�cation is supplied and array items need only
be separated by commas or blanks, and as many items as required are
input. While free format input is convenient and occasionally essential,
it does impose the constraint that no items other than those to be
entered can be in the input stream. Since items must be separated by
one or more blanks or a comma, neither the observations nor the re-
ordering indices in the format in which they occur in Figure 7.1 could
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be entered in free format style because some values are not separated
in this way.

binary: Occasionally items have been written in binary or unformatted form
on disk or tape by a previous program. Such �les can be input to
MULTISCALE by using the binary option.

If an array is to be input, it begins on a new line following the line
containing the terminating semicolon. This is what happens in the NEW-
DATA, STIMLABELS, and ORDER blocks in the example above. Thus,
these blocks are terminated by reading the last required item in the array.
In the case of arrays of literal items input under free format, the array must
be terminated by a semicolon or slash.

More than one analysis can be carried out within any MULTISCALE
run. In the above example two analyses are to be carried out, the �rst with
the IDENTITY metric model, and the second with the DIAGONAL metric
model. Each analysis commences after the COMPUTE block has been input.

Most of the items entered with keywords have default values that will
be suitable for many situations. For example, the default distance model is
the IDENTITY option, and hence the item METRIC=IDENTITY does not
need to appear in the �rst PARAMETERS block. When multiple analyses
are asked for in a MULTISCALE run, the values set or defaulted in a previ-
ous analysis apply automatically unless speci�cally overridden. It is for this
reason that items like NSTIM=15 do not reappear in the second PARAME-
TERS block. Stimulus and subject labels are also passed automatically from
one analysis to another. However, the parameters entered in the COMPUTE
block are exceptions to this rule, and will revert to their default values unless
explicitly set on a subsequent run.

Each of the input blocks is described in greater detail in the following
sections. A block is only supplied in the input stream if it supplies needed
information. For each input block the items that can be input within the
block are speci�ed along with any default values. Only the �rst three letters
of each block name are critical, and the remaining letters can be anything
you wish or omitted entirely. To emphasize this, only the �rst three letters
of block names and keywords are capitalized below. Remember that the �rst
line of each block begins in column 1 with @ followed by at least the �rst
three characters of the block name.
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Table 7.2: Keyword Items Accompanying the PARameters Block

Keyword Possible Default Function
Values Value

NSTimuli > 1 0 Number of stimuli or points
NDImensions > 0 2 Number of dimensions
NSUbjects > 0 1 Number of subjects or replications
NRAtings > 0 1 Number of direct rating variables
NKNots � 0 0 Number of interior knots for

spline transformations
TP1 � 0 1 First scratch �le number
TP2 � 0 2 Second scratch �le number
TP3 � 0 3 Third scratch �le number
ISEed < 0 Initial seed value for random

number generator

7.4.1 PARameters Block:

The parameters which de�ne the dimensions of the problem are speci�ed
here along with the parameters which determine the distance model, variance
component and transformation options to be used, and most aspects of input
and output control. The items that can be input in this block are presented
in the Tables 7.2, 7.3, and 7.4. Tables 7.2 and 7.3 present keyword items and
speci�es the permitted range of values. If a value outside the speci�ed range
is entered, an error message and termination of the run will usually result.
To emphasize that only the �rst three characters of an item are required,
these are capitalized. It should be noted, however, that items are input in
lower case on systems di�erentiating between upper and lower case.

An example of a PARameters block is as follows:

@PARAMETERS NSUB = 6, NSTIM = 10, TRANFORMATION = SPLINE, NOASYM,

METRIC = DIAGONAL, DISTN = NORMAL;

In this block MULTISCALE is informed that there are 10 stimuli judged
by 6 subjects. The dissimilarity data will be transformed by monotone
splines. The diagonal metric is to be used, and the assumed distribution-
for errors is normal. The logical item NOASYM instructs the program to
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Table 7.3: Keyword Items Accompanying the PARameters Block (continued)

Keyword Possible Default Function
Values Value

PTHresh any 99.0 Bound on preference abs. values
SDDiss > 0:0 0.0 Initial value for global standard

error for dissimilarities
SDPref > 0:0 0.0 Initial value for global standard

error for preferences or ratings
PRObability > 0; < 1 0.95 Con�dence level for con�dence

regions for points
METric IDEntity, IDEntity Distance model option

DIagonal
AUXiliary NONe, NONe Type of auxiliary variable

RATing,
PREference

AMOdel DIRection, DIRection Type of model for auxiliary
POInt variable

TRAnsform SCAle, POWer Transformation option
POWer,
SPLine

SUVariance CONstant, SUBwise Variance component
SUBwise model for subjects

DIStributn LOGnormal, LOGnormal Distribution option
NORmal

PLOt NONe, NONe Type of con�dence ellipse plot:
HPGl, Hewlett-Packard HPGL commands
POStscript Postscript commands
PRInter On-line dot-matrix printer
SCReen Only the computer screen
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Table 7.4: Logical Items for PARameters Block

Logical Item Option Set when Item is Speci�ed
DCOmplete Complete matrix of dissimilarities for each subject

rather than just lower triangle
PCOmplete Complete matrix of preferences for each subject

rather than just lower triangle
DEBug Complete output for each iteration for debugging

purposes
NARrow Output con�ned to 80 columns
EJEct Page eject before each output section
GRAdient Optimization by gradient method rather than

scoring method
LIStdata Input data matrices to be displayed
NARrow Output con�ned to 80 columns
NOPlots Suppress plots of con�guration and of dimension

saliences
NOStats Suppress various statistics for subjects
NOAsympt Suppress asymptotic variance estimates
NODist Suppress table of interpoint distances
QPLot Plot of normalized residuals against quantiles of

normal distribution for each subject
RECover Recover initial parameter values from �le ITP1
SAVe Save con�guration, weight matrices, and all

other estimated parameters on �le ITP1
HIStory Print out results for each iteration.
TABles Table of transformed dissimilarities, distances,

and normalized residuals for each subject
DPLot Transformed dissimilarity plotted against distance

for each subject
PPLot Prefernce plotted against predicted preference

for each subject
TPLot Transformed dissimilarity plotted against

dissimilarity for each subject
QPLot Plot of normalized residuals against quantiles of

normal distribution for each subject
WIDe Output in 120 columns and center
RANdom Generate random data
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not compute or display asymptotic standard errors for the coordinates. Im-
plicit in this block is the back that the analysis will be in only two dimensions,
since the default value for the NDIM item is 2.

Here is another example of a PARameters block, which instructs MUL-
TISCALE to also analyze the auxiliary pairwise preference data, using an
ideal point model. The �nal con�guration and ideal points are to be plotted
along with con�dence ellipses on a dot matrix printer.

@Parameters nstim = 10, ndim=2, nsub = 15, auxil = pref, amodel = point,

plot=print;

7.4.2 TITle Block

Only the title is input in this block. There is a single keyword item for this
block: LINes. The numerical item following this keyword speci�es the num-
ber of lines of title to be input. The maximum possible value is 5 and the
default value is 1. The title may contain any characters useful for identify-
ing an analysis. Note that this block may occur either before or after the
PARameters block. This is the only block that can precede the PARameters
block.

An example of a title block is as follows:

@TITLE LINES=2;

THIS IS AN EXAMPLE OF A JOB TITLE AND MAY CONTAIN

ANYTHING EXCEPT SPECIAL CHARACTERS

7.4.3 DISdata Block:

The dissimilarity observations to be analyzed are input here. The format
of the data is speci�ed within this block prior to the occurrence of the data
themselves. The dissimilarity judgments for each subject in turn are input
in this block. Thus MULTISCALE expects an array of dissimilarity obser-
vations for each subject. These arrays may be of the following types:

lower triangle: Observations for each unordered pair are input excluding
pairs in which a stimulus occurs with itself. If there are I stimuli, this
implies that I(I � 1)=2 dissimilarities are input for each subject. If
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there are observations missing, these are entered as zeros or negative
numbers. This type of array is the default type for MULTISCALE and
no special instructions are necessary if the data are in this form.

complete matrix: Observations for every ordered pair are input, implying
I(I � 1) values for each subject. MULTISCALE assumes that the ob-
servations for pair (i; j) and pair (j; i) are independent of each other.
Thus, this option should not be used if only the unordered pairs were
actually presented. This option is enabled by the logical item COM-
plete in the PARameters block.

diagonal present: By default MULTISCALE assumes that the observa-
tions corresponding to the pairing of a stimulus with itself are not
present in the array. This can be overriden for either lower triangle
or complete arrays by the logical item DIAgonal in this block. These
observations may be anything since MULTISCALE does not make use
of them. One of the uses of the DIAgonal option is when the complete
matrix is to be input even though the matrix is symmetric. The DI-
Agonal option without the COMplete logical item in the PARameters
block will cause MULTISCALE to read all I rows of the matrix but
only use the lower triangle excluding the diagonal.

Dissimilarity observations where are read in as zero or negative numbers
are treated by MULTISCALE as missing data.

However the array is de�ned, it can be read either as a matrix or as an
unbroken set of numbers. By default MULTISCALE assumes the observa-
tions arranged in a matrix. In this case and assuming lower triangle input
(the default assumption for MULTISCALE) a single number is read from
the �rst row, two from the second, three from the third, and so on until all
observations are input.

It is often more e�cient to enter the observations without arranging them
into a matrix. In this case the data are entered as an unbroken vector of
I(I � 1)=2 elements in the case of lower triangle input. The number of
observations per line is then either speci�ed by the FORTRAN format spec-
i�cation or is arbitrary if free format entry is used. This option is enabled
by the VECtor logical item in the NEWdata block. When data are entered
in this way, a rearrangement of the data may be desired, and the ORDer
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block described below is used to enter the necessary reordering information.
Unless the observations are reordered, they are assumed to be in the order

d21; d3;1; d32; d41; d42; d43; : : :

and so on until dI;I�1; that is, in the same order as they would have if entered
as a matrix.

In the DISdata block and all other blocks containing numerical arrays the
observations in a given line of data can be formatted in three ways:

1. �xed format: In this case a FORTRAN format speci�cation beginning
in parentheses is entered before the �rst line of data. MULTISCALE
assumes �xed format input by default, but it may also be enabled by
the statement FORmat=FIXed.

2. free format: In this case numbers are separated by blanks, commas,
or the end of a line. There may be as many numbers per line as is
consistent with this rule. MULTISCALE simply continues reading new
lines until all the observations that it expects are entered. Since the
end of a line is also separates numbers, a number may not begin on
one line and continue on the next. MULTISCALE cannot enter more
than 400 numbers at a time in free format. This restriction will never
cause problems if the data are in matrix form since MULTISCALE
reads one row of the matrix at a time. However, the VECtor option
could result in this restriction being violated for large arrays. An error
message would result. Free format input is enabled by the statement
FORmat=FREe in this block.

3. binary format: In cases where the observations have been placed on disk
or tape in binary format it is necessary to specify FORmat=BINary in
this block. No format speci�cation is necessary in this case.

Finally the user can control which �le the array is read from by specify-
ing DAT�l=n. MULTISCALE will assume the array is part of the normal
input stream on �le ITP5 otherwise. In the case of �xed format, the format
speci�cation is also assumed to reside on �le n as the �rst line. Of course the
user will have had to instruct the operating system to ready �le n for reading
before executing MULTISCALE. It will usually be necessary to include the
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Table 7.5: Keyword Items Accompanying the DISdata Block

Keyword Possible Default Comments
Values Values

FORmat FIXed FIXed FIXed implies �xed format input.
FREe The array must then be preceded by a
BINary FORTRAN format speci�cation.

FREe implies free format input.
A list-directed read of data results.
BINary implies numbers are to be
input in binary format.

Table 7.6: Logical Items for the DISDATA Block

Logical Item Option Set when Item is Speci�ed
VECtor Dissimilarities are in a single vector instead of a

lower triangular matrix.
DIAgonal The diagonal entries of the dissimilarity matrices

are present.

logical itemREWind to ensure that MULTISCALE reads from the beginning
of �le n.

A summary of the keyword and logical items in the NEWdata block are
given in Tables 7.5 and 7.6. These items are also applicable to the input of
numerical arrays in other blocks.

If no items occur (that is, the block name is followed by a semicolon or
slash), then the program will assume the data are to be input under format
control with each row of the lower triangle of a dissimilarity matrix beginning
a new line.

In the following example a single matrix is read in under format control
using the default conditions. Only the lower triangle of the matrix is input,
and since the diagonal entries are not input, only seven lines are required
although there are eight stimuli. Note that the format speci�cation causes
MULTISCALE to bypass the row numbers.

@NEWDATA;

(5X,7F2.0)
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2 2

3 6 4

4 3 2 6

5 3 2 3 2

6 1 2 3 3 2

7 2 4 2 2 3 3

8 2 3 3 1 2 2 3

In the following example the observations are to be read in free and vector
format.

@NEWDATA FORMAT=FREE;

2 6 4 3 2 6 3 2 3 2 1 2 3 3 2 2 4 2 2 3 3 2 3 3 1 2 2 3

7.4.4 PRFdata Block:

The pairwise preference observations to be analyzed as the auxiliary variable
are input here. The format of the data is speci�ed within this block prior to
the occurrence of the data themselves. The preference judgments for each
subject in turn are input in this block. Thus MULTISCALE expects an array
of preference observations for each subject. These arrays may be of the same
types as those for the DISdata block.

The main di�erence between pairwise preferences and dissimilarities are
that the latter are assumed to be signed numbers; some will be positive, and
some will be negative.

MULTISCALE uses a threshold or bound to determine which preference
values are to be treated as missing. By default, if the absolute value of an
observation exceeds 99.0, it is treated as missing. This threshold value can
be modi�ed by using the PTHresh keyword in the PARameters block

7.4.5 RATdata Block

Direct rating data are input in this block. For direct rating data, each subject
provides a rating or judgment separately on each stimulus. In addition,
MULTISCALE permits ratings of this nature with respect to multiple rating
variables or attributes. This contrasts with pairwise preference data, where
a subject provides a single judgment with respect to each stimulus pair, and
only with respect to a single variable or attribute.
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The direct ratings are input as R matrices, each with I rows and K
columns, where I and R are, as before, the number of stimuli and subjects,
respectively, and K is the number of rating variables. In applications where
only a single rating variable is involved (K = 1), the I ratings associated
with a subject can be entered as one or more rows rather than necessarily
as I lines of data. The essential thing to remember is that MULTISCALE
expects the rating variable index to vary within the stimulus index, which in
turn varies within the subject index.

Otherwise direct rating data follow the same rules as for dissimilarity or
preference data, except of course that the data cannot be in triangular format
since they are of necessity in the form of complete matrices.

7.4.6 OLDdata Block

No information is input in this block, which is simply an instruction to re-
analyze the previously input set of data. Thus, this block appears simply as
the following example:

@OLDDATA;

7.4.7 TRAnsformation Block

It often happens that it is desirable or necessary to transform the data prior
to analysis by MULTISCALE. For example, if a set of category ratings have
been recorded in such a way that they are indices of similarity, it would be
necessary to �rst re
ect them. MULTISCALE permits the input data to be
transformed by the following function:

f(d) = minfadb � c; eg (7:1)

With this formula the re
ection of similarity ratings could be achieved
by using a = �1; b = 1; c = �10; and e = 10: Another example is pro-
vided by the desire to use a preliminary power transformation along with the
SCAle estimated transformation option. In this case, one would use some-
thing like a = 1; b = 1:5; c = 0; e = 1e20: Finally, it might be desirable to
convert dissimilarity values of zero, which would be treated as missing data
by MULTISCALE, to some small positive constant. This could be achieved
by a = 1; b = 1; c = 0; and e = 0:5:
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Table 7.7: Keyword Items Accompanying the TRAnsformation Block

Keyword Possible Default Comments
Values Value

ATRan any 1.0 Multiplier a in (7.1)
BTRan any 1.0 Exponent b in (7.1)
CTRan any 0.0 Constant c in (7.1)
ETRan > 0 1E20 Limit e in (7.1)

The keywords and their associated default values are given in Table 7.7.
An example of a TRAnsformation block is:

@TRANSFORMATION BTR=1.5;

7.4.8 STImlabels Block

In this block the labels for the stimuli are input as a literal array. Although a
label may be as long as desired, only the �rst eight characters will be used. If
this block does not occur, the label �elds in the output are left blank. Note
also that labels must be input under format control if blanks or commas
are to be part of any label. If read in under format control, exactly eight
characters will be read per label, with each character occupying an entire
word. This implies that the format statement should be of the form (mA1),
where m speci�es the number of characters per line. The rules for input
of labels under free format are slightly more restrictive than those for free
format input of numerical arrays since blanks may be part of a label. Thus
labels must be separated by commas and the �nal label must be followed by
a semicolon or slash.

The items in the initial statement in this block are the same as those in
the NEWdata block. For a subsequent analysis of the same data, these labels
(and the subject labels) will be automatically in force and do not need to be
reinput. An example of this input block would be

@STIMLABELS;

(40A1)

STIM 1 STIM 2 STIM 3 STIM 4 STIM 5
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7.4.9 SUBlabels Block

Subject labels are input here in the same manner as stimulus labels. They
are also passed from one analysis to another. An example of input of subject
labels with free format is

@SUBLABELS FORMAT=FREE;

SYLVIE,MARY LOU,PIERRE,J RAMSAY;

7.4.10 CON�guration Block:

This block is included when the user decides to input an initial con�guration.
While the program will generate its own initial con�guration if one is not in-
put, it is often useful to provide one. For example, when large amounts of
data are missing (a missing datum is indicated by a value less than or equal
to zero or by simple nonoccurrence in INDex mode), the generation of an
initial con�guration by the program may be either impossible or produce re-
sults worse than could be achieved by an intelligent guess. Another situation
requiring an initial con�guration arises when a previous analysis terminated
before achieving convergence, and it is desired to restart the iterative process
beginning where the previous run left o�. Finally, when estimating a con�gu-
ration that is subject to constraints, it may be desirable to begin computation
with an initial estimate which satis�es the constraints since MULTISCALE
does not take these into account in generating its own initial estimate.

The con�guration matrix has as many rows as stimuli and as many
columns as dimensions. The keywords available are the same as those de-
scribed in the NEWdata block, although VECtor and DIAgonal are not
relevant here. An example is:

@CONFIGURATION;

(2X,2F6.1)

1 1.1 -2.3

2 -0.2 5.2

3 10.0 -1.7

and so on

A special case arises when the RECover logical item is included in the
PARameters block. This causes MULTISCALE to look for the initial con-
�guration on �le TP1 on the assumption that it has been placed there by a



7. MULTISCALE Input 101

previous analysis in which the SAVe logical item was present. In this case it
is still necessary to have the CON�guration block, but no keywords or log-
ical items are necessary. MULTISCALE will have placed the con�guration
along with an initial FORTRAN format speci�cation on this �le. However,
since other arrays as well as the con�guration will also reside on �le TP1,
it is necessary to input each of them in the appropriate order by including
the appropriate input block in the same order. The order in which arrays
are deposited in �le TP1 under the SAVe option corresponds to the order
in which they are printed out by MULTISCALE. The RECover option is in
e�ect equivalent to @CONFIGURATION DATFILE=m; where the integer m is the
number of �le TP1 (default value 1).

7.4.11 METric Block

Each subject's initial metric matrix is input here. For the DIAgonal metric
model, there is a weight for each dimension. The metric matrices are input
as a single array having as many rows as subjects and as many columns as
weights. In the DIAgonal metric model the rth row contains the diagonal
weights

wr1; wr2; : : : ; wrM :

The keywords available here are the same as those in the NEWdata block,
with VECtor and DIAgonal being irrelevant in this block.

7.4.12 IDEalpnt Block

In this block either the coordinates of the ideal points or the coe�cients
de�ning the ideal directions are input.

There is a row or line for each subject, and in each such row a coordinate
or coe�cient is required for each dimension. For direct rating data only,
a �nal additional value is required for each subject specifying the constant
term on the model.

This block will usually be used to provide good initial values for the
iterative estimation of ideal point coordinates, rather than for ideal direction
coe�cients, since the optimal values for the latter are computed exactly and
noniteratively by the program.

The options available in this block are the same as those available for the
CON�guration and METric blocks.
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7.4.13 DORder Block

Pairs of stimuli are usually presented to subjects in randomized order in order
to minimize dependencies in judgments. In such cases the labor involved in
sorting the dissimilarity observations into the order

d21; d31; : : : ; dI;I�1

for each subject may be formidable and introduce possible errors. For this
reason MULTISCALE permits the observations to be input directly from
the questionnaire and then can reorder them internally. The example at the
beginning of the chapter is a case in point. In order to reorder observations,
it is necessary to number the entries in the lower triangle of the dissimilarity
matrix sequentially (the full matrix is numbered rowwise if the COMplete
option is used). The sequential number for the entry in the ith row and jth

column is given by the formula (i � 1)(i � 2)=2 + j. The reordering index
corresponding to each observation is then the sequential number of the cell in
the matrix in which it belongs. In the example, the �rst observation entered
whose value is 18 belongs in the 4th cell. This cell corresponds to the 3rd
row and 1st column of the dissimilarity matrix.

When the COMplete option is speci�ed, sequential numbering is of the
complete matrix excluding the diagonal or not according to whether the
DIAgonal option is present. The DIAgonal option with lower triangle input
means that the sequential numbering is of the lower triangle including the
diagonal, and the appropriate formula in this case is i(i� 1)=2 + j.

The keywords are the same as those in the NEWdata block. Refer to the
example in Table 7.1 for an illustration of the ORDer block.

7.4.14 PORder Block

Re-ordering indices for the pairwise preference data are input here if desired
in the same way as for dissimilarity data, described in the DISdata block
above. The only additional feature is that if an index is negative in sign, the
sign of the corresponding preference observation is reversed.

7.4.15 KNOt Block

The interior knots for the monotone spline transformations are input here.
The program automatically determines the knots at the ends of the trans-
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formation interval, and the interior knots as well if they are not input in this
block. Interior knots are input in free format, and there can be a maximum
of 10 of them. The same interior knots are used for all subjects. The �nal
knot value is followed by a semicolon. Note that when the LOGnormal dis-
tribution option is in force (MULTISCALE defaults to this) the monotone
spline transformation is applied to the logarithm of the dissimilarity data,
so that the knots must be chosen with respect to the log scale. The knot
values must also be sequenced in ascending order. Note that the knots are
not input as an array, but in free format within the initial portion for this
block. Thus, there is no need to specify a format.

An example of a KNOt block is:

@KNOTS 1.0, 2.0, 3.5, 5.0;

7.4.16 SPLine Block

The coe�cients determining the monotone spline transformation for each
subject are computed iteratively, and require initial values. Unless set oth-
erwise, they are all given the initial value of one. Initial values can be set in
this block. The matrix of spline coe�cient initial values has as many rows
as number of subjects and as many columns as number of interior knots plus
two. That is, if there is only one interior knot (the default condition), there
will be three coe�cients per subject to input. Input is under the control of
the same keywords as used in the NEWdata block.

7.4.17 WTDiss Block

The default model for the standard errors for both dissimilarities and subjects
permits the standard error to vary from one subject to another. Occasionally
it can be useful to specify these values for the initial calculations by MULTI-
SCALE. This is especially so when random data are to be generated having
varying standard errors, perhaps so as to simulate some model estimated
from actual data.

In this block the NSUb standard errors for dissimilarities are input. These
can appear organized as one or more rows of values, or as a column with one
number per row. One is required for each subject.

An example of a WTDiss block is as follows:
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@WTDISS;

(15f5.1)

0.3 0.2 0.9 0.8 1.1 0.2 0.8 0.7 0.3 0.2 0.8 0.5 0.4 0.4 0.1

7.4.18 WTPref Block

In this block the standard errors for preferences or direct ratings are input,
as in the WTDiss block above.

7.4.19 COMpute Block

This block is both an instruction to begin analysis of the data and an input
of various parameters controlling the course of the computation. Therefore,
it must be the �nal input block in an analysis. This block must either end the
job deck, or be followed by a TITle block or a PARameters block describing a
new analysis. The keywords that may be speci�ed are listed in Table 7.8. In
the table, some of the default values are described as \variable." This means
that the program computes them internally according to some procedure,
and the values may vary from analysis to analysis. As mentioned above,
parameters set in this block are not passed to a subsequent analysis of the
same data, and revert to their default values unless explicitly set for each
analysis. The roles of the parameters in this block are described in greater
detail in Section 3.

An example of a COMpute block is as follows:

@COMPUTE ITMAX=10, ITXMAX=4, ITWMAX=4, CONV=0.1;
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Table 7.8: Keyword Items Accompanying the COMpute Block

Keyword Possible Default Comments
Values Value

ITMax � 0 30 Number of main iterations. Within each
main iteration the con�guration (X),
the metric matrices (W), the ideal
points (Y), and the spline coe�s. (P)
are modi�ed a number of times.

ITXmax � 0 1 Number of con�guration iterations
within each main iteration

ITWmax � 0 1 Number of metric matrix iterations
ITYmax � 0 1 Number of ideal point iterations
ITPmax � 0 1 Number of spline coe�cient iterations
CONv � 0 0.05 Convergence crit. for log likelihood
XCOnv � 0 variable Convergence crit. for con�guration
WCOnv � 0 variable Convergence crit. for metric matrices
YCOnv � 0 variable Convergence crit. for ideal points
PCOnv � 0 variable Convergence crit. for spline coe�s.



Chapter 8

MULTISCALE Output

Output from the personal computer version of MULTISCALE is directed to a
�le named by the user when the program is invoked. MULTISCALE prompts
for �le names for input and output. In the mainframe version, however,
output is automatically directed to FORTRAN �le number 6, which is the
usual output �le for printed output.

The results from the analysis of data by MULTISCALE are organized
into separate sections. Each section is numbered allowing easy reference
to a particular type of result. Because of the many options available in
MULTISCALE, no one analysis is apt to produce all sections. For example,
one section displays the coe�cients for the monotone spline transformations,
and will appear only if the TRA=SPLine phrase appears in the PARameters
input block. Also, some sections are apt to be very long and thus are present
only if speci�cally requested. An example would be the plot of transformed
dissimilarity versus distance for each subject.

Output from MULTISCALE can be in one of two styles. The default
style assumes 80 characters per line and the output is arranged with that line
length in view. It is also possible to specify that output will be contained
within 132 characters per line and centered, as one would wish for line printer
output from mainframe computers. This style results when the WIDe logical
item is speci�ed in the PARameters block, while narrow page style is forced
by the WIDe item. An optional page eject can be performed before each
section by including the EJEct logical item in the PARameters block.

Each output section is described below and an example of output in that
section is provided. In most cases the output displayed results from the

106
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analysis of the data and job presented in Figure 7.1 in the previous chapter,
except that some lines are eliminated for purposes of compression. Appendix
C contains an example of wide line centered output. The output examples
presented in this chapter are intended to be representative, but the actual
material displayed for any particular analysis will vary depending on the
options requested and the data analyzed.

8.1 Problem De�nition and Input Quanti-
ties

In this section the requested analysis options are indicated, as well as the
basic dimensions of the problem. Default values of various quantities are
also displayed where their values would not be obvious. For example, the
various convergence criteria relevant to the run are displayed along with
the initial con�guration matrix. If missing data are detected, the number
of observations treated as missing is output. The input data matrices are
displayed if the LIStdata logical item was present in the PARameters block

An example of output appearing in Section 1 for the job set up in Figure
7.1 is shown below.

MULTISCALE ANALYSIS NUMBER 1

RECREATION DATA

SECTION 1. PROBLEM DEFINITION AND INPUT QUANTITIES

ANALYSIS NUMBER ........................... 1

NUMBER OF SCALED OBJECTS OR STIMULI ....... 10

NUMBER OF DIMENSIONS ...................... 2

NUMBER OF SUBJECTS OR REPLICATIONS ........ 15

MAXIMUM NUMBER OF MAIN ITERATIONS ......... 50

MAXIMUM NUMBER OF CONFIGURATION ITERATIONS 1

CONVERGENCE CRITERION FOR MAIN ITERATIONS .50E-01

CONVERGENCE CRITERION FOR CONFIGURATION ... .15E-03

INDIVIDUAL METRIC MATRIX .................. IDENTITY

ESTIMATED DATA TRANSFORMATION TYPE ........ POWER
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ASSUMED ERROR DISTRIBUTION IS LOGNORMAL.

8.2 History of Computation

Here results for each main and secondary iteration are displayed. The results
in this section include the current error sum of squares resulting from the �t
to the data transformations de�ned at that iteration, the log likelihood, the
standard error, and the gradient length with respect to the con�guration.

Within any main iteration there are secondary iterations for the con�g-
uration X, the metric weights wrm, the monotone spline transformations sr,
and the ideal point coordinates yrm. The maximum number of each of these
secondary iterations can be speci�ed, or left to its default value of one. If
zero iterations is speci�ed, the quantity in question is not changed during
the course of the analysis. Various error conditions are 
agged.

Within any given secondary iteration, there are a number of tertiary
iterations as the program searches for a minimum of a loss function along a
speci�ed line of search. These tertiary iterations are not displayed unless the
DEBug option is speci�ed. However if convergence is not achieved for these
iterations (maximum number 5), then an error message will result and the
history of this line search will be output to special �le, called mpda.err, and a
message that output to this �le has taken place is printed out. The program
will continue however and the occasional failure to achieve convergence in
line searches is not serious. Warning messages also result if the rank of any
matrix of expected second derivatives is less than expected by the program.
For the most part, these messages can be ignored since recovery strategies
within the program result in unimpeded progress towards the �nal solution.
If many occur, however, the DEBug option should be requested and some
expert advice sought.

Normally the history of secondary iterations is not displayed since this
would greatly increase the amount of output. Complete information on the
progress of all iterations can be displayed by specifying the DEBug logical
item in the parameters block.

An abbreviated example of output in Section 2 for the Figure 7.1 job is
as follows:
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SECTION 2. HISTORY OF COMPUTATION

MULTISCALE ANALYSIS NUMBER 1 IS IN PROGRESS.

ITER. LOG LIKEL. DISS. ERROR SS GRAD. LNGTH.

0 -1661.914 549.469 61.259

1 -1559.740 428.615 10.290

2 -1541.793 432.034 2.636

3 -1538.121 451.816 1.485

4 -1536.251 471.554 .810

5 -1535.014 490.753 .796

6 -1534.170 508.881 .734

7 -1533.526 526.555 .780

8 -1532.988 543.237 .862

9 -1532.505 559.776 .932

10 -1532.079 575.622 .837

11 -1531.708 591.378 .784

12 -1531.420 606.530 .594

13 -1531.193 621.481 .519

14 -1531.023 635.866 .389

15 -1530.889 649.971 .329

16 -1530.786 663.603 .252

17 -1530.702 676.933 .210

18 -1530.634 689.866 .164

19 -1530.577 702.516 .135

20 -1530.529 714.839 .107

8.3 Post-Mortem Display of Iterations

As a summary of the progress of the iterations toward a solution, a post-
mortem of the iterative process is optionally displayed. This shows the log
likelihood and the gradient length with respect to the con�guration on each
main iteration. These quantities are also plotted against iteration number.
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8.4 Some Useful Summary Results

After successful convergence of the main iterations has been achieved, or the
maximum number of main iterations have been completed, the �nal results
are displayed. These include the �nal log likelihood, the AIC statistic, the
BIC statistic, an unbiassed estimate of standard error, the number of param-
eters used to �t the data, and the number of degrees of freedom for error.
The �nal convergence status is also indicated. The AIC and BIC statistics
are useful for comparing models where there is not a nesting relationship
between them, and are described in Akaike (1974) and Schwarz (1978).

In addition to the �nal results based on the options chosen, correspond-
ing results are displayed when all the entries in a matrix are �t by a single
constant. This best-�tting constant is estimated separately for each subject.
A solution of this sort can be naturally thought of as a zero dimensional so-
lution and provides a useful reference model with which the distance model
can be compared. An asymptotic chi-squared test of the improvement in
�t is computed. If this chi-squared value is not signi�cant, one should con-
clude that the multidimensional scaling model used is not accounting for any
structure in the data.

Section 4 output for the recreation data in Figure 7.1 is as follows:

SECTION 4. SOME USEFUL SUMMARY RESULTS

LOG LIKELIHOOD ............................ -1530.529

2 X LOG LIKELIHOOD ........................ -3061.058

AIC STATISTIC ............................. 3181.058

BIC STATISTIC ............................. 3451.941

NUMBER OF PARAMETERS ...................... 60

NUMBER OF DEGREES OF FREEDOM FOR ERROR .... 615

DISS MAX. LIKELIHOOD STD. ERROR ESTIMATE ... 1.029

CONVERGENCE WAS ACHIEVED AFTER 20 ITERATIONS.

THE SAME RESULTS FOR ZERO DIMENSIONS ARE:

LOG LIKELIHOOD ............................ -1714.026

2 X LOG LIKELIHOOD ........................ -3428.051
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AIC STATISTIC ............................. 3458.051

BIC STATISTIC ............................. 3525.772

NUMBER OF PARAMETERS ...................... 15

NUMBER OF DEGREES OF FREEDOM FOR ERROR .... 660

DISS MAX. LIKELIHOOD STD. ERROR ESTIMATE ... .703

CHI SQUARE FOR COMPARING TWO FITS ......... 366.993

NUMBER OF DEGREES OF FREEDOM FOR CHI SQUARE 45

PROBABILITY OF EXCEEDING THIS CHI SQUARE ... .000

8.5 Final Con�guration Estimate:

The �nal con�guration matrix is output in three ways: �rst, in 
oating point
form with three decimal places, second, in rounded integer format, and third,
in polar coordinate form. The location of the decimal place may be shifted
prior to these displays in order to have about two digits to the left of the
decimal for most values. A message is output if the decimal place is shifted.

An example is:

SECTION 5. FINAL CONFIGURATION ESTIMATE

IN ALL OF THE ENTRIES TABLED BELOW THE DECIMAL POINT

HAS BEEN MOVED 1 PLACES TO THE LEFT.

1 2

1 READING -.498 -15.324

2 TV 22.382 .741

3 HOCKEY 37.695 -10.949

4 BALLET -21.651 4.524

5 ARTMUSM -6.076 2.970

6 CONCERT -19.110 -2.936

7 THEATRE -17.370 3.505

8 CONFEREN -8.611 -25.733

9 WINDOWSH 10.093 21.851

10 FASHSHOW 3.145 21.352
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RESULTS IN POLAR COORDINATE FORM:

FIRST VALUE IS DISTANCE FROM THE ORIGIN,

OTHER VALUES ARE ANGLES IN DEGREES FROM FIRST DIMENSION

1

1 READING 15.3 268

2 TV 22.4 2

3 HOCKEY 39.3 -16

4 BALLET 22.1 168

5 ARTMUSM 6.8 153

6 CONCERT 19.3 189

7 THEATRE 17.7 168

8 CONFEREN 27.1 251

9 WINDOWSH 24.1 65

10 FASHSHOW 21.6 82

STD. DEVS. AND VARIANCES FOR EACH DIMENSION:

STD. DEV. VARIANCE % VARIANCE

1 18 328 62

2 14 200 37

8.6 Interpoint Distances

The distances between points for an identity metric matrix are displayed in
shifted integer format. For the sake of brevity an example is omitted.

8.7 Final Metric Weight Estimates

In this section, which occurs only if either the DIAGONAL or FULL metric
options is requested, the metric matrix for each subject is displayed. For
the DIAGONAL option, it consists of weights for each dimension. The fol-
lowing sample comes from the analysis of the data in Figure 7.1 using the
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METric=DIAgonal option

SECTION 7. FINAL METRIC MATRIX ESTIMATES

1 2

1 1.043 0.955

2 0.799 1.167

3 1.186 0.770

4 1.125 0.857

5 0.729 1.212

6 0.819 1.153

7 0.752 1.198

8 1.413 0.062

9 1.336 0.465

10 0.252 1.392

RESULTS IN POLAR COORDINATE FORM:

1

1 1.4 42

2 1.4 56

3 1.4 33

4 1.4 37

5 1.4 59

6 1.4 55

7 1.4 58

8 1.4 3

9 1.4 19

10 1.4 80
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8.8 Ideal Direction or Point Coordinates for

Ratings

If auxiliary variable observations are included, and if these are direct ratings,
this section contains the quantities yrm de�ning either the ideal directions or
the ideal points. The appearance of this section is very similar to that of the
following section, for which an example is provided.

8.9 Ideal Direction or Point Coordinates for

Preferences

If auxiliary variable observations are included, and if these are pairwise pref-
erences, this section contains the quantities yrm de�ning either the ideal
directions or the ideal points. The following example of this section appears
in the output from the analysis shown in Figure 7.2.

SECTION 9. FINAL IDEAL POINTS FOR PREFERENCES

1 2

1 AYOTTE -4.396 -282.357

2 BAKER -236.787 -520.021

3 BAXTER -102.735 -151.278

4 CORONEL -242.697 -393.319

5 DEMPSEY -157.069 -310.241

6 FOREY -204.277 710.018

7 HABIB -123.583 -202.575

8 HANLEY -210.343 -293.516

9 KIRKWOOD -209.373 -17.333

10 LIGHT -334.437 -116.424

11 MARR -52.655 -141.439

12 PERREAUL -104.441 -161.448

13 POWIOZNY 1625.267 26.680

14 SHAKIN -84.531 -175.525

15 TARINI 27.795 -462.040
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8.10 Standard Error Weight Estimates

These weights are post-hoc estimates. The weights have a lower limit of zero
and an average of one. They indicate the relative variability of judgments
speci�c to each stimulus and are helpful in identifying stimuli for which
perceptions vary considerably from subject to subject.

The results in this section for the demonstration job are

SECTION 10. POST-HOC STANDARD ERROR WEIGHT ESTIMATES

INPUT ORDER SIZE ORDER

1 READING 1.55 3 HOCKEY .15

2 TV 1.56 8 CONFEREN .42

3 HOCKEY .15 4 BALLET .53

4 BALLET .53 9 WINDOWSH .54

5 ARTMUSM 1.63 6 CONCERT .67

6 CONCERT .67 10 FASHSHOW 1.14

7 THEATRE 1.81 1 READING 1.55

8 CONFEREN .42 2 TV 1.56

9 WINDOWSH .54 5 ARTMUSM 1.63

10 FASHSHOW 1.14 7 THEATRE 1.81

8.11 Final Regression Coe�cients and Ex-

ponents for Dissimilarities

If the default power transformation option was used, a regression coe�cient
vr and an exponent pr are displayed for each subject by order of subject and
by order of size. If TRAnsform=SCAle or TRAnsform=SPLine options were
selected, only regression coe�cients are displayed. The demonstration job
produces the following results
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SECTION 11. FINAL CONSTANTS AND REGRESSION COEFFS.

FOR LOG DISSIMILARITY

CONSTANT REGRESSION REGRESSION

COEFFICIENT COEFFICIENT BY SIZE

1 AYOTTE 2.89 1.06 12 PERREAUL .95

2 BAKER -2.02 3.27 7 HABIB .98

3 BAXTER 2.38 1.34 1 AYOTTE 1.06

4 CORONEL -10.01 5.21 15 TARINI 1.07

5 DEMPSEY 1.62 1.61 9 KIRKWOOD 1.15

6 FOREY 1.91 1.57 8 HANLEY 1.15

7 HABIB 3.10 .98 14 SHAKIN 1.22

8 HANLEY 2.72 1.15 3 BAXTER 1.34

9 KIRKWOOD 2.72 1.15 10 LIGHT 1.35

10 LIGHT 1.88 1.35 6 FOREY 1.57

11 MARR -16.45 7.05 5 DEMPSEY 1.61

12 PERREAUL 3.59 .95 13 POWIOZNY 2.32

13 POWIOZNY -.25 2.32 2 BAKER 3.27

14 SHAKIN 2.78 1.22 4 CORONEL 5.21

15 TARINI 3.13 1.07 11 MARR 7.05

MEAN 2.09

STANDARD DEVIATION 1.78

8.12 Final Monotone Spline Coe�cients

If the TRAnsform=SPLine option is selected, the coe�cients de�ning the
monotone spline transformation for each subject are output. These can be
used as input to another program to produce various displays or analyses of
these transformations.
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8.13 Final Regression Coe�cients and Ex-

ponents for Dissimilarities

If auxiliary variables are used, there are also regression coe�cients pr and
possibly constants vr estimated for these variables, as well as for the dissim-
ilarity data. These are output here.

8.14 Within-Subject Standard Error Estimates
and Multiple Correlations for Dissimi-

larities

The two main goodness of �t indices for the dissimilarity data computed
for each subject are output here. Both should be viewed as conditional on
the dissimilarity transformations estimated. These are helpful in identifying
subjects whose judgments are especially badly �t by the model chosen. Both
quantities are also output by order of size.

An example is

SECTION 14. WITHIN-SUBJ. DISS. STD. ERROR ESTIMATES

& MULTIPLE CORRS.

WITHIN-SUBJECT WITHIN-SUBJECT

STANDARD ERROR MULTIPLE CORRELATION

UNORDERED ORDERED UNORDERED ORDERED

1 AYOTTE .58 14 .43 .72 2 .10

2 BAKER 2.41 15 .47 .10 4 .32

3 BAXTER .74 9 .54 .63 13 .40

4 CORONEL 1.57 1 .58 .32 6 .43

5 DEMPSEY .60 7 .59 .71 11 .59

6 FOREY 1.23 5 .60 .43 10 .59

7 HABIB .59 12 .61 .71 3 .63

8 HANLEY .62 8 .62 .69 8 .69

9 KIRKWOOD .54 3 .74 .74 12 .70

10 LIGHT .81 10 .81 .59 5 .71
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11 MARR .83 11 .83 .59 7 .71

12 PERREAUL .61 6 1.23 .70 1 .72

13 POWIOZNY 1.31 13 1.31 .40 9 .74

14 SHAKIN .43 4 1.57 .81 15 .79

15 TARINI .47 2 2.41 .79 14 .81

8.15 Within-Subject Standard Error Estimates

and Multiple Correlations for Prefer-
ences

If preference auxiliary data are included in the analysis, the same goodness
of �t measures computed above for dissimilarity are also computed for pref-
erences and displayed here. No such measures are displayed for direct rating
data because the amount of information for each subject is usually not suf-
�cient to justify computing these values.

8.16 Standard Errors of Estimate of Coor-
dinates

Asymptotic standard error estimates for each coordinate in the con�guration
are displayed here. Note that these are computed based on the somewhat
unrealistic assumption that all other parameters such as those de�ning the
transformations are not estimated from the data. Thus, they should be
treated as lower bounds for what the actual standard errors are likely to be.
This is especially so when individualized metrics or SPLine transformations
are used. However, they are corrected to some extent based on simula-
tion results with small sample sizes using an IDEntity metric and POWer
transformation (see Ramsay, l980, for more details) and are probably fairly
reasonable in that case.

In the sample job the results for this section are

SECTION 15. STANDARD ERRORS OF ESTIMATE OF COORDINATES

STIMULUS 1 READING
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COORDINATES: -4.97665 -153.24130

STANDARD ERRORS: 12.79587 13.30638

CORRELATION MATRIX FOR COORDINATE ESTIMATES

1 1.000 .056

2 .056 1.000

... and so on ...

STIMULUS 10 FASHSHOW

COORDINATES: 31.45437 213.52430

STANDARD ERRORS: 16.03794 14.85428

CORRELATION MATRIX FOR COORDINATE ESTIMATES

1 1.000 -.072

2 -.072 1.000

8.17 Plots of the Con�guration for Each Pair
of Dimensions

In this section the con�guration is plotted for each pair of dimensions. Each
point is plotted using the plotting symbol found in the legend; that is the
�rst I letters of the alphabet. In each plot the vertical and horizontal ranges
and scales are the same. Axes are not explicitly displayed since as discussed
in the �rst chapter the coordinate system or orientation of the orthogonal
Cartesian coordinates used by MULTISCALE to compute distances should
not be considered as necessarily the right system for interpretive purposes.
Nevertheless, the con�guration is displayed in principal axis orientation. This
implies that the �rst dimension is that direction in which the points vary the
most, the second the direction of highest variation orthogonal to the �rst,
and so on. It does happen fairly frequently that this orientation is helpful
in interpreting the results, especially when a larger number of dimensions is
involved.

The con�guration for the recreation data in the following display has been
clipped slightly for display here.
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SECTION 17. PLOTS OF THE CONFIGURATION FOR EACH PAIR OF DIMENSIONS

LEGEND

PLOTTING STIMULUS

SYMBOL

A 1 READING

B 2 TV

C 3 HOCKEY

D 4 BALLET

E 5 ARTMUSM

F 6 CONCERT

G 7 THEATRE

H 8 CONFEREN

I 9 WINDOWSH

J 10 FASHSHOW

MULTIPLE POINTS #
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CONFIGURATION PLOT FOR DIM. 2 (VERTICAL AXIS) AGAINST DIM. 1
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8.18 Plots of the DimensionWeights for Each

Pair of Dimensions

If the METric=DIAgonal option was chosen, the dimension weights are plot-
ted here, each subject being identi�ed by a letter. A legend precedes the
plots. The following example is from the analysis of the Figure 7.1 data
using the diagonal metric option.

SECTION 18. PLOTS OF THE DIMENSION WEIGHTS

FOR EACH PAIR OF DIMENSIONS

LEGEND

PLOTTING SUBJECT

SYMBOL

A 1 AYOTTE

B 2 BAKER

C 3 BAXTER

D 4 CORONEL

E 5 DEMPSEY

F 6 FOREY

G 7 HABIB

H 8 HANLEY

I 9 KIRKWOOD

J 10 LIGHT

K 11 MARR

L 12 PERREAUL

M 13 POWIOZNY

N 14 SHAKIN

O 15 TARINI

MULTIPLE POINTS #
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DIMENSION WEIGHTS PLOT FOR DIM. 2 (VERTICAL AXIS) AGAINST DIM. 1



8. MULTISCALE Output 124

8.19 Within-Subject Plots and Residual Anal-

yses for Dissimilarities

For a more �ne-grained analysis of each subject's data, some within-subject
results can be displayed. These are:

1. A table of transformed dissimilarities, original dissimilarities, computed
distances, and normalized residuals. This results if the TABles logical
item occurs.

2. A plot of transformed dissimilarities against �tted distances. This re-
sults if the DPLot logical item occurs.

3. A plot of transformed dissimilarities against original dissimilarities.
This occurs if the TPLot logical item occurs.

4. A quantile plot consisting of a plot of ordered normalized residuals
against the quantiles of the standard normal distribution. Such plots
have proven to be very useful for detecting outliers and departures from
the distributional assumptions. This results if the QPLot logical item
occurs.

These results require a page per subject each, so that a request for them
will generate a considerable amount of output when many subjects are in-
volved.

Examples of these plots can be found in Appendix B.

8.20 Within-Subject Plots and Residual Anal-

yses for Preferences

If preference auxiliary data are included, the same plots as in the previous
section can also be displayed, with the exception that there is no plot of
transformed preference versus preference (the equivalent of the DTPlot log-
ical item). These plots are enabled by including the PPLot logical item in
the PARameters block.
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8.21 Graphics Output (HALO Version)

The personal computer version of MULTISCALE can produce graphics on
the following devices:

� the screen of the computer

� plotting devices using the HP-GL plotting language used on Hewlett-
Packard plotting equipment such as the HP 7475 series plotters

� laser printers using the Postscript language

� dot matrix printers

These plots are enabled using the PLOt keyword in the PARameters block.
Note: use of these graphics displays requires the HALO graphics subroutine
and software package. A license to use the software must be obtained from
Media Cybernetics before it can be used.

Further comments on each of these types of displays are given below:

PLOt=SCReen If the graphics display is only on the screen, then there
is nothing further to do. The program prompts the user when it is
ready to begin plotting, and when ready, the user presses any key to
begin plotting. After prompting for various features of the plot, such as
whether stimulus labels and con�dence ellipsoids are to be displayed,
the results are plotted for each pair of dimensions. The program waits
for a key to be pressed before going on to the next pair of dimensions.

PLOt=HPGl If the graphics display is to be on a device processing the
HP-GL plotting languaged developed by Hewlett-Packard for its series
of pen plotters, such as the HP 7475A, then the program produces
an additional �le for each pair of dimensions. These �les are given
names with the same stem as the input �le and with extensions of
the form .pmn where \m" is the vertical dimension number and \n" is
the horizontal dimension number. Thus, if there are only two dimen-
sions in the analysis of the funseekr.msl �le, then a single �le named
funseekr.p21 will be produced.

Each of these �les, called \display �les" in the HALO documentation,
must then be processed by the program AHDHP. The purpose of this
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HALO system program is to produce HP-GL commands. The program
can either output the commands to a serial port for direct control of the
plotter, or can store than in another �le for subsequent output to the
serial port. Complete details on how to use this program are available in
the HALO documentation. However, the following command outputs
HP-GL commands directly to the serial port, con�gured for 9600 baud
no parity, single stop bit, eight data bit transmission:

ahdhp funseekr.p21 -H1

The plotting device is assumed to be an HP 7475A plotter. The fol-
lowing command, on the other hand, outputs the HP-GL commands
to �le funseekr.hp:

ahdhp funseekr.p21 -H1 -P0,10365,7962 -Ofunseekr.hp

PLOt=POSt If the output is to be displayed on a laser printer processing
the Adobe Postscript language, this option can be used. Just as for
HP-GL commands, a display �le is produced which must be processed
in a subsequent step by the HALO program AHDPS. The following
command, for example, will direct output from this program to �le
funseekr.ps:

ahdps funseekr.p21 -P0,1222,1582 -K0,0,2 -Ofunseekr.ps

PLOt=PRInter With this command the graphics output will appear on
the screen and will be printed through the parallel port to a dot-matrix
printer. The printer driver incorporated into the program should work
for most printers, but HALO has other drivers for speci�c printers. The
program prompts for a printer driver �le, so that an alternative can be
substituted during execution. This option is nice for getting a cheap,
reasonably rapid hard copy of the results where high resolution is not
important.

PLOt=SCReen This command causes the graphics output to appear on
the computer's display only.
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Actually, both the HP-GL and Postscript options produce display �les either
of which can be processed to produce plots of the other kind. The only di�er-
ence is that the Postscript option uses a slightly more attractive font which,
however, also requires more RAM memory. The font used in the HP-GL
version requires a minimum of plotting commands, and is more appropriate
for the slower pen plotting equipment.

When the program attempts to load a font into RAM, it may fail due
to insu�cient memory. Aside from rebooting the system eliminating un-
necessary memory resident software, one may also try graphics output with
the PLOt-HPGl command (which will also produce screen graphics and can
be processed to produce Postscript plots) since this uses a font requiring
substantially less memory.



Chapter 9

The Emotions Data: A Sample

Analysis

This chapter presents a typical MULTISCALE analysis. The data are ratings
on a 9-category rating scale of dissimilarities among 14 emotions. The ten
subjects were participants in a workshop on multidimensional scaling. They
received the following instructions:

This questionnaire is concerned with the similarity and

dissimilarity of various emotions with respect to your experience

of them. Think about these 14 emotions, and tick those you have

experienced at least once.

Affectionate ___

Afraid ___

Angry ___

Despising ___

Eager ___

Fascinated ___

Guilty ___

Happy ___

Panicky ___

Passionate ___

Rejected ___

Sad ___

128
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Satisfied ___

Surprised ___

You will now be presented with a series of emotions taken two at

a time from the list. For each of these pairs, your task is to

decide how similar or how different those two emotions are in

your experience and then to indicate your judgment using the

nine-point scale next to it. For instance, if you decided that

the two emotions had nothing in common, you would indicate this

by circling a 9 on the scale (Very Different). If on the other

hand, you felt the emotions were very much alike, then circle a 1

on the scale (Very Similar). The scale is provided to allow you

to indicate the degree of similarity- dissimilarity you feel

exists between the two emotions, so please try to use the full

range of the scale in making your judgments. If you felt that

two emotions are different but not too different, use a 6 or 7;

if they are similar but not very similar use 3 or 4. The

important thing is that you make your judgments in the way that

seems right for you, for your experience of the emotions.

A typical pair in the questionnaire was then presented as follows:

1. Eager - Satisfied

Very Similar Very Different

1 2 3 4 5 6 7 8 9

The data resulting from this study are presented in Figure 9.1, which also
includes the appropriate job setup for the �rst analysis to be performed.

The strategy in the analysis is to begin with a minimal plausible model,
referred to as the baseline model, and then to extend it in various ways.
The baseline model will depend on prior experience and intuitions associated
with the problem. In many situations, however, this can be the default model
for MULTISCALE. This provides a two- dimensional �t using the identity
metric, power transformations, subject-speci�c variance components, and the
lognormal distribution assumption.

It can be helpful to use the one-character codes in Table 9.2 in recording
the results of various extensions of the baseline model.
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Table 9.1: Job Setup and Data for Emotions Study

@TITLE LINES=2;

EMOTIONS FOR MEMBERS OF MDS WORKSHOP

BASELINE MODEL

@PARAMETERS NSTIM=14, NDIM=2, NSUB=10, EJECT;

@NEWDATA VECTOR;

(11X,50F1.0)

SUBJECT 1 77794913693342162967197899399642966996399694199999

39924973893692249976915243969979999921413

SUBJECT 2 34562513362451232524299779198939857598769884387797

67463875695734448867929233429977889255422

SUBJECT 3 44452313444332213525298678478533757394579584177479

65843787798436429346959334339728987243212

SUBJECT 4 44574218325342227562477789599866949894858378188788

89574768888777468877925375367847986465513

SUBJECT 5 54833424483962446543158558688646988488468883178877

88227976286814428944955374369734997244424

SUBJECT 6 34293314344249423562494539899532834583179742199248

88221976295422129933949132219378948122211

SUBJECT 7 22132513223241122331198599998824828583379145198959

59418787962357328722929238638919939312311

SUBJECT 8 43344533435342453333298768799737889774768576497777

79334747777667377544879344337757886344456

SUBJECT 9 66736815633462322736197689398438476494378493299867

34742957892379538934938273649949999934612

SUBJECT 10 65233824546343333556287887399335588796579585998888

59743898796848848657938247448998998445328

@STIMLABS FORMAT=FREE;

SATISFY,FASCINAT,SURPRISD,EAGER,HAPPY,PASSION,AFFECTN,DESPISE,

PANICKY,AFRAID,GUILTY,SAD,ANGRY,REJECTED;

@COMPUTE;
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Table 9.2: Character Codes Designating Models

Character Meaning
n an integer designating the number of dimensions.

If absent 2 is implied.
D diagonal metric
C no subject-speci�c variance components 
r
S scale transformation
M monotone spline transformation
N normal distribution

One can append these codes to a name for the data to indicate the na-
ture of the extension involved. For example, if we designate these data by
\EMO", then EMO3DM designates analysis using three dimensions, a diag-
onal metric, and monotone spline transformations.

It is also helpful to compile summaries of each analysis into a table in
which the major aspects of each can be quickly retrieved. Table 9.3 is an
example of how this might be done. It contains the results of a number of
extensions of the baseline model as well as the baseline results.

Each line of this table contains an identi�cation of the analysis, the �nal
value of the log likelihood function, the AIC statistic, the BIC statistic,
the global standard error, the number of independent parameters estimated,
the number of iterations, whether or not convergence was attained, and a
measure of execution time. The last quantity will depend on the computer
installation involved, and the values in this table are in terms of McGill
Computing Center execution units.

The value of each extension can be assessed in various ways. The decrease
in the AIC and BIC statistics provide some indication. A more statistical
basis is o�ered by considering the chi squared statistic (4.6 discussed in Sec-
tion 2 along with its normalized version (4.7). These values are tabulated
in Table 9.4. Associated with each extension is its degrees of freedom, de-
�ned as the number of of additional parameters introduced by the extension.
Also in Table 9.4 are the standard normal deviates corresponding to each chi
squared value using transformation (4.7).
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Table 9.3: Summary Table for MULTISCALE Analyses of Emotions Data

Analysis Results Comments
Log L AIC BIC Sigma No. No. Con Ex.

Par Its ver Tim

Baseline -986.0 2078 2333 .642 53 14 Y 32
3 -963.9 2056 2364 .457 64 10 Y 29
4 -938.4 2025 2381 .334 74 21 Y 57
D -978.0 2086 2399 .656 65 11 Y 45
M -787.2 1718 2070 .560 73 50 N 187

Table 9.4: Assessments of Various Extensions of the Baseline Model

Extension Degrees of AIC BIC Chi Z
Freedom Decrease Decrease Squared

3 11 22 -31 44 4.3
4 21 53 -48 95 6.5
D 12 -8 -66 16 0.9
M 20 360 260 398 16.3
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On the basis of Table 9.4 some conclusions can be made concerning the
best model for the data. Since both the AIC statistic and the BIC statis-
tic are best when they are small, one looks for the largest decrease in each.
For both this occurs when monotone spline transformations are �t for each
subject. The chi squared statistic or the normalized version of it in the �nal
column tells the same story. The indications for other possible extensions
are mixed, however. The BIC tends in general to favor models with fewer
parameters and this shows up in terms of the spline transformation being
the only single extension that improves the baseline model. Both the AIC
and the chi squared statistics are more liberal and both indicate that in-
creasing dimensionality will improve the �t as well as using either pair-wise
or stimulus-wise variance components. All statistics indicate that little is to
be gained for these data by going beyond the identity metric.

The �nal representation chosen used monotone spline transformations.
One might have used three or more dimensions in addition, but for simplic-
ity of interpretation only two were used. The �nal row of Table 9.3 contains
the results for these models. In Table 9.3 it should be noted that MUL-
TISCALE did not converge in 30 iterations and that the log likelihood was
still decreasing substantially. This is typical; �tting monotone spline trans-
formations usually results in rather slow convergence and long computation
times. The �nal log likelihood resulting from allowing iterations to proceed
to convergence would probably be substantially higher than the value in Ta-
ble 9.3. Nevertheless, the estimates of the various parameters in the �nal
model should be satisfactory for most purposes after only 30 iterations.

The complete output from the �nal analysis is given in Appendix B. The
results for each output section are discussed below.

9.1 Section 1.

The various parameters and computation speci�cations are displayed here.
Most of these are the default values. Thus by default only one secondary
iteration per main iteration was allowed for the con�guration, standard er-
ror weights, and monotone spline transformations. A single interior knot
was permitted and the value that MULTISCALE used is displayed below
the initial con�guration. The various default convergence criteria are also
indicated.
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9.2 Section 3.

The post-mortem display found in this section provides a useful compact
summary of the progress to convergence. As the table indicates, the log
likelihood was still increasing by about 0.5 at the 30th iteration. The plot of
loglikelihood versus iterations shows that it was at least in the �nal phases
of maximization, and one can estimate that the true maximum would have
been in the vicinity of -770. The �nal plot shows the relation between log
gradient length and iterations, and it is typical that this relation is usually
not very smooth.

9.3 Section 4.

A summary of �nal results is contained here. Both an unbiassed and a max-
imum likelihood estimate of global standard error are provided. The former
is corrected for the number of parameters involved in the �t and thus some-
what more useful in general. As indicated the ratio of number of degrees
of freedom for error to number of parameters is about 10. This is a fairly
healthy ratio for descriptive purposes and also permits us to take reason-
ably seriously the various hypothesis tests carried out in Table 9.4. Unlike
the Section 4 results displayed in Chapter VI here we have no results for
a benchmark model, because when monotone spline transformations are �t
MULTISCALE as currently designed cannot �t either the zero-dimensional
or additive model. The �t of the baseline model was superior, however, to
either benchmark and thus this comparison is not really needed since this
model in turn is much superior to the baseline model.

9.4 Section 5.

The �nal con�guration estimate is recorded here in numerical terms with
the Cartesian coordinate system results displayed in both 
oating point and
rounded integer form. For purposes of having a �xed level of precision in
the tables MULTISCALE has multiplied all coordinates by ten before the
display. The �rst dimension accounts for 85% of the variation among the
points and thus is highly dominant.
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9.5 Section 6.

The �nal matrix of interpoint distances is displayed in rounded integer form,
again with entries multiplied by ten before display.

9.6 Section 8.

The �nal standard error weight estimates �r are displayed here. They vary
widely about one and this is the reason that this extension of the baseline
model was important. The emotion \satis�ed" was one for which there was
considerable concensus among subjects and served as a sort of reference point
among the stimuli. By contrast subjects disagreed strongly with respect to
the place of \passionate" and \surprised" among the other emotions.

9.7 Section 10.

The �nal regression coe�cients have little interpretive value, but are dis-
played in this section for completeness.

9.8 Section 11.

This section actually is displayed before Section 10 for computational reasons
and contains the �nal B-spline coe�cients. If the transformations were linear,
these would all be about one for each subject. The value of any coe�cient
can be roughly interpreted as the size of the derivative of the transformation
at that knot value. Most transformations have much higher derivatives at the
�nal knot value than at the previous two, indicating a postively accelerated
function. The actual transformations are displayed in Figure 9.1. It can be
seen from both the knot coe�cients and the �gure that subject 8 required a
somewhat di�erent transformation than the others. Only his transformation
could be approximated at all well by a power function, which is why the use
of the monotone spline extension made such a large contribution to the �t.
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Figure 9.1: Final monotone spline tranformation for emotions data. The
single knot is indicated by the vertical dashed line.
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9.9 Section 12.

The �nal within-subject statistics show that the model �t all subjects' data
reasonably well. The values of the multiple correlation, which have a median
of 0.71, are typical of fairly experienced and careful subjects.

9.10 Section 13.

The standard errors of estimate for coordinates are measures of the lack
of precision in coordinate estimates. When compared to the coordinates
themselves in Section 5 one can arrive at some impression of how well they
are estimated. A better impression is given in the �gure presented below.

9.11 Sections 15 and 16.

These sections graphically display the �nal con�guration. For only two di-
mensions the display in Section l6 is obviously much more useful, although
the line plots do show how much more variation there is in the �rst dimen-
sion than in the second. The positive emotions are to be found to the right
in the con�guration plot and the negative ones to the left. The more active
emotions are typically in the lower part of the plot and the passive ones in
the upper part.

Figure 9.2 displays the �nal con�guration with each point surrounded by
an ellipse indicating 95% con�dence regions for the location of the population
point. This gives us an idea of how well the locations of the points are de�ned
by the amount of data that we have available.
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Figure 9.2: Final con�guration for the emotions data. The ellipses give 95%
con�dence regions for the location of the true points.



Chapter 10

The Recreation Data with

Preferences: A Sample

Analysis

In this chapter a sample analysis is given showing how to incorporate auxil-
iary preference data. The setup of the data is illustrated in Figure 7.2.

The baseline model for these data is an ideal direction model for pref-
erences using two dimensions and the identity metric. This baseline model
is used for both the lognormal and normal distribution assumptions. Table
10.1 indicates the results of trying various models in terms of the goodness
of �t statistics. Table 10.2 compares various pairs of models using the chi
square criterion and the transform of chi square to a standard normal variate
using (4.7).

Here are some conclusions:

1. The normal distribution produced better results than the lognormal
distribution for all models.

2. Clearly we need three dimensions. Whether we should go to four could
be argued. The improvement in �t is signi�cant, but not nearly as
much so as for other upgrades of the model.

3. The ideal point model also does better than the ideal direction model
for the identity metric, but not for the diagonal metric.

139
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4. Going to a diagonal metric does improve the �t signi�cantly, and is
probably worth doing.

5. A minimal model for these data seems to be a three-dimensional di-
agonal metric model using the normal distribution. This is also the
model which gives the minimum of the AIC criterion, which is a pop-
ular model-selection rule.

Figures 10.1, 10.2, and 10.3 show the �nal solution for the three-
dimensional diagonal metric ideal direction model using the normal
distribution assumption.
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Figure 10.1: Final con�guration for the recreation data for dimensions 1 and
2. The ellipses give 95% con�dence regions for the location of the true points.
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Figure 10.2: Final con�guration for the recreation data for dimensions 1 and
3. The ellipses give 95% con�dence regions for the location of the true points.
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Figure 10.3: Final con�guration for the recreation data for dimensions 2 and
3. The ellipses give 95% con�dence regions for the location of the true points.
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Table 10.1: Summary Table for MULTISCALE Analyses of Recreation Data

Analysis Distn. Results
Log L AIC BIC Sigma Sigma No. No. Con

Diss. Pref. Par Its ver

Baseline Lognor. -3090.6 6361 6830 1.091 6.318 90 22 Y
P -3073.7 6357 6904 0.999 6.122 105 24 Y
3 -3043.0 6310 6893 .761 6.056 112 18 Y
4 -3013.8 6294 6986 .732 5.844 133 31 Y
D -3053.8 6318 6864 1.019 6.374 105 50 N
D3 -2968.9 6224 6968 0.592 6.174 143 34 Y
P3 -3030.7 6315 6977 0.716 5.897 127 16 Y
P4 -3013.4 6323 7094 0.675 5.831 148 25 Y
PD3 -2979.2 6274 7097 0.566 6.034 158 31 Y

Baseline Normal -3004.6 6189 6658 5.884 6.384 90 19 Y
P -2975.5 6161 6708 5.770 6.142 105 26 Y
3 -2946.6 6117 6700 5.718 6.046 112 18 Y
4 -2915.7 6097 6790 5.665 5.819 133 20 Y
D -2981.9 6174 6720 5.083 6.410 105 12 Y
D3 -2899.1 6084 6829 4.850 6.135 143 12 Y
P3 -2935.0 6124 6785 5.603 5.930 127 17 Y
P4 -2919.4 6135 6906 5.658 5.859 148 24 Y
PD3 -2891.8 6100 6922 4.882 5.989 158 13 Y
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Table 10.2: Assessments of Various Extensions of the Baseline Model

Extension Distn. AIC BIC Degrees of Chi Z
Decrease Decrease Freedom Squared

P Lognorm. 4 -74 15 34 6.1
3 51 -63 22 94 16.5
4 65 -56 43 154 18.7

3 vs 4 16 -93 21 38 4.8
D 43 -34 15 74 15.7

D vs D3 94 -104 38 170 22.5
P Normal 27 -50 15 58 12.1
3 72 -42 22 116 20.3
4 92 -132 43 178 22.0

3 vs 4 20 -10 21 62 10.4
D 15 -62 15 45 9.0

D vs D3 90 -109 38 166 21.9
PD vs PD3 -16 -97 15 15 0.1


