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a b s t r a c t

How do children come to understand that others have mental representations, e.g., of an
object’s location? Preschoolers go through two transitions on verbal false-belief tasks, in
which they have to predict where an agent will search for an object that was moved in
her absence. First, while three-and-a-half-year-olds usually fail at approach tasks, in which
the agent wants to find the object, children just under four succeed. Second, only after four
do children succeed at tasks in which the agent wants to avoid the object. We present a
constructivist connectionist model that autonomously reproduces the two transitions
and suggests that the transitions are due to increases in general processing abilities
enabling children to (1) overcome a default true-belief attribution by distinguishing false-
from true-belief situations, and to (2) predict search in avoidance situations, where there is
often more than one correct, empty search location. Constructivist connectionist models
are rigorous, flexible and powerful tools that can be analyzed before and after transitions
to uncover novel and emergent mechanisms of cognitive development.

! 2012 Elsevier B.V. All rights reserved.

1. Introduction

In most social interactions we rely on our understand-
ing of other people’s mental states, an understanding usu-
ally referred to as a Theory of Mind (ToM; Premack &
Woodruff, 1978). For instance, if Anne has a theory of mind
and sees Sally pointing at some marbles, she might under-
stand that Sally has the mental state ‘‘desire to play with
marbles’’, and offer to play with Sally, or she might hide
the marbles to trick Sally. Indeed, we spontaneously
attribute mental states to interpret the behavior of other
people and animals. How do we arrive at this key under-
standing that others have mental states?

A standard view is that during preschool years there is a
fundamental change in children’s understanding of mental

states, where they would learn that beliefs underlie the
behavior of others (e.g., Flavell, Green, Flavell, Harris, &
Astington, 1995; Gopnik, 1996; Hedger & Fabricius, 2011;
Perner, Rendl, & Garnham, 2007; Sobel, Buchanan,
Butterfield, & Jenkins, 2010; Wellman & Cross, 2001;
Wellman, Cross, & Watson, 2001; Wellman & Woolley,
1990). This view arose with the discovery of developmental
transitions on tasks in which preschoolers are asked to
predict the actions of agents that have false, out-dated
mental representations. In a standard, approach version of
this task (e.g., Baron-Cohen, Leslie, & Frith, 1985), partici-
pants are asked to say where an agent will search for an
attractive object that wasmoved from location A to location
B in her absence. Transition 1 occurs when children change
from incorrectly predicting that the agentwill search in B, to
correctly predicting that she will search in A (omniscient-
to-representational transition). Transition 2 occurs when
children who succeed at approach tasks change from failure
to success at avoidance tasks, in which the agent wants to
avoid the object (approach-to-avoidance transition).

An alternative view is that the transitions are due to
abilities distinct from the understanding of beliefs (e.g.,
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Bull, Phillips, &Conway, 2008; Carlson,Mandell, &Williams,
2004; Carpenter, Call, & Tomasello, 2002; de Villiers, 2007;
Flynn, 2007; Flynn, O’Malley, & Wood, 2004; Frye, Zelazo,
& Burack, 1998; Gordon & Olson, 1998; Hughes, 1998;
Leslie, Friedman, & German, 2004; Lohmann & Tomasello,
2003; Pellicano, 2007; Riggs, Peterson, Robinson,&Mitchell,
1998; Roth & Leslie, 1998; Russell, 2007; Sabbagh, Xu,
Carlson, Moses, & Lee, 2006; Zaitchik, 1990). Theoretical
and computational models have attempted to adjudicate
between the two views (Goodman et al., 2006; Leslie,
German, & Polizzi, 2005; O’Loughlin & Thagard, 2000; Triona,
Masnick, & Morris, 2002). However, our understanding of
the transitions remains limited in that previous models built
in assumptions and/or structures and transitions that, ideally,
a more autonomous model would discover on its own.

Toenhanceourunderstandingof themechanismsunderly-
ing the transitions in children, we implemented a computa-
tional model of false-belief tasks using constructive neural
networks. Among the advantages of computational models
is that they may provide novel, emergent insights into mech-
anisms of change (see Harvey, Paolo, Wood, Quinn, & Tuci,
2005). Specifically, longitudinal testing can be done (without
attrition, unlike with humans) through testing at different
points throughout training, and it is possible to analyze the
model’s internal structure to better understand the mecha-
nisms underlying task performance.

Our model, which avoids some of the assumptions built
into priormodels, succeeds at the false-belief tasks and sug-
gests that success at these tasks requires more than using
only simple associations (cf. Perner & Ruffman, 2005). As
the model recruits hidden units, it autonomously repro-
duces the two transitions, and analyses before and after
the transitions provide novel insights into possible develop-
mentalmechanisms. Ourmodel suggests that children’s de-
fault true-belief attribution may be due to observing more
true- than false-belief search situations, and that the omni-
scient-to-representational transitionmaybedue to children
overcoming this default true-belief attribution by distin-
guishing between true- and false-belief situations. Our
model suggests that the approach-to-avoidance transition
may be due to avoidant behaviors being harder to predict
than approach behaviors because they are more variable.

1.1. The false-belief task transitions

Two transitions have been found in standard false-be-
lief tasks. Transition 1, the omniscient-to-representational
transition, is consistent with changing from an omniscient
ToM (others always know the true state of the world), to a
representational ToM (others rely on representations that
may represent the world accurately or not). This transition
is robustly observed (see meta-analysis by Wellman et al.,
2001 on the standard verbal false-belief task (Baron-Cohen
et al., 1985), in which participants see a puppet, Sally, put a
marble in a basket. Sally then leaves, and while she is gone
puppet Anne moves the marble into a box, causing Sally to
falsely believe it is still in the basket. When asked where
Sally will search for the marble, children under 3 years
and 8 months typically say she will search in the box
(omniscient prediction) while older children predict search
in the basket (representational prediction).

Transition 2, the approach-to-avoidance transition, is a
change from succeeding only at tasks involving a desire
to approach an object to succeeding at tasks that involve
desires to either approach or avoid an object. For example
in an avoidance task, children were told a story about Sally
wanting to avoid putting a fish in the box containing a sick
kitten (Leslie et al., 2005). While Sally is gone, the kitten
moves from one box to another, leading Sally to hold a
false belief about its location. Participants were then asked
to predict where Sally would put the fish. Four-year-olds,
who previously succeeded at a standard approach task,
generally performed at chance level or lower. After 4 years,
children transition from being able to solve only approach
tasks to solving both approach and avoidance tasks
(Cassidy, 1998; Friedman & Leslie, 2004a, 2004b, 2005;
Leslie & Polizzi, 1998).

1.2. Previous models of false-belief task transitions

False-belief task transitions have been modeled in 4
theoretical or computational models.1 Leslie et al. (2005)
schematic description or theoretical model includes two
processes: the Theory of Mind Mechanism (ToMM) provides
children with all plausible beliefs (e.g., marble is in the box,
and the marble is in the basket), while the Selection Proces-
sor (SP) selects the particular belief to attribute to others.
Based on the argument that everyday beliefs are generally
true, attribution of true beliefs was assumed to be a default.
The omniscient-to-representational transition was said to
arise from the SP changing from being unable to inhibit, to
being able to do one inhibition (i.e., of the default true
belief). The approach-to-avoidance transition was said to
arise from the SP becoming able to perform two simulta-
neous inhibitions (i.e., additionally inhibit the believed
location of the object), since avoidance-task success was said
to depend on first identifying the believed location of the
object then inhibiting that location in favor of another. In
sum, this theoretical model explains both task transitions,
but because it is not implemented it may reflect the authors’
preconceptions more than if the proposed processes
emerged autonomously within an implemented model.

Two implemented, computational models reproduced
the first transition through manipulation of a specific value
in the model. First, O’Loughlin and Thagard (2000) built a
constraint-satisfaction network, in which nodes repre-
sented propositions related to the false-belief task. Propo-
sitions that cohered (e.g., ‘‘Sally puts marble in basket’’,
‘‘Sally thinks marble is in basket’’) were connected with
positive/excitatory weights while the two propositions
that did not cohere (i.e., ‘‘Sally searches in basket’’, ‘‘Sally
searches in box’’), were connected with a negative/inhibi-
tory weight. When connection weights controlling the
false-belief search locationwere low (default), the true-belief
search (e.g., search in basket) was activated. However,
when those weights were increased, the false-belief search
location became activated and the true-belief location
inhibited since the two search-location propositions were

1 Van Overwalle’s (2010) auto-associative neural network and Wahl and
Spada’s (2000) symbolic inference model simulate success on false-belief
tasks, but no transitions.
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incoherent, leading to a successful transition. Second, Tri-
ona et al. (2002) implemented an ACT-R production system
model (e.g., Anderson et al., 2004). The model was given
facts (e.g., ‘‘Sally is an agent’’ and ‘‘Sally puts marble in bas-
ket’’) and rules (e.g., ‘‘Agents usually search for objects
where they are’’), and new facts were produced as output
(e.g., ‘‘Sally will search in the basket’’). One rule imple-
mented omniscient predictions and another rule imple-
mented representational predictions, and the transition
was created ‘‘by manipulating . . . the probability that the
production would achieve the goal’’ (p. 1045). That is,
when the probability parameter was low, the output
tended to be wrong (omniscient), but when the parameter
was high, the output tended to be correct (representa-
tional). Therefore, while both models reproduced Transi-
tion 1, development was not autonomous because the
transition was due to direct experimenter manipulation
of either weights or a probability parameter.

A third implemented model autonomously reproduced
Transition 1, but within a limited search space (Goodman
et al., 2006). Two Bayesian networks were constructed. In
the omniscient network, Sally’s belief depended only on
the marble’s location, whereas in the representational net-
work it also dependedonSally’s visual access to themarble’s
displacement. The model initially favored the omniscient
network because it was more parsimonious, but later fa-
vored the representational network, because it was consis-
tent with more search data. The transition was thus
autonomous, but given that there were two networks, the
search space was limited to two transitions (omniscient-
to-representational or representational-to-omniscient).

Thus, the existing models of false-belief task transitions
reproduced the first transition, but not the second. In all
cases, experimenters implemented specific false-belief task
information while transitions were accomplished through
stipulation (Leslie et al., 2005), direct manipulation of a
value (O’Loughlin & Thagard, 2000; Triona et al., 2002), or
selection from a limited set of pre-determined options
(Goodman et al., 2006). In Experiment 1, we present a fully
implementedmodel that succeeds at a false-belief task after
autonomously passing through Transition 1.

2. Experiment 1: omniscient-to-representational
transition

To better understand the mechanisms underlying the
omniscient-to-representational transition, we imple-
mented in Experiment 1, a constructive neural network
of a false-belief task with approach desires.

For simplicity, we modeled a version of the task (Onishi
& Baillargeon, 2005) which was non-verbal,2 featured a sin-
gle protagonist rather than two, and used a continuous look-
ing time measure rather than a dichotomous verbal
response, as the former is more naturally modeled by neural
network output. In that non-verbal task, participants

(15-month-old infants) watched an agent hide an object in
one of two boxes (green, yellow). Next, they saw one of four
belief-induction trials, which led the agent to hold a true or
false belief that the object was in the green or yellow box.
For instance, some participants saw the agent watch the ob-
ject move from green to yellow (true belief that object is in
yellow), while others saw that the agent was absent as the
object moved (false belief that object is in green). Similarly,
the other two belief-induction trials induced a true belief
that the object was in yellow and a false belief that it was
in green. Finally, each participant saw one of two test trials
in which the agent searched in either green or yellow. Partic-
ipants looked reliably longer when the agent did not search
according to her belief, whether true or false. When the
agent had a true belief, infants looked longer for search in
the empty box than in the box containing the object. When
the agent had a false belief, participants showed the reverse
pattern: looking longer when she searched in the box con-
taining the object than the empty one. This is the pattern
we will look for as a marker of success in our approach
false-belief task.

2.1. Method

Our simulations used Sibling-Descendant Cascade Cor-
relation (SDCC; Baluja & Fahlman, 1994), a constructive
neural network algorithm with supervised learning.
Compared to backpropagation networks (e.g., Rumelhart,
McClelland, & PDP Research Group, 1986), constructive
networks involve less experimenter design (because there
is no need to specify the internal network topology) and
tend to cover developmental changes better (because hid-
den unit recruitment produces qualitative performance
changes that can produce developmental transitions,
e.g., Shultz, 2003, 2006; Shultz & Cohen, 2004; Shultz,
Mareschal, & Schmidt, 1994). In fact, even though back-
propagation is a robust algorithm that has been used to
simulate many developmental phenomena (e.g., Elman
et al., 1996; Thomas & Karmiloff-Smith, 2003), backpropa-
gation networks did not learn to produce either omniscient
or representational ToM predictions nor transitions when
trained on the training sets of either Experiment 1 or 2,
as predictions stagnated quickly near the beginning of
training (see Appendix A for details).

Our networks’ inputs and outputs can respectively be
thought of as simulating perception and prediction (mea-
sured through looking time). Because it is unlikely that
children learn about search behavior during false-belief
tasks, network training simulated pre-experiment, every-
day experience with search behavior, while network test-
ing simulated performance on the false-belief task. The
basic structure of a network is shown in Fig. 1.

2.1.1. Network input
Input represented information useful for predicting

search and included 4 start locations and 4 end locations
since in everyday life there are almost always more than
two locations for objects (although to simulate perfor-
mance in the false-belief task, network testing included
only two locations). Object location was encoded by
activation of 1.0 (with 0.0 for other locations). The agent

2 The fact that 3-year-olds perform better on verbal false-belief tasks if
the word ‘‘first’’ is added in the false-belief question, as in ‘‘Where will Sally
look first for her marble?’’ (Siegal & Beattie, 1991; Surian & Leslie, 1999)
suggests that children might not fully understand the linguistic distinction
between ‘‘look for’’ and ‘‘find’’ (Bloom & German, 2000).
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input unit encoded whether the agent was watching (acti-
vation 1.0) or not (activation 0.0) as the object moved or
not.

2.1.2. Network output
Four output units represented a weighted prediction of

search, i.e., how strongly themodel predicted search in each
of the four locations. For instance, a network having the out-
put activations: yellow = 0.30, red = 0.10, blue = 0.35, and
green = 0.70, predicted search most strongly in the green
box, somewhat intermediately in yellow or blue, and most
weakly in red.

2.1.3. Network training
Before training, networks contained only input and out-

put units fully interconnected with randomweights (which
could be positive, i.e., excitatory, or negative, i.e., inhibi-
tory); thus initially, every input pattern resulted in random
output activation.During training, networkswere given sets
of training patterns (combinations of input patterns and tar-
get patterns). After each epoch (one pass through all training
patterns) of training, connection weights were modified to
reduce output error (the discrepancybetweenoutput activa-
tions produced by the network and target patterns). When
output error stagnated (failed to reduce by 1% over 8
epochs), a hidden unit was recruited from a pool of 8 ran-
domly initialized candidates. Training continued with the
newly incorporated hidden unit until error reduction stag-
nated even when recruiting additional hidden units.

2.1.3.1. Training patterns. There were 32 possible input pat-
terns, obtained by crossing all the input values (4 start
locations, 4 end locations, and 2 agent-watching or not).

Including twice as many true- as false-belief training pat-
terns,3 added another 16 possible patterns (4 start and 4
end locations, 1 agent watching), yielding 48 input pattern
instances. Since in everyday life, people do not always
search for objects correctly (e.g., due to forgetting, distrac-
tion), network training was stochastic. That is, each input
pattern occurred most often with target patterns for correct
(representational) search and sometimes with target pat-
terns for incorrect search. Specifically, each input pattern oc-
curred with the correct target pattern 18 out of 21 times
(simulating correct search 85.7% of the time) and with incor-
rect target patterns 3 out of 21 times (search 4.7% of the
time in each of the 3 incorrect locations) resulting in 1008
training pattern instances.

2.1.3.2. Output of training. Because output units encoded
weighted predictions of search, after successful training,
output activations should match training frequencies. That

Fig. 1. Initial model and one training pattern (combination of input and target patterns). The initial network had 9 input, 4 output and 0 hidden units. In the
displayed input pattern, the agent is watching as the object moves from green (location 4) to yellow (location 1). The target pattern (correct in this case) is
search in yellow, while the network’s output activation predicts search in green.

3 When training included equal numbers of true- and false-belief
patterns (respectively defined as patterns in which the agent input was
activated or not activated), with 0 hidden units, networks failed to show
omniscient predictions: Error in the true-belief condition was lower for
search in the object, Mobject = .13, SD = .13, than in the empty location,
Mempty = .56, SD = .31, F(1,26) = 22, p < .001, g2 = .46, but in the false-belief
condition error for search in the object, Mobject = .25, SD = .01, and empty
locations, Mempty = .25, SD = .01, did not differ, F(1,26) < 1. After recruiting 1
hidden unit, the networks showed representational predictions (true-belief
condition:Mobject = .08, SD = .10,Mempty = .66, SD = .29, F(1,26) = 50, p < .001,
g2 = .66; false-belief condition: Mobject = .42, SD = .08, Mempty = .12, SD = .06,
F(1,26) = 118, p < .001, g2 = .82). Networks thus succeeded at the approach
task but failed to cover Transition 1. For this reason, training for
Experiments 1 and 2 included twice as many true- as false-belief training
patterns, consistent with a default true-belief assumption (Leslie et al.,
2005), which seems plausible in that people’s beliefs about the location of
objects are generally true (see also Fodor, 1992).
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is, although during training networks were presented with
individual search targets, i.e., 1.0 for the search location
and 0.0 for the other locations, after training, networks
were expected to produce, for each input pattern, activa-
tions of approximately 0.85 at the correct search location
and 0.05 at the three other output units.

2.1.4. Network testing
To determine whether networks underwent developmen-

talchanges, theywereassessedatmultiple testpoints, i.e., after
each hidden unit was recruited. Paralleling the infant experi-
ment (Onishi&Baillargeon,2005), (1) eachnetworkwas tested
onone test pattern that corresponded tooneof the8 infant task
conditions (2 belief conditions by2 belief locations by 2 search
locations), (2) 7 networks were tested in each condition (for a
total of 56 networks in Experiment 1), and (3) only two start,
end, and search locations were used (although training had
four locations). To prevent learning from testing patterns, con-
nection weights were frozen during test.

2.1.4.1. Calculation of output error. Output error at test was
an indication of distance between the network’s search
prediction and a specific test pattern, and calculated using
the following formula:

½ðOg #TgÞ2þðOy#TyÞ2&=2¼½ð:857#1Þ2þð:048#0Þ2& =2¼ :011 ð1Þ

That is, output error is the mean (across the two output
units) of the squared difference (for each unit) between out-
put activation (O; the network’s prediction of search) and
the target pattern (T; the actual location of search in test).
The subscripts g and y represent the green and yellow boxes
respectively.

For networks in the ‘‘search in green’’ test conditions,
we measured output error relative to a search-in-green
target pattern (target output activation: green = 1.0, yel-
low = 0.0), while for ‘‘search in yellow’’ conditions, output
error was calculated relative to a search-in-yellow target
pattern (target output activation: green = 0.0, yel-
low = 1.0). With the example post-training output activa-
tions shown in Eq. (1), search-in-green yields output
error of .011, while search-in-yellow yields .820. Thus,
with these example values, output error (distance from
prediction) would be greater for search in yellow than for
search in green, consistent with predicting search in green.

2.2. Results

2.2.1. Analysis plan
Analyses of variance ANOVAs were performed on out-

put error at each test point with the factors of belief condi-
tion (true, false) and search location (object, empty).
Search location was a factor that collapsed over box color
(green, yellow), unimportant here, to obtain object search
(search in green when object is in green and in yellow
when it is in yellow) and empty search (search in yellow
when object is in green and in green when it is in yellow).
For conciseness, we report results only for test points that
show a change in the pattern of predictions compared to
the previous test point.

2.2.2. Predictions
If networks had predictions consistent with a represen-

tational ToM, they should predict search in different loca-
tions depending on whether the agent watched the object
move or not, thus producing a significant belief condition
by search location interaction in which error is lower in
the location in which the model predicts search is more
likely. Interactions were explored using planned compari-
sons, and because of a lack of homogeneity of variance,were
confirmed using Mann–Whitney U non-parametric tests
throughout. For a representational ToM, in the true-belief
condition, error shouldbe lower for search in the object than
the empty location, but in the false-belief condition, the pat-
tern should be reversed: lower error for search in the empty
than the object location, because the agent would not know
that the object had moved. For an omniscient ToM, in both
belief conditions, error should be lower for search in the ob-
ject than in the empty location.

2.2.3. Zero hidden units
With 0 hidden units, networks had omniscient predic-

tions (Fig. 2). Although the belief condition by search loca-
tion interaction was significant, F(1,52) = 19, p < .001,
planned comparisons showed lower error for search in
the object than in the empty location for both true-,
Mobject = .07, SD = .07, Mempty = .64, SD = .23, F(1,26) = 77,
p < .001, g2 = .75, and false-belief conditions, Mobject = .13,
SD = .01, Mempty = .42, SD = .01, F(1,26) = 3606, p < .001,
g2 = .99. Therefore, having more true- than false-belief
search in training enabled networks to predict true-belief
search by default, i.e., to show predictions consistent with
an omniscient ToM.

2.2.4. One hidden unit
On average,4 after recruiting 1 hidden unit, networks

showed predictions consistent with representational ToM
(Fig. 3), a pattern of results reliably different from predic-
tions with 0 hidden units, as indicated by a significant
three-way interaction between number of hidden units, be-
lief, and search, F(1,52) = 74, p < .001. Specifically, with 1
hidden unit, the belief by search interaction was significant,
F(1,52) = 154, p < .001. Error in the true-belief condition was
lower for search in the object, Mobject = .04, SD = .03, than the
empty location,Mempty = .76, SD = .16, F(1,26) = 285, p < .001,
g2 = .92, but in the false-belief condition was lower for
search in the empty, Mempty = .26, SD = .18, than the object
location, Mobject = .40, SD = .10, F(1,26) = 6.7, p < .05,
g2 = .20. Thus, by recruiting a hidden unit, networks repro-
duced the omniscient-to-representational transition.

4 Although the predictions of networks with 1 hidden unit were
consistent with task success on average, network predictions taken
individually showed a more gradual pattern of success over the duration
of training (which, based on stagnation of the reduction in output error,
continued until M = 7.14, SD = .75, range = 6–9 hidden units had been
recruited, and took M = 744.64, SD = 76.93, range = 588–905 epochs). That
is, no individual network succeeded at all test patterns with 1 hidden unit,
but rather succeeded only on some of them, albeit enough to show average
success at the task. The proportion of successfully learned patterns
increased gradually until the end of training, at which point all networks
successfully learned all training patterns.
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2.2.5. Output contribution analyses
To explore the developmental mechanisms underlying

Transition 1, we analyzed networks’ internal structure be-
fore and after the transition using Principal Component
Analyses (PCAs) of output contributions (following Shultz
& Elman, 1994; Shultz, Oshima-Takane, & Takane, 1995).

An output contribution is defined as the product of a
sending unit’s activation and the weight connecting that
unit to an output unit. For each network, at each test point,
a matrix of output contributions can be obtained with rows
for each training pattern, columns for each connection
entering the network’s outputs, and the output contribu-
tions in the cells of the matrix. We used PCA on this matrix
to reduce the number of column variables (in our case, out-
put connection weights) by computing components that
capitalize on correlations between variables (Cattell,
1966). PCA provides two measures that help to interpret
the structure of the matrix and thus the internal structure
of individual networks: (1) component scores are given to
each training pattern and show how patterns are catego-
rized by the principal components, and (2) component load-
ings are given to each output weight and show which
weights most strongly contribute to each component.

PCA was done on five networks (selected from the 56),
both with 0 and 1 hidden unit. At 0 hidden units, Compo-
nent 1 for each network categorized training patterns
based on end location, e.g., patterns where the object
ended in yellow all had negative Component 1 scores,
while end-in-green patterns had positive scores. The out-
put weights that most contributed to Component 1 were
those for end locations, e.g., weights from end-in-yellow
and end-in-green. Thus, before recruiting a hidden unit,
networks relied on the end locations to make search pre-
dictions, which makes sense given that this heuristic
makes the right prediction for 2/3 of the training patterns
(true-belief patterns). While networks varied as to the
specific locations that Component 1 categorized, all five
networks with 0 hidden units categorized patterns by their
end locations.

In contrast, when networks had recruited 1 hidden unit,
Component 1 categorized patterns based on belief, e.g.,
false-belief patterns had negative scores while true-belief
patterns had positive ones. For each network, the output

weights from the agent and hidden unit most contributed
to Component 1, indicating that the categorization of the
patterns relied on a combination of these units. All five
analyzed networks assigned different values to the
true- and false-belief patterns, although the specific values
differed (e.g., positive vs. negative scores). Additional
computational details are provided in Appendix B.

Output contribution analyses thus showed that net-
works producing omniscient predictions categorized train-
ing patterns based on the end location of the object. This
default attribution was due to more training on true- than
false-belief situations, and this default was overcome using
the agent unit and a recruited hidden unit to distinguish
between true- and false-belief patterns, enabling represen-
tational ToM predictions.

2.3. Discussion

Whereas previous computational models of false-belief
tasks have either not covered the transitions (Van
Overwalle, 2010; Wahl & Spada, 2000) or did so through
parameter manipulation (O’Loughlin & Thagard, 2000;
Triona et al., 2002) or by using experimenter-designed
topologies (Goodman et al., 2006), our model is the first
to autonomously build structures to produce and transi-
tion between predictions consistent with omniscient and
representational ToM on an approach false-belief task.

Analysis of output contributions revealed that when
making predictions consistent with omniscient ToM, net-
works categorized training patterns based on their end
location and initially produced omniscient predictions by
relying on end-location connections. Since correct true-
belief search is in the end location, it makes sense that
training on more true- than false-belief situations caused
networks to make predictions relying mostly on end
locations.

With additional training, networks transitioned to rep-
resentational ToM predictions. Output contribution analy-
ses indicated that in making these predictions, networks
relied on the agent and hidden units to distinguish all true-
from false-belief situations (even though 15% of training
patterns involved an incorrect search outcome), an
important conceptual distinction for making predictions

Fig. 3. Mean output error and SE bars for networks with 1 hidden unit,
consistent with success at the approach task.

Fig. 2. Mean output error and standard error (SE) bars for networks with
0 hidden units, consistent with omniscient predictions.
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consistent with a representational ToM. In theory, this dis-
tinction was not necessary; networks could have learned
to predict search on a pattern-by-pattern basis, without
categorizing patterns in this (or any) way but rather rote-
memorizing the outcome of each pattern. Our networks
thus suggest a novel mechanism underlying Transition 1,
specifically, the transition might be supported by learning
to distinguish between false- and true-belief situations.

Leslie et al.’s (2005) theoretical model assumed that, at
the functional level, inhibitory abilities would play a criti-
cal role in the false-belief-task transitions. At a functional
level, any model that covers a change from default predic-
tions to predictions based on the default and other factors
may be argued to implement inhibition, thus our model
might be seen as implementing functional inhibition of
the default true-belief attribution. However, at the imple-
mentation level, we did not introduce inhibition to cover
the transition. Instead, each network implemented unique
combinations of inhibitory and excitatory connection
weights from the beginning and throughout development.

Experiment 1 showed that our autonomously develop-
ing model covered the omniscient-to-representational
transition, and suggests that a mechanism for the transi-
tion is discovering a distinction between true- and false-
belief situations. Since children go through two transitions,
we next added an avoidance task to our model, to deter-
mine whether a single model could reproduce both transi-
tions and in the expected order.

3. Experiment 2: approach-to-avoidance transition

3.1. Method

Experiment2used the samemethodasExperiment1, ex-
cept that avoidance search patterns were included in train-
ing and testing. A total of 112 networks were trained, 56 in
the approach task and the other 56 in the avoidance task.

3.1.1. Network input
The object to be avoided was encoded as #1.0 to distin-

guish it from the approach object (still encoded as 1.0).

3.1.2. Network output
Network output again represented the networks’

weighted prediction of search in each location. For ap-
proach objects, search should tend to be in the believed
location of the object, while for avoidance objects, search
should tend to be anywhere but the believed location of
the object.

3.1.3. Network training
Initialization and training of networks was as in Exper-

iment 1, except as noted.

3.1.3.1. Training patterns. As before, training included twice
as many true- as false-belief patterns, and was stochastic,
with each input pattern being matched with 18 correct
(85.7%) and 3 incorrect (14.3%) search outcomes. There
were a total of 1008 approach and 1008 avoidance training
pattern instances. In avoidance, the 18 correct searches

were equally divided among the 3 correct avoidance loca-
tions (because to avoid an object, one can correctly search
in all locations that do not contain the object), while the 3
incorrect searches were in the actual location of the object.
The distribution of search across the 4 locations was thus
different for approach and avoidance: in approach, the 18
correct searches were all in one location, whereas in avoid-
ance, the 18 correct searcheswere spread across 3 locations.

3.1.3.2. Output of training. In the approach task, expected
activations were as in Experiment 1. In the avoidance task,
activations of approximately 0.286 (= .857/3) at the three
correct locations and 0.143 at the incorrect output unit
were expected.

3.1.4. Network testing
Seven networks were each tested on one of 16 condi-

tions (2 belief conditions by 2 belief locations by 2 search
locations by 2 tasks) with two locations.

3.1.4.1. Calculation of network error. Mean output error was
calculated using Eq. (1). Eq. (2) shows an example error
calculation for a post-training network tested on the input
pattern avoidance object starts in green and ends in yellow
with agent not watching, with a correct target search (yel-
low location).

½ðOg # TgÞ2 þ ðOy # TyÞ2&=2 ¼ ½ð:143# 0Þ2 þ ð:286# 1Þ2&=2
¼ :265 ð2Þ

Using the same input example, but for an incorrect search
in green, yields the higher error of .408.

3.2. Results

3.2.1. Analysis plan
ANOVAs with the factors of belief condition (true, false)

and search location (object, empty) were performed inde-
pendently for approach and avoidance tasks at each test
point and again we report results for test points that
showed changes in prediction patterns.

3.2.2. Predictions
In each task, representational ToM predictions should

yield different interactions between belief condition and
search location. For approach, network error in the true-
belief condition should be lower for search in the object
location, and in the false-belief condition it should be lower
in the empty location. For avoidance, the reverse patterns
should hold: error in the true-belief condition should be
lower for search in the empty location, and in the false-belief
condition it should be lower in the object location.

3.2.3. Zero hidden units
For both tasks, with 0 hidden units, networks had omni-

scient ToM predictions (Fig. 4). Network predictions reli-
ably differed between tasks, as the three-way interaction
between task, belief condition and search location was sig-
nificant, F(1,104) = 46, p < .001. For the approach task, the
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belief condition by search location interaction was signifi-
cant, F(1,52) = 24, p < .001, but planned comparisons
showed lower error for search in the object than the empty
location for both true-, Mobject = .09, SD = .05, Mempty = .55,
SD = .13, F(1,26) = 142, p < .001, g2 = .85, and false-belief
conditions, Mobject = .14, SD = .01, Mempty = .41, SD = .01,
F(1,26) = 4637, p < .001, g2 = .99.

For the avoidance task, the belief condition by search
location interaction was also significant, F(1,52) = 26,
p < .001, but error was now lower for search in the empty
than the object location for both true-, Mempty = .29,
SD = .07, Mobject = .50, SD = .04, F(1,26) = 89, p < .001,
g2 = .77, and false-belief conditions, Mempty = .36, SD = .004,
Mobject = .46, SD = .004, F(1,26) = 3878, p < .001, g2 = .98.
The model could thus handle simultaneous approach and
avoidance tasks, showing omniscient predictions for both.

3.2.4. Three hidden units
After recruiting 3 hidden units, networks showed pre-

dictions consistent with representational ToM for the ap-
proach, but not the avoidance task (Fig. 5), a pattern of
results reliably different from predictions with 0 hidden
units, as indicated by a significant three-way interaction
between number of hidden units, belief, and search,
F(1,108) = 30, p < .001. Network predictions reliably dif-
fered between tasks, as the three-way interaction between
task, belief condition and search location was significant,
F(1,104) = 159, p < .001. For approach, the belief by search
interaction was significant, F(1,52) = 141, p < .001, and in
the true-belief condition error was lower for search in
the object, Mobject = .03, SD = .03, than the empty location,

Mempty = .70, SD = .11, F(1,26) = 480, p < .001, g2 = .95, but
in the false-belief condition, the reverse pattern was found,
Mempty = .19, SD = .14, Mobject = .41, SD = .21, F(1,26) = 10,
p < .005, g2 = .28. For the avoidance task, the belief by
search interaction was also significant, F(1,52) = 20,
p < .001, and in the true-belief condition error was lower
for search in the empty, Mempty = .29, SD = .06, than the ob-
ject location, Mobject = .42, SD = .05, F(1,26) = 36, p < .001,
g2 = .58, but in the false-belief condition the locations did
not differ, Mempty = .39, SD = .08, Mobject = .36, SD = .07,
F(1,26) < 1.

3.2.5. Six hidden units
After recruiting 6 hidden units, networks showed pre-

dictions consistent with representational ToM for both
tasks5 (Fig. 6), a pattern of results reliably different from
predictions with 3 hidden units, as indicated by a significant
three-way interaction between number of hidden units, be-
lief, and search, F(1,108) = 26, p < .001. Network predictions
reliably differed between tasks, as the three-way interaction
between task, belief condition and search location was sig-
nificant, F(1,104) = 637, p < .001. For the approach task, the
belief by search interaction was significant, F(1,52) = 693,
p < .001, and error was lower in the true-belief condition
for search in the object, Mobject = .02, SD = .01, than the
empty location, Mempty = .81, SD = .08, F(1,26) = 1355,
p < .001, g2 = .98, but in the false-belief condition, the re-
verse pattern was found, Mempty = .07, SD = .09, Mobject = .61,
SD = .14, F(1,26) = 138, p < .001, g2 = .84. For the avoidance
task, the belief by search interaction was also significant,
F(1,52) = 35, p < .001, and error was lower in the true-belief
condition for search in the empty,Mempty = .28, SD = .05, than
the object location, Mobject = .40, SD = .04, F(1,26) = 55,
p < .001, g2 = .68, but now in the false-belief condition, the
reverse pattern was found, Mobject = .31, SD = .07,
Mempty = .38, SD = .08, F(1,26) = 6.1, p < .05, g2 = .19.

3.2.6. Output contribution analyses
As for Experiment 1, we performed PCAs on the output

contributions of 5 networks from Experiment 2. We

Fig. 5. Mean output error and SE bars for networks with 3 hidden units,
consistent with representational predictions for the approach, but not the
avoidance task.

5 Training continued until M = 7.82, SD = 1.16, range = 5–11 hidden units
had been recruited and took betweenM = 930.51, SD = 128.49, range = 608–
1275 epochs. Again, the proportion of successfully learned training patterns
increased gradually during training, until all networks successfully learned
all training patterns by the end of training.

Fig. 6. Mean output error and SE bars for networks with 6 hidden units,
consistent with representational predictions for both approach and
avoidance tasks.

Fig. 4. Mean output error and SE bars for networks with 0 hidden units,
indicating omniscient predictions in both approach and avoidance tasks.
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analyzed each network with 0, 3 and 6 hidden units. At all
3 test points, each network’s Component 1 used all loca-
tion units to categorize training patterns based on task (ap-
proach, avoidance), which makes sense given that object
location was encoded at the input as +1 and #1 in the ap-
proach and avoidance tasks, respectively. With 3 and 6 hid-
den units, but not with 0, PCA revealed a Component 2
which always categorized patterns based on belief (true,
false), as had Component 1 in Experiment 1. Thus, output
contribution analyses revealed that networks first distin-
guished between the approach and avoidance tasks, and
next distinguished between true- and false-belief situa-
tions, but these analyses did not distinguish between the
two transitions per se (additional computational details
are provided in Appendix C). To further explore the mech-
anisms underlying Transition 2, we performed 2 supple-
mental simulations.

3.2.7. Exploring Transition 2
There are at least 2 possible explanations for Transition

2. First, perhaps predicting avoidance search is harder than
predicting approach behaviors because avoidant behaviors
are more variable. Second, analogous to the explanation for
Transition 1, there could be a default assumption of ap-
proach, a default which is overridden with experience.

3.2.7.1. Variability of avoidance search. Whenever there are
more than 2 locations and a single object, correct avoid-
ance search is likely to be more variable than correct ap-
proach search, since in avoidance search there are more
correct search locations (all the empty locations) than in
approach search (the 1 location containing the object). To
test whether the difference in number of correct-search
possibilities was involved in Transition 2, we trained and
tested another group of networks with only 2 locations.
With 2 search locations, there is 1 correct response for both
avoidance and approach tasks.

Networks trained on two locations produced omni-
scient predictions for both approach and avoidance tasks
with 0 hidden units and representational predictions for
both tasks with 1 hidden unit.6

Equating the variability of correct search in the two tasks
led to the two tasks being solved successfully with the same
computational power (number of hidden units). This sug-
gests that success at approach before avoidance when there
were four locations during training, was due to the greater
variability of avoidance than approach search.

3.2.7.2. Default assumption of approach. Since including
more true- than false-belief training patterns permitted
networks to form a default prediction of true-belief search
which was then overcome by training, we tested the idea
of a default approach bias by including twice as many ap-
proach as avoidance training patterns (although more
experience with approach than avoidance has been argued
to be unlikely, e.g., Leslie & Polizzi, 1998). Only two loca-
tions were used in training, to remove the effect of avoid-
ance being more variable than approach.

Networks succeeded at approach and avoidance simul-
taneously with 1 hidden unit,7 thus failing to capture the
second transition and failing to support the idea that this
transition may be due to a default assumption of approach
search that must be overridden.

3.3. Discussion

Networks in Experiment 2 autonomously reproduced
both false-belief task transitions. Our model is the first to
cover these two transitions in a unified, implemented
model, as previous attempts did not cover both transitions
(Goodman et al., 2006; O’Loughlin & Thagard, 2000; Triona
et al., 2002), required several networks (Goodman et al.,
2006), or were not implemented (Leslie et al., 2005).

Networks learned to categorize patterns first by task
(approach, avoidance) and then by beliefs. Evidence for
this claim is twofold. First, early in training, networks trea-
ted approach and avoidance tasks differently, producing
different (albeit omniscient) predictions for each task,
while later in training, networks treated belief situations
differently to produce correct true- and false-belief predic-
tions in both tasks. Second, PCA of output contributions

6 Networks trained with two locations showed omniscient predictions in
both tasks with 0 hidden units. For approach, error was lower for search in
the object location for both true- and false-belief conditions (belief by
search interaction: F(1,52) = 21, p < .001, true-belief: Mobject = .08, SD = .06,
Mempty = .56, SD = .18, false-belief: Mobject = .15, SD = .01, Mempty = .39,
SD = .02, both Fs(1,26) > 85, ps < .001, g2s > .77), while for avoidance, error
was lower for search in the empty location for both true- and false-belief
conditions (belief by search interaction: F(1,52) = 20, p < .001, true-belief:
Mempty = .08, SD = .06, Mobject = .56, SD = .19, false-belief: Mempty = .15,
SD = .01, Mobject = .38, SD = .01, both Fs(1,26) > 79, ps < .001, g2s > .75).
Networks showed representational predictions in both tasks with 1 hidden
unit. For approach, error was lower for search in the object than the empty
location for the true-belief condition, but lower in the empty than the
object location for the false-belief condition (belief by search interaction:
F(1,52) = 876, p < .001, true-belief: Mobject = .03, SD = .02, Mempty = .70,
SD = .10, false-belief: Mempty = .07, SD = .03, Mobject = .55, SD = .09, both
Fs(1,26) > 321, ps < .001, g2s > .93), while for avoidance, error was lower
for search in the empty than the object location for the true-belief
condition, but lower in the object than the empty location for the false-
belief condition (belief by search interaction: F(1,52) = 873, p < .001, true-
belief: Mempty = .03, SD = .02, Mobject = .69, SD = .09, false-belief: Mobject = .05,
SD = .02, Mempty = .56, SD = .12, both Fs(1,26) > 268, ps < .001, g2s > .91).

7 Networks trained with twice as many approach as avoidance patterns
showed omniscient predictions in both tasks with 0 hidden units. For
approach, error was lower for search in the object location for both true-
and false-belief conditions (belief by search interaction: F(1,52) = 29,
p < .001, true-belief: Mobject = .08, SD = .06, Mempty = .57, SD = .18, false-
belief: Mobject = .15, SD = .03, Mempty = .35, SD = .05, both Fs(1,26) > 96,
ps < .001, g2s > .79), while for avoidance, error was lower for search in
the empty location for both true- and false-belief conditions (belief by
search interaction: F(1,52) = 18, p < .001, true-belief: Mempty = .07, SD = .06,
Mobject = .55, SD = .18, false-belief: Mempty = .15, SD = .06, Mobject = .39,
SD = .04, both Fs(1,26) > 85, ps < .001, g2s > .77). Networks showed repre-
sentational predictions in both tasks with 1 hidden unit. For approach, error
was lower for search in the object than the empty location for the true-
belief condition, but lower in the empty than the object location for the
false-belief condition (belief by search interaction: F(1,52) = 688, p < .001,
true-belief: Mobject = .03, SD = .01, Mempty = .70, SD = .14, false-belief:
Mempty = .07, SD = .03, Mobject = .57, SD = .09, both Fs(1,26) > 328, ps < .001,
g2s > .93), while for avoidance, error was lower for search in the empty than
the object location for the true-belief condition, but lower in the object than
the empty location for the false-belief condition (belief by search interac-
tion: F(1,52) = 567, p < .001, true-belief: Mempty = .03, SD = .02, Mobject = .72,
SD = .15, false-belief: Mobject = .07, SD = .03, Mempty = .53, SD = .10, both
Fs(1,26) > 262, ps < .001, g2s > .91).
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revealed that early in training, networks only categorized
training patterns based on task, while later in training they
also categorized them based on belief. This pattern of cat-
egorization suggests that when predicting others’ search
behavior, determining the searcher’s desire would have
the most predictive power, with determining their belief
coming later. The model therefore suggests that a heuristic
a learner might use is to initially identify others’ desires
while ignoring variation in belief and later learn to incor-
porate information about variation in beliefs.

Additionally, the model suggests a new explanation for
the approach-to-avoidance transition. In contrast to the
hypothesis that this transition arises when children be-
come able to do two simultaneous inhibitions (Leslie
et al., 2005), our results suggest that avoidance search is
generally harder to predict than approach search because
in avoidance there are generally more correct locations in
which one can predict search.

4. General discussion

Our implemented, constructivist model of false-belief
tasks is the first to successfully cover the two false-belief
transitions observed with preschoolers: (1) from omni-
scient predictions to representational predictions only in
approach, and (2) from failure in avoidance to representa-
tional predictions in both approach and avoidance.

In Experiment 1, network training included only ap-
proach search situations, with twice as many true- as
false-belief search patterns. Networks initially produced
default omniscient predictions by relying on end location
input units. Then with additional training, networks used
the agent and hidden units to distinguish false- from
true-belief situations and overcome the default true-belief
attribution, thus covering Transition 1 to representational
predictions. Although it had been previously hypothesized
that most beliefs were likely to be true and thus that
search behavior would more often be consistent with true
rather than false beliefs (e.g., Leslie et al., 2005), our model
is the first to support this idea computationally.

In Experiment 2, training included both approach and
avoidance search situations, still with twice as many true- as
false-belief patterns. Networks first used location units to cat-
egorize training patterns by task, producing outcomes consis-
tent with omniscient predictions for both approach and
avoidance tasks. With additional training, networks used the
actor and hidden units to categorize patterns by belief, while
producing outcomes consistent with representational predic-
tions forboth tasks, thus coveringTransition2.Ourmodel sug-
gests that Transition 2 was due to avoidance search being
harder to predict than approach search, thus requiring more
computational power to solve correctly. When there are
numerous locations foroneobject, therearemanyempty loca-
tions (and hence possibly many correct avoidance locations)
but only one containing the object (hence only one correct ap-
proach location). Indeed,whenthenumberof correct locations
forapproachandavoidancesearchwere thesame,Transition2
wasnotobserved.Themodelalsoprovidesevidence thatTran-
sition 2 is not due to overcoming a default approach attribu-
tion, because when the ratio of approach to avoidance

training was increased (analogous to increasing the ratio of
true- to false-belief searchwhich established a true-belief de-
fault), Transition 2 was not observed.

Although there have been previous models of false-belief
tasks (Goodman et al., 2006; Leslie et al., 2005; O’Loughlin &
Thagard, 2000; Triona et al., 2002; VanOverwalle, 2010;Wahl
& Spada, 2000), ours is the first to use a structure that was not
entirelydeterminedby theexperimenters (suchas specific ini-
tial propositions and specification of connectionweights as in
O’Loughlin & Thagard, 2000; or probability distributions as in
Goodman et al., 2006) and to learn from stochastic training.
Further, ourmodel’s success emerges fromgeneric algorithms
not customized for false-belief tasks. For example, changes in
capacity to inhibit have been raised as an explanation for
changes in behavior on false-belief tasks (e.g., Leslie et al.,
2005), but in our model functional inhibition of the default
true-belief location emerged from implemented generic com-
putational operations that included both inhibitory and excit-
atory activations from the beginning and throughout network
development. Finally, ourmodelwas thefirst toautonomously
demonstrate task transitionsby learning fromrelevantexperi-
ence, as previous models did not implement transitions (Van
Overwalle, 2010;Wahl & Spada, 2000), selected from a highly
limited set of potential transitions (Goodman et al., 2006), or
had transitions thatwere implemented throughdirectmanip-
ulationof particular parameter values (O’Loughlin & Thagard,
2000; Triona et al., 2002). Our model thus illustrates the
powerof constructiveneural networks to simulate cognitive
development.

Results of our model have implications for the debate
about whether infants have an understanding of beliefs
or if they succeed at non-verbal tasks by using 3-way asso-
ciations (Perner & Ruffman, 2005). The idea is that during
familiarization (e.g., Onishi & Baillargeon, 2005), infants
would form an association between the agent, the object,
and the object’s location, and in test they would simply ex-
pect the same agent/object/object location association to
reoccur. Thus to explain success at the task, the 3-way-
association account does not require children to distin-
guish between true- or false-belief situations, but rather
to simply expect previous associations to reoccur.

Ourmodelprovides2arguments suggesting that success at
the implicit task requiresmore than only using simple associ-
ations. First, non-linearly separable problems (problems for
which different output values cannot be separated by a single
line when plotted in a two-dimensional space, or by a hyper-
plane in higher dimensions) cannot be solved with associa-
tionist neural networks, which have no hidden units but
only input and output units (e.g., perceptrons; Minsky &
Papert, 1969). A standard example of a non-linearly separable
problem is exclusive or (XOR, e.g., Rumelhart et al., 1986) in
which there are two inputs, 0 or 1, and one output, which is
1 if exactly one of the inputs is 1, and 0 otherwise—and in fact
the two-location version of the false-belief task can be con-
sidered isomorphic to the XOR problem.8 Further, the fact

8 With the two inputs being end location (0 for green, 1 for yellow) and
agent watching (0 for watching the object move to the end location, 1 for
not watching), and the output being the correct search location (0 for search
in green, 1 for search in yellow), the output will be 1 if exactly one of the
inputs is 1 and 0 otherwise.
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that networks required hidden units to succeed in our imple-
mentation of the task suggests that the false-belief task is not
a linearly-separable problem and cannot be solved by simple,
linear associations.

Second, the finding that network success was consis-
tently supported by a categorization of training patterns
based on belief suggests knowledge about belief situations
over-and-above individual 3-way associations. Although at
some level, producing different behaviors in different situ-
ations (e.g., true- and false-belief situations) suggests being
able to distinguish between situations, networks were not
required to categorize search situations systematically
(e.g., networks might have memorized individual input–
output patterns, which would be more similar to expecting
a given search situation to reoccur). These results suggest
that a distinction between true- and false-belief situations
is required to succeed at the task, unlike simple association
explanations. In sum, because networks required hidden
units to categorize true- and false-belief situations and to
succeed at the task, our model suggests that succeeding
at non-verbal false-belief tasks requires more than mere
associations.

The model also has implications for our understanding
of the two transitions observed with preschoolers. For
the omniscient-to-representational transition, one view is
that children construct genuinely new theories about oth-
ers’ behavior as they gather experience about the world
(Gopnik, 1996; Hedger & Fabricius, 2011), and that they
would thus initially understand others’ actions only in
terms of simple desires but would later also develop an
understanding of beliefs (Wellman & Cross, 2001;
Wellman et al., 2001; Wellman & Woolley, 1990). Also
arguing for a change in the understanding of mental states,
it has been suggested that children develop either the
understanding of how mental events relate to each other
and to real-world objects and desires (Perner, Mauer, &
Hildenbrand, 2011; Perner et al., 2007), or develop the
understanding that mental events are causally related to
behavior (Flavell et al., 1995; Sobel et al., 2010). Another
view is that the source of the transition is not development
in the understanding of beliefs, but changes in auxiliary
skills such as: executive function (e.g., Bull et al., 2008;
Carlson et al., 2004; Carpenter et al., 2002; Flynn, 2007;
Flynn et al., 2004; Frye, Zelazo, Brooks, & Samuels, 1996;
Frye et al., 1998; Hughes, 1998; Leslie et al., 2004;
Pellicano, 2007; Russell, 2007; Sabbagh, Xu, et al., 2006),
understanding and using representations (e.g., Riggs
et al., 1998; Roth & Leslie, 1998; Zaitchik, 1990), working
memory (e.g., Gordon & Olson, 1998), or language (e.g.,
de Villiers, 2007; Lohmann & Tomasello, 2003).

Our model is more in line with this latter view. First,
while each network categorized training patterns on the
basis of belief (true, false), the ability to make this distinc-
tion is separate from an understanding that others have
beliefs. Children may understand that others have
beliefs—for instance true beliefs—without distinguishing
between true and false beliefs, and without succeeding at
false-belief tasks. Children may initially have a bias to
attribute true beliefs to others because beliefs tend to rep-
resent true states of affairs (Bloom & German, 2000; Fodor,
1992; Leslie et al., 2005; Sabbagh, Moses, & Shiverick,

2006) or, as in the model, due to observing more true- than
false-belief situations.

Second, networks went through Transition 1 by recruit-
ing generic computational power (i.e., unspecialized hid-
den units), suggesting that an increase in children’s
general processing capacity may contribute to success at
false belief tasks. In children this might represent the
development of executive functioning (e.g., Bull et al.,
2008; Carlson et al., 2004; Carpenter et al., 2002; Flynn,
2007; Flynn et al., 2004; Frye et al., 1998; Hughes, 1998;
Leslie et al., 2004; Pellicano, 2007; Russell, 2007; Sabbagh,
Xu, et al., 2006) or long-term memory (e.g., Jones, Gobet, &
Pine, 2008). Our results can thus be considered in line with
Bloom and German (2000), in that the false-belief task may
not be the best task to evaluate the understanding that
others have beliefs. Indeed, tasks with a structure similar
to false-belief tasks, such as the false-photograph task,
may be problematic for children, regardless of the belief
component (Bloom & German, 2000; Roth & Leslie, 1998).
In the false-photograph task (e.g., Zaitchik, 1990), a photo-
graph is first taken of an object in location A. The object is
then moved to location B, and children are asked to say
where the object is in the photograph. Preschoolers go
through similar transitions (from saying ‘‘location B’’ to
saying ‘‘location A’’) on both false-belief and false-photo-
graph tasks, though only the former depends on under-
standing beliefs (Bloom & German, 2000; Davis & Pratt,
1995; Leekam & Perner, 1991; Leslie & Thaiss, 1992;
Zaitchik, 1990; but also see Sabbagh, Moses, et al., 2006;
Slaughter, 1998). In contrast, autistic children of similar
mental age usually fail at the belief task while succeeding
at the photograph task. These results are consistent with
autistic children having specific problems with beliefs
(although see Klin, 2000; Sabbagh, Moses, et al., 2006),
and with normally-developing children having specific
problems with the structure of the tasks (e.g., Bloom &
German, 2000)—either with processing something that is
false, or being unable to represent two locations (current,
previous) for an object simultaneously (Riggs et al., 1998;
Roth & Leslie, 1998; Zaitchik, 1990).

Our view is further supported by the mounting evi-
dence that infants understand something about, and are
influenced by, the beliefs and knowledge of others
(Baillargeon, Scott, & He, 2010; Luo, 2011; Luo &
Baillargeon, 2010;Moll, Carpenter, & Tomasello, 2007;Moll,
Koring, Carpenter, & Tomasello, 2006; Moll, Richter,
Carpenter, & Tomasello, 2008; Moll & Tomasello, 2007;
Onishi & Baillargeon, 2005; Poulin-Dubois, Sodian, Metz,
Tilden, & Schoeppner, 2007; Scott & Baillargeon, 2009;
Scott, Baillargeon, Song, & Leslie, 2010; Sodian, Thoermer,
& Metz, 2007; Song, Onishi, Baillargeon, & Fisher, 2008;
Southgate, Chevallier, & Csibra, 2010; Southgate, Senju, &
Csibra, 2007; Surian, Caldi, & Sperber, 2007; Tomasello &
Haberl, 2003; Träuble, Marinović, & Pauen, 2010), perhaps
as early as by 7 months (Kovács, Téglás, & Endress, 2010),
and that this knowledge can even influence an infant’s overt
helping behavior (Buttelmann, Carpenter, & Tomasello, 2009).

Thus, our results suggest that false-belief tasks cannot
be solved by mere associations and that the omniscient-
to-representational ToM transition may arise from over-
coming a default true-belief attribution by categorizing
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true- and false-belief situations. For the approach-to-
avoidance transition, the model suggests that it is due to
avoidance search being less consistent than approach
search, a novel explanation that is different but not contra-
dictory to the claim that avoidance tasks require additional
inhibition skills (Friedman & Leslie, 2004a, 2004b, 2005;
Leslie et al., 2004, 2005). Analysis of the internal structure
of the networks showed categorization of the training pat-
terns first by task then by belief. Our model thus suggests
that in order to predict where others will search in false-
belief tasks, determining whether they want to approach
or to avoid the object has the most predictive power, and
then determining whether they have a true or a false belief
about the object’s location would come next, possibly be-
cause, as a first-pass estimation, it is more reasonable to
assume true beliefs than to assume desires to approach.
Future empirical studies may explore the role of search-
behavior consistency in false-belief task transitions, and
the potential use of heuristics identifying others’ desires
first, and others’ beliefs next.

In sum, our model of false-belief tasks is the first com-
putational model to autonomously construct and transi-
tion between structures and to cover the two major
false-belief task transitions. The model suggests that
observing more true- than false-belief behavior produces
an initial bias to attribute true beliefs and that categorizing
true- and false-belief situations supports a transition to
representational ToM predictions. It also suggests that
the relative consistency of approach compared to avoid-
ance search behavior contributes to the pattern of initial
success only at approach tasks and later success at both ap-
proach and avoidance tasks. While models, like theories,
are inevitably prone to simplifications, computational
models are rigorous, flexible and powerful tools for study-
ing potential computational factors in development. The
enduring debate about the mechanisms underlying devel-
opmental transitions on false-belief tasks can only benefit
from multi-disciplinary approaches exploring the emer-
gence of psychological phenomena.
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Appendix A. Results from backpropagation networks

The networks using the backpropagation algorithm had
the same 9 input and 4 output nodes as the Sibling-
Descendant Cascade Correlation (SDCC) networks, and
each had one fully interconnected hidden layer containing

a number of hidden units equal to the square root of the
total number of training patterns (following Dandurand,
Grainger, & Dufau, 2010). Training included either the full
training sets of Experiments 1 (1008 patterns, 32 hidden
units) or 2 (2016 patterns, 45 hidden units) and lasted
1500 epochs (to ensure backpropagation networks had
substantial time to learn, we trained them for approxi-
mately twice the number of epochs that SDCC networks re-
quired in Experiments 1 and 2, which was respectively
M = 744.64, SD = 76.93, and M = 930.51, SD = 128.49
epochs). Testing occurred every 50 epochs. For each Exper-
iment, we trained and tested 56 (Experiment 1) or 112
(Experiment 2) networks in each of 6 versions of the mod-
el, using all possible combinations of 3 values for the learn-
ing rate parameter (.25, .50, .75) and two values for the
momentum parameter (.45, .90). For each network in each
version in both Experiments, error stagnated within the
first 100 epochs, when predictions did not match either
omniscient or representational ToM predictions.

Because our training was stochastic, which can be
problematic for deterministic neural networks (such as
backpropagation and SDCC), we verified that our back-
propagation networks could at least learn from some sorts
of stochastic training. We trained 112 backpropagation
networks with the same structure as above on a simplified
training set based on Experiment 2. The training set
contained 10 patterns, obtained by combining one input
pattern (agent watching avoidance object move from green
to yellow) with 9 correct target searches (three in each red,
blue and green), and 1 incorrect target (search in yellow).
Networks learned to predict search in the three empty
locations and not in the object location.

In sum, our backpropagation networks could learn from
simple stochastic training, but failed to produce either
omniscient or representational ToM predictions from the
training sets for either Experiment 1 or 2, and they did
not produce any transitions.

Appendix B. Contribution analyses for Experiment 1

To analyze the internal structure of our model, we con-
ducted contribution analyses on 5 of the 56 networks from
Experiment 1 (following Shultz & Elman, 1994; Shultz
et al., 1995). For each network, we constructed a contribu-
tion matrix which contained rows for each training pat-
tern, columns for each output connection weight, and
output contributions in the cells. The variance–covariance
matrix of the contribution matrix was subjected to a Prin-
cipal Components Analysis (PCA), using 1.0 as the mini-
mum eigenvalue for retention and varimax rotation to
improve interpretability of the solutions. Only components
with eigenvalues greater than the mean eigenvalue were
kept, and in cases where components were eliminated,
the analyses were repeated with only the number of re-
tained components. The PCA produced component scores
for each training pattern, indicating how each component
weighted or categorized each pattern. To better visualize
the relationship between the components and the individ-
ual training patterns, we plotted each training pattern
as a function of its component scores for the retained
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components. The PCA also produced loadings indicating
how each connection weight contributed to each compo-
nent. Because all 5 networks showed similar patterns, we
report detailed results for 1 network at two test points,
i.e., when it produced omniscient predictions (0 hidden
units) and when it produced representational ToM predic-
tions (1 hidden unit).

B.1. Contribution analyses of a network with 0 hidden units

At 0 hidden units, we retained three components, which
overall accounted for 73.7% of the contribution variance.
Fig. 7 shows component scores for each of the 1008 train-
ing patterns plotted along Components 1 and 2. There ap-
pear to be only 4 points because the patterns share the
same value along each Component.

Component 1 (x-axis), which explained 29.5% of the
variance, grouped training patterns based on whether the
object ended in the yellow (circles at #1.6) or green (dia-
monds at 1.2) locations, with intermediate values for
end-blue (squares) and end-red (triangles). Examination
of the rotated component matrix revealed that the contri-
butions from the yellow and green end-location units
loaded most heavily on Component 1. Thus Component 1
successfully distinguished end-yellow from end-green pat-
terns, while tending to lump together end-blue and end-
red patterns.

Component 2 (y-axis), which explained 25.1% of the
variance, separated end-green patterns (diamonds at #.8)
from end-blue patterns (squares at 1.8) with end-red
and end-yellow in between (at approximately #.5). On
the rotated component matrix, contributions from green
and blue end-location units loaded most heavily on
Component 2.

Component 3 (not plotted) explained 19.1% of the vari-
ance. Component 3 separated all end locations, and contri-
butions from the end-location units loaded on it most
heavily.

The four other analyzed networks similarly presented
components that grouped patterns according to their end
locations, although the specific locations, e.g., end in red
versus end in yellow, etc., varied across networks. Overall,
contribution analyses of networks with omniscient expec-
tations showed that networks were distinguishing patterns
based on their end locations (in line with their omniscient
predictions for both true- and false-belief conditions), but
did not discriminate between true- and false-belief pat-
terns. Further, the agent unit was not loading on any of
the retained components, suggesting that at this point net-
works were not relying on it to make search predictions.

B.2. Contribution analyses of a network with 1 hidden unit

At 1 hidden unit, we retained three components, which
overall accounted for 78.4% of the contribution variance.
Fig. 8 shows component scores for each of the training pat-
terns for Components 1 and 2.

Component 1, which explained 41.9 % of the variance,
grouped training patterns based on whether the patterns
represented false-belief (negative) or true-belief situations
(positive). In the rotated component matrix, contributions
from the agent and the hidden unit loaded most heavily on
Component 1, indicating that the network used a combina-
tion of the agent and hidden units to distinguish between
true- and false-belief patterns.

Components 2 (y-axis) and 3 (not plotted), respectively
explained 22.2% and 14.3% of the variance, and both
grouped patterns according to the end location of the

Fig. 7. Grouping of the 1008 training patterns by Components 1 and 2 of a single network from Experiment 1, which was producing omniscient predictions
with 0 hidden units.
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object. Component 2 separated end-red and end-blue (po-
sitive) from end-yellow and end-green (negative) patterns.
Component 3 separated end-red from end-blue, with end-
yellow and end-green patterns in between. Reflecting this
partition of scores, Component 2 had strong loadings from
all end locations, and Component 3 has strongest loadings
from end-red and end-blue connection weights.

In the four other analyzed networks, Component 1 sep-
arated true- from false-belief patterns, while Components
2 and 3 distinguished end locations, although the specific
end locations varied across networks. Overall, contribution
analyses of networks with representational predictions
showed that the networks used a combination of the agent
and hidden units to separate true- from false-belief train-
ing patterns, while keeping track of end locations.

In sum, PCA of contributions for Experiment 1 showed
that networks (1) initially used end locations to distinguish
between patterns and produce omniscient predictions, and
(2) learned to use agent and hidden units to distinguish be-
tween true- and false-belief patterns and produce repre-
sentational ToM predictions.

Appendix C. Contribution analyses for Experiment 2

Due to excessive variation in the output contributions,
the standard PCA of output contributions was difficult to
interpret, thus analyses of Transition 2 differed in two
ways from those of Transition 1. First, we averaged contri-
butions across output connection weights, based on their
function in the network. This yielded contributions for 6
mean weight variables produced by collapsing contribu-
tions over the 36 initial weight columns (9 inputs by 4

outputs). The matching-start weight variable was obtained
by collapsing across the 4 connection weights between
matching input start and output locations (i.e., collapsing
over the weights connecting red-start to red-output,
green-start to green-output, etc.). The matching-end vari-
able was similarly obtained by collapsing over matching
input end and output locations. In contrast, non-match-
ing-start and non-matching-end variables were obtained
by collapsing over weights connecting non-matching start
or non-matching end input locations to outputs (i.e., col-
lapsing over the weights connecting red-start to green-
output, to blue-output, to yellow-output, green-start to
red-output, to blue-output, to yellow-output, etc.). The
output weights of the agent unit were kept as they were.
Finally, for networks that had recruited hidden units, all
contributions associated with weights from hidden units
were averaged into a single hidden-unit variable.

Second, PCA was carried out using correlation matrices
instead of variance–covariance matrices. Using the correla-
tion matrix had the effect of standardizing contribution
variables so that each had a mean of 0 and standard devi-
ation of 1, thus reducing variation due to connection
weight size (Shultz et al., 1995). While there is a debate
about whether to use correlation or covariance matrices
when performing PCA (Shultz et al., 1995), reducing varia-
tion in this specific case uniquely enabled interpretable
PCA results.

Contributions from 5 of the 112 networks were sub-
jected to PCA, varimax rotation was applied (when more
than one component was extracted), and only components
with eigenvalues higher than 1 were kept. Training pat-
terns were plotted along the retained components, and
loadings from the rotated component matrix were

Fig. 8. Grouping of the 1008 training patterns by Components 1 and 2 of a single network from Experiment 1, which was producing representational ToM
predictions with 1 hidden unit.
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analyzed. As all 5 networks showed similar patterns, we
report in detail only the results for 1 network at three test
points, i.e., when it produced omniscient predictions (0
hidden units), when it succeeded at the approach task only
(3 hidden units), and when it produced representational
ToM predictions for both tasks (6 hidden units).

C.1. Contribution analyses of a network with 0 hidden units

At 0 hidden units, we retained one component, which
overall accounted for 75.6% of the contribution variance.
Fig. 9 shows each of the 2016 training patterns plotted
along Component 1.

Component 1 separated approach (negative) and avoid-
ance (positive) training patterns. In the component matrix,
contributions from all location variables (matching-start,
matching-end, non-matching-start, non-matching-end)
loaded heavily on Component 1, indicating that the net-
work used all locations to distinguish between approach
and avoidance patterns. Use of the location variables to
separate the tasks makes sense, as task was encoded at

all locations with positive (approach) or negative (avoid-
ance) values.

The four other analyzed networks similarly yielded a
single component that grouped patterns by task, though
whether approach and avoidance patterns were assigned
positive or negative scores varied across networks. Thus,
contribution analyses of networks with omniscient expec-
tations show that networks distinguished between ap-
proach and avoidance desires, but did not distinguish
between true- and false-belief patterns.

C.2. Contribution analyses of a network with 3 hidden units

At 3 hidden units, we retained two components, which
overall accounted for 89.5% of the contribution variance.
Fig. 10 shows the training patterns plotted along Compo-
nents 1 and 2.

As at the previous test point, Component 1 (x-axis),
which explained 71.6% of the variance, divided patterns
between approach (negative) and avoidance (positive)
with contributions from the four location variables loading

Fig. 9. Grouping of the 2016 training patterns by Component 1 of a single network from Experiment 2, which was producing omniscient predictions with 0
hidden units.

Fig. 10. Grouping of the 2016 training patterns by Components 1 and 2 of a single network from Experiment 2, which was producing representational ToM
predictions only for the approach task with 3 hidden units.
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most heavily on this component. Component 2 (y-axis),
which explained 17.9% of the variance, grouped true- (neg-
ative) and false-belief patterns (positive) and the agent and
hidden unit variables loaded most heavily on it.

In the four other analyzed networks, Components 1 and
2 divided the patterns similarly, showing that when mak-
ing representational ToM predictions for approach but
not the avoidance task, networks distinguished between
approach and avoidance and learned to separate true-
and false-belief patterns using the agent and hidden units.

C.3. Contribution analyses of a network with 6 hidden units

At 6 hidden units, we retained two components, which
overall accounted for 87.5% of the contribution variance.
Fig. 11 shows the training patterns plotted along Compo-
nents 1 and 2.

Once again, Component 1 (x-axis), which explained
70.1% of the variance, divided approach (negative) and
avoidance (positive) patterns and had the heaviest weigh-
tings from the location variables. Component 2 (y-axis)
explained 17.4% of the variance, and separated true-
(positive) from false-belief (negative) patterns for both
approach and avoidance tasks while having the heaviest
weightings from the agent and hidden units.

The four other analyzed networks yielded similar com-
ponents (although the sign of scores assigned to avoid-
ance/approach and true-belief/false-belief patterns
varied). PCA for networks with 6 hidden units thus did
not differ from PCA for networks with 3 hidden units:
networks distinguished between approach and avoidance

patterns (using locations) and between true- and false-be-
lief patterns (using the agent and hidden units).

In sum, PCA of contributions for Experiment 2 showed
that networks with 0 hidden units (1) initially used loca-
tions to separate approach from avoidance task patterns
to produce omniscient predictions in both tasks, and that
once networks were succeeding at the approach task with
3 hidden units, and when they were succeeding at both ap-
proach and avoidance tasks with 6 hidden units, they (2)
used the agent and hidden units to distinguish between
true- and false-belief patterns. However, because PCA did
not differ between networks succeeding only at the ap-
proach task and those succeeding at both the approach
and avoidance tasks, this technique did not reveal the
mechanisms underlying the approach to avoidance
transition.
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