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Independent component analysis (ICA) has been extensively used in
individual and within-group data sets in real-world applications, but
how can it be employed in a between-groups or conditions design? Here,
we propose a new method to embed group membership information
into the FastICA algorithm so as to extract components that are either
shared between groups or specific to one or a subset of groups. The
proposed algorithm is designed to automatically extract the pattern of
differences between different experimental groups or conditions. A new
constraint is added to the FastICA algorithm to simultaneously deal with
the data of multiple groups in a single ICA run. This cost function restricts
the specific components of one group to be orthogonal to the subspace
spanned by the data of the other groups. As a result of performing a
single ICA on the aggregate data of several experimental groups, the
entire variability of data sets is used to extract the shared components.
The results of simulations show that the proposed algorithm performs
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better than the regular method in both the reconstruction of the source
signals and classification of shared and specific components. Also, the
sensitivity to detect variations in the amplitude of shared components
across groups is enhanced. A rigorous proof of convergence is provided
for the proposed iterative algorithm. Thus, this algorithm is guaranteed to
extract and classify shared and specific independent components across
different experimental groups and conditions in a systematic way.

1 Introduction

In many biological data analysis applications, the goal is to find the
similarities and differences between various experimental groups (or con-
ditions) based on some observed high-dimensional data sets. If the infor-
mation regarding the generative model of the data is inaccurate or lacking,
data-driven approaches are preferred to explore the main features of the
data based on some basic assumptions about the data set (Bartlett, 2001).
As one of these data-driven approaches, independent component analysis
(ICA) uses the often biologically fitting assumption that the underlying
sources (networks, components, or synergies) that comprise the data set of
each group are independent (Stone, 2002). ICA has been extensively used
in analysis of functional magnetic resonance imaging (fMRI) (McKeown,
Makeig, et al., 1998), electroencephalographic (EEG) (Makeig, Jung, Bell,
Ghahremani, & Sejnowski, 1997), and magnetoencephalographic (MEG)
data (Vigario, Sarela, Jousmaki, Hamalainen, & Oja, 2000), as well as elec-
tromyographic data (EMG) (Tresch, Cheung, & d’Avella, 2006).

In the context of fMRI, the data are blood oxygenation level–dependent
(BOLD) signals recorded at different times and in different voxels. Usually
ICA is used to decompose multivariate fMRI data into a sum of spatially
independent and temporally fixed components (spatial-ICA) (Calhoun, Liu,
& Adali, 2009; McKeown, Makeig, et al., 1998). Using multichannel EMG
signals, ICA is used to extract different patterns of muscle synergies (sets
of muscles that work in synchrony) in a variety of motor tasks (Kargo &
Nitz, 2003; Tresch et al., 2006). In these cases, ICA is primarily used on
either individual data or in single-group-based analyses (Calhoun, Adali,
Pearlson, & Pekar, 2001; Calhoun, Liu, & Adali, 2009; McKeown, Jung, et al.,
1998). There is little in the literature on the application of ICA to identify
between-group differences (Albert, Robertson, & Miall, 2009; Calhoun et al.,
2009; Li, Guo, Nie, Li, & Liu, 2009). This is in part because of the difficulty
in interpreting the results of ICA when used in a multigroup or factorial
design. In multigroup designs, usually a separate ICA run is performed on
the concatenated data of each group (Calhoun et al., 2001). The problem in
treating the individual experimental group (or session) separately is that a
component may be present in one group and absent in the other for a variety
of reasons. This may be caused by an insufficient number of extracted
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components or the missing component being split into subcomponents, or
it may represent a real difference between the two groups (we refer to this
as a specific component). This ambiguity in the classification and detection
of components attributed to one or more groups represents a computational
challenge.

Another drawback of performing a distinct ICA on each group’s data
set is that the variability of the whole data set is not used to extract the
components that are common between groups (we label these components
as shared components). This reduces the reconstruction performance in
extracting shared components (reconstruction error is defined as the root
mean square error, (RMSE, between the actual and extracted independent
components). A further important consideration is the need for sufficient
sensitivity to detect changes in the amplitude of shared components be-
tween groups. A component’s amplitude can be defined as the percentage
of variability that that component can explain in each group. If there are
even slight variations between different realizations of a shared component
extracted from separate within-group ICA runs, it may cause a significant
false difference in that component’s amplitude across groups.

In the context of fMRI analysis, several methods have been proposed
to increase the sensitivity of detecting group differences using ICA (Sui,
Adali, Pearlson, & Calhoun, 2009; Sui, Adali, Pearlson, Clark, & Calhoun,
2009) or local linear discriminant analysis (McKeown et al., 2007; Palmer,
Li, Wang, & McKeown, 2010). These methods in general require extracting
a set of features from data sets and then maximizing the separability of the
extracted features between groups. It limits their application because they
cannot be applied directly to raw time series. This limitation is highlighted
in cases such as fMRI resting-state analysis where a fixed model of task
timing across subjects is not available and feature extraction in time domain
is challenging.

Here, we propose a new algorithm to address the limitations of the reg-
ular ICA approach in the problem of multigroup and factorial design. We
based our method on the FastICA algorithm proposed by Hyvarinen and
Oja (1997). FastICA is an efficient and fast-converging ICA algorithm that
has been extensively used in different fields of biomedical signal analysis
(Hyvarinen & Oja, 2000). The simple iterative formulation of the FastICA
algorithm allowed us to incorporate an additional constraint into its cost
function to integrate the group membership information. The proposed al-
gorithm aims at adaptively extracting the shared and specific components
at each iteration while performing a single ICA on the aggregate data of
all groups. The adaptive extraction of the shared and specific components
in the proposed algorithm allows the investigation of the intergroup differ-
ences in a systematic way.

In section 2.2, after briefly describing the FastICA algorithm, we define
the concepts of shared and specific components in the case of an ICA linear
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generative model. The shared and specific component decomposition has
been applied to the nonnegative matrix factorization algorithm, a principal
components analysis (PCA)–based approach to decompose data into two
matrices with nonnegativity constraints (Cheung, d’Avella, Tresch, & Bizzi,
2005). Here, the definition of shared and specific components has been
modified based on the independency constraints. Accordingly, we propose
a converging algorithm based on the FastICA method to incorporate the
group membership information. We focus on the special case of having only
two groups, but the extension to more than two groups or factorial design is
straightforward, as outlined in section 2.7. The performance of the proposed
method has been validated using different simulations. The results of simu-
lations on a one-dimensional and an fMRI-like two-dimensional data set are
reported in section 3. Also, the results of applying the proposed algorithm to
a hybrid resting-state fMRI data set are compared with one of the published
methods for conducting between-groups comparison using ICA. In section
4, we present our conclusions and discuss how the proposed algorithm can
be integrated with some state-of-the-art methods that can be applied to the
between-group ICA problem in the context of fMRI data analysis.

Generally, lowercase letters in bold italics indicate vectors and capital
letters in italics denote matrices. All vectors are understood as column
vectors; thus, xT , or the transpose of x, is a row vector. E{.} indicates the
expectation operator.

2 Methods

In linear ICA, it is assumed that an observed T-dimensional zero-mean
vector of random variables y is generated according to

y = As, (2.1)

where s is an N-dimensional random vector (N < T), whose components are
assumed mutually independent (the sources), and A is a nonsingular T × N
mixing matrix to be estimated. If we let S be a matrix where each column
of S is one of M samples from the random vector s, then we can write
equation 2.1 in matrix format: Y= AS, where Y is the matrix of observed
data whose columns are the corresponding M samples from y. A common
and useful preprocessing step in ICA is to whiten the observed data using
a T × T whitening matrix V (Hyvarinen & Oja, 2000). By definition, a
vector is whitened (or sphered) when its components are uncorrelated and
their variances equal unity. For a zero-mean vector of random variables x,
it implies that the covariance matrix of x equals the identity matrix: Cx =
E{xxT} = I. If E is the orthogonal matrix of eigenvectors and D is the diagonal
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matrix of eigenvalues of Cy = E{yyT } = EDET , then a suitable whitening
matrix is V = C− 1

2
y = ED− 1

2 ET . At the same time, we can reduce dimensions
of data to match the number of extracted independent components using the
same technique as in principal component analysis (PCA). This can be done
by discarding the (T − N) smallest eigenvalues of Cy during calculation of
the whitening matrix to get an N × T transformation matrix Z: x = Zy,
where Cx = E{xxT} = IN (Hyvarinen & Oja, 2000). Multiplying both sides
of equation 2.1 by Z yields x = ZAs = Ãs, where square matrix Ã can be
considered the new mixing matrix of reduced dimension. So the task in ICA
would be to find an unmixing matrix W = Ã−1, given the whitened data.
Then the sources can be estimated as follows:

ŝ = Wx. (2.2)

Typically we assume that the sources have unit variance, with any scal-
ing factor being absorbed into the mixing matrix. So it easy to show that
matrix Ã is an orthonormal matrix. This implies that matrix W is also an
orthonormal matrix and WT = Ã.

2.1 FastICA Algorithm. FastICA is based on the maximization of ne-
gentropy, which can also be reformulated as minimization of the mutual
information of the extracted sources ŝi, constraining them to be uncor-
related, from an information-theoretic view of independence (Hyvarinen,
1999). The classic FastICA algorithm uses an approximation of negentropy
as an objective function in order to find maximally nongaussian projections
wTx, where wT is one of the rows of the unmixing matrix, WT [w1, . . . ,wN].
This minimization is simplified to find the extrema of a generic cost function
E{G(wTx)} under the constraint E{(wTx)2} = ‖w‖2 = 1 (Hyvarinen, 1999).
The constraint results from the fact that the sources have unit variance
and the data are whitened. FastICA updates w according to the following
approximate Newton iteration (also called a fixed-point algorithm):

w+ = E{xg(wTx)} − E{g′(wTx)}w,

w∗ = w+/‖w+‖,
(2.3)

where g is the derivative of G (any nonquadratic function) and g’ is the
derivative of g. The normalization has been added to improve convergence
stability (Hyvarinen, 1999). In order to avoid the convergence of different
independent components to the same solution, after each iteration of the
algorithm, the vectors w are orthogonalized in either a deflation mode or
symmetrically (Hyvarinen, 1999). A simpler alternative to the symmetric
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decorrelation approach is the following iterative algorithm (Hyvarinen,
1999):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1. LetW = W/
√

‖WWT‖.
Repeat 2. until convergence:

2. LetW = 3
2

W − 1
2

WWTW .

(2.4)

The fixed-point algorithm typically converges very fast (convergence is
proven to be quadratic) to an unmixing matrix W, and the order and sign
of components in the estimated source vector ŝ may be different from those
in the source vector s.

2.2 Proposed Decomposition into Shared and Specific Components.
Let X1 denote the whitened concatenated observed data matrix of group
1, and X2 denote the whitened concatenated data from group 2. The con-
catenation is done by stacking the two-dimensional data matrices of every
individual in each group (see section 2.3). Here, group 1 and group 2 may
represent data from two groups of individuals or the same individuals
under two experimental conditions. Assume that X1 can be reconstructed
by Ng1 and X2 by Ng2 independent components (ICs) using the generative
model in equation 2.1: Xj = Aj.Sj, j = 1, 2 Assuming K shared ICs between
groups (ssh

i , i = 1, . . , K), we can decompose each generative model into two
parts: ICs shared between the two groups (ssh

i ) and ICs specific to each group
(ssp,1

i or ssp,2
i ):

X1 =
K∑

i=1

ash,1
i

(
ssh

i

)T +
K1∑

i=1

asp,1
i

(
ssp,1

i
)T

,

X2 =
K∑

i=1

ash,2
i

(
ssh

i

)T +
K2∑

i=1

asp,2
i

(
ssp,2

i
)T

, (2.5)

where ssh and ssp, j are columns of ST
j , j = 1, 2 arranged according to the

shared or specific label, and ash, j, asp, j are the corresponding columns of Aj.
Also, K1 = Ng1 − K is the number of specific components of group 1, while
K2 = Ng2 − K is the number of specific components for group 2. Since, by
definition, all the dependencies across groups are factored into the shared
components, the specific ICs of two groups are assumed to be mutually
independent. Also note that the mixing matrix signals related to group 1
and group 2 corresponding to the same shared component can be different.
The above equations can be summarized in the following matrix format:

Xj = Ash
j Ssh + Asp

j Asp
j , j = 1, 2. (2.6)
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Here ash, j refers to the columns of Ash
j , asp, j to the columns Asp

j , ssh to the
columns of (Ssh)T , and ssp, j to the columns of (Ssp

j )T . If we combine the data
from two groups in a single concatenated matrix, using equation 2.6, we
can write:

[
X1

X2

]

=
[

Ash
1 Asp

1 0

Ash
2 0 Asp

2

]
⎡

⎢
⎣

Ssh

Ssp
1

Ssp
2

⎤

⎥
⎦ . (2.7)

Since all the rows in Ssh, Ssp
1 , and Ssp

2 are mutually independent, this equation
gives the independent component factorization for the concatenated matrix,
with the additional constraint that two blocks of the new mixing matrix
should be zero. In sections 2.4 and 2.5, we will show mathematically how
this new constraint can be integrated with the FastICA method. We start
with some necessary preprocessing steps for applying the group-level ICA
to real data.

2.3 Three-Level Dimension Reduction. Let us say we have n1 subjects
in group 1 and n2 subjects in group 2. The first step is to subtract the sample
mean of the observed variables. Let Y j

i denote the Ti
j × M zero-mean data

of subject iof group j. To reduce computational burden as well as noise, it
is common to reduce the dimension of the data matrix using PCA, at both
subject- and group-level analysis, specifically for huge data sets like fMRI
signal time series. The first-level PCA reduces the dimensions of the data
matrix Y j

i of each subject in group j from Ti
j to T j, using the appropriate

transformation matrix Zj
i as explained above: X j

i = Zj
i Y

j
i . To perform the

group-level ICA, a common approach is to concatenate the data of different
subjects within the same group to get a single data matrix corresponding
to each group (Calhoun et al., 2001):

X̃1 =

⎡

⎢
⎢
⎢
⎣

X1
1
.
.
.

X1
n1

⎤

⎥
⎥
⎥
⎦

; X̃2 =

⎡

⎢
⎢
⎢
⎣

X2
1
.
.
.

X2
n2

⎤

⎥
⎥
⎥
⎦

.

We can then repeat the process by selecting an appropriate transformation
matrix to whiten the data of each group and reduce its dimension to the
desired number of components—Ng1 for group 1 and Ng2 for group 2. This
constitutes the middle-level PCA model: Xj = ZjX̃j. Here, Zj is an Ng1 ×
n1T1 whitening matrix for group 1 and an Ng2 × n2T2 whitening matrix for
group 2. As discussed earlier, we propose to concatenate the data of two
groups into a single aggregate matrix. Then we can perform a third-level
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PCA-like data reduction to reduce the dimension of the aggregate data
further to N and at the same time whiten the data:

X = Z

[
X1

X2

]

→
[

X1

X2

]

= pinv(Z)X � HX, (2.8)

where Z is an N × (Ng1 + Ng2) whitening matrix and H is the pseudo-inverse
of matrix Z, or dewhitening matrix (note that N < (Ng1 + Ng2)).

2.4 New Constraints for Between-Group ICA Based on Shared-
Specific Decomposition. One can construct an ICA model for the whitened
aggregate matrix X and use equation 2.8 to get

X = AS →
[

X1

X2

]

= HAS. (2.9)

Here HA can be viewed as the new mixing matrix for the aggregate data of
two groups. Comparing equations 2.7 and 2.9 results in

(HA)S =
[

Ash
1 Asp

1 0

Ash
2 0 Asp

2

]
⎡

⎢
⎣

Ssh

Ssp
1

Ssp
2

⎤

⎥
⎦ . (2.10)

So to achieve the same separation of shared and specific components for
matrix S as in the source matrix of the right-hand side of the equation, the
two mixing matrices should be identical. This forces two blocks of matrix
HA to be zero. Since there is a correspondence between the columns of the
mixing matrix and the rows of the source matrix, equation 2.10 constrains
the last Ng2 elements of H multiplied by the columns corresponding to
specific components of group 1 and the first Ng1 elements of H multiplied
by the columns corresponding to specific components of group 2 to be zero.
If we define P1 = [ INg1

0Ng1×Ng2
] and P2 = [ 0Ng2×Ng1

INg2
], one can formulate

the constraints as follows:

{
P1 H ai = [0]Ng1×1, for si ∈ SP2

P2 H ai = [0]Ng2×1, for si ∈ SP1
, (2.11)

where ai represents a column of matrix A and sT
i the corresponding row in

matrix S. Also SP1 specifies the subset of specific components of group 1,
and SP2 specifies the specific components of group 2. If we split matrix H
into an upper part H1 with Ng1 rows and a lower part H2 with Ng2 rows, we
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can write

H =
[

H1

H2

]

→ H1 = P1H, H2 = P2H. (2.12)

As we mentioned earlier, if the data are sphered, then WT = A. So equation
2.11 is simplified as

{
H1wi = [0]Ng1×1, for wT

i x ∈ SP2

H2wi = [0]Ng2×1, for wT
i x ∈ SP1

, (2.13)

where wi are columns of matrix WT.

2.5 A Converging Algorithm Based on FastICA Solution. To extract
the specific components of group 1, we use the Lagrange multipliers method
(Lang, 1987) to define a new cost function Cnew (the so-called Lagrangian)
based on the FastICA algorithm (Hyvarinen, 1999). The goal is to minimize
E{G(wTx)}, under the constraints ‖w‖2 = 1, and H2w = 0:

Cnew = CFastICA + λTH2w = E{G(wTx)} + λ1(‖w‖2 − 1) + λTH2w,

where the scalar λ1 and vector λ are Lagrange multipliers, the latter han-
dling Ng2 constraints. Based on Lagrange multipliers method, the partial
derivative of the Lagrangian with respect to w, denoted by F(w), is to be
zero (let β � −2λ1):

F(w) = ∂Cnew

∂w
= E{xg(wTx)} − βw + HT

2 λ = 0. (2.14)

To find the vector λ, we multiply both sides of equation 2.14 by H2:

H2E{xg(wTx)} − βH2w + H2HT
2 λ = 0.

By substituting the above equation at w0, the value of w at optimum, λ is
determined:

λ = −(
H2HT

2

)−1
H2E{xg(wT

0 x)}. (2.15)

Note that H2w0 = 0, and H2HT
2 is a full rank Ng2 × Ng2 matrix (see

appendix A for the proof). Also after multiplying both sides of equation
2.14 by wT

0 and performing simple algebraic operations, one can find:

β = E
{
wT

0 xg(wT
0 x)

}
. (2.16)
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Note that the formula to find β is the same as the one found in the original
FastICA algorithm (Hyvarinen, 1999). As in the FastICA approach, let us
try to solve equation 2.14 by Newton’s method. We obtain the Jacobian of
the function F(w), denoted by JF(w), as follows:

JF(w) = E{xxTg′(wTx)} − βI. (2.17)

Since in equation 2.14, HT
2 λ is constant with regard to w, the Jacobian func-

tion is exactly the same as the one in the original FastICA algorithm. So
we use the same estimate as proposed by Hyvarinen (1999) to approxi-
mate E{xxTg′(wTx)} by E{xxT}E{g′(wTx)} = E{g′(wTx)}I (note that the data
are sphered). This makes the Jacobian matrix diagonal, which can be easily
inverted. Again using trick similar to that proposed by Hyvarinen (1999),
we approximate β and λ using the current value of w instead of w0. This
gives the following approximate Newton iteration:

w+ =w − (I − HT
2 (H2HT

2 )−1H2)E{xg(wTx)} − βw

E{g′(wTx)} − β
,

w∗ =w+/‖w+‖. (2.18)

As in equation 2.3, the normalization is added to improve the stability.
Inspired by the original FastICA approach, to further simplify the above
iterative algorithm, we multiply both sides of the first equation in 2.18 by
β − E{g′(wTx)} to obtain the following iterative algorithm for finding the
specific components of group 1:

w+ = (I − HT
2 (H2HT

2 )−1H2)E{xg(wTx)} − E{g′(wTx)}w,

w∗ =w+/‖w+‖. (2.19)

To find the specific components of group 2, H2 should be replaced with
H1 in the above equation. Also the shared components would be extracted
using the original FastICA algorithm, equation 2.3, since there is no con-
straint on the shared components in equation 2.10. Because of the approx-
imations used in the derivation of equation 2.19, a proof of convergence
may seem necessary. In appendix B, we show that due to the similarity of
equation 2.19 with the original FastICA algorithm in equation 2.3, their con-
vergence shares the same properties. Also Newton’s method is notorious
for not working well if the starting point is far from the solution. So we
derive a stabilized version of our algorithm as follows:

w+ = w − μ
(I − HT

2 (H2HT
2 )−1H2)E{xg(wTx)} − βw

E{g′(wTx)} − β
. (2.20)
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By taking small values of μ, which corresponds to the gradient descent
method, equation 2.20 converges with more reliability than equation 2.19
does. Also as a general rule, we can always start with μ = 1 and then
gradually decrease the value of μ, if the convergence is not satisfactory. To
perform decorrelation following each iteration for extraction of several ICs
(Hyvarinen & Oja, 2000), a symmetric approach is preferable since the exact
number of specific and shared components is unknown to begin with. Recall
that the goal of the additional constraint is to make two blocks of matrix
Ã in equation 2.10 as small as possible. To get a faster and more reliable
convergence, we can also incorporate the constraint into the decorrelation
step using the following iterative algorithm. This algorithm is an extension
of equation 2.4 to perform symmetric decorrelation and at the same time to
keep the target blocks of matrix Ã as small as possible, using an adjustment
function �:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1. LetW = W/
√

WWT .

Repeat 2 and 3 until convergence :

2. LetW = 3
2

W − 1
2

WWTW .

3. Ã = HWT → Ãc = �(Ã) → W = (ZÃc)
T .

(2.21)

Here Z and H are whitening and dewhitening matrices, respectively. Note
that in FastICA, W = AT = (ZÃ)T . Also the adjustment function �, which
independently operates on each column of matrix Ã, ãi, is defined in equa-
tion 2.22. If we split vector ãi into two subvectors ãup

i , and ãdown
i , with Ng1

and Ng2 elements, respectively, ãi = [
ãup

i

ãdown
i

], we define � as

ãc
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ãi, i f si ∈ shared
[

ãup
i

ϕãdown
i

]

, i f si ∈ SP1

[
ϕãup

i

ãdown
i

]

, i f si ∈ SP2

,

�(ãi)= ãi

ãc
i
ãc

i . (2.22)

So if ãi corresponds to a shared component, the adjustment function does
not change it. If it belongs to SP1, the adjustment function multiplies the
last Ng2 elements of ãi by an adjustment factor ϕ (ϕ < 1). If it belongs to SP2,
the adjustment function multiplies the first Ng1 elements of ãi by ϕ. Also ãc

i
is scaled to have the same norm as ãi. The convergence proof of the original
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algorithm (equation 2.4) is reported in Hyvarinen (1999). Taking a ϕ that is
of the order of unity (say, between 0.7 and 0.9), ensures that the algorithm
of equation 2.21 converges to a symmetric solution. Note that by taking ϕ

equal to unity, equation 2.21 will be simplified to equation 2.4.
As a requisite of our algorithm, we need to estimate the membership

index of each component (shared, SP1, or SP2) at every iteration of equa-
tion 2.19. One simple way to check this is to compare the root mean square
of ãup

i (or ãdown
i ) with that of ãi, as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

RMS(ãdown
i )

RMS(ãi)
< threshold → si ∈ SP1

RMS(ãup
i )

RMS(ãi)
< threshold → si ∈ SP2

else → si ∈ shared

. (2.23)

Here threshold is in the range of (0 to 1). We took threshold = 0.5 in our simula-
tions unless otherwise mentioned. Increasing this parameter toward 1 will
increase the sensitivity of analysis to extract the specific components, but
it will increase the false-positive rate as well. Decreasing the thresholdvalue
toward zero will increase the specificity of analysis in extracting the specific
components, but it will increase the false-negative rate at the same time.
We suggest a technique to select thresholdvalue in real-world applications
in section 4.

In summary, at each iteration of our algorithm, first the components are
evaluated to estimate their membership indices using equation 2.23. Then,
based on the membership index, matrix W will be updated using equation
2.19. Note that equation 2.19 is derived for specific components of group 1.
To obtain the specific components of group 2 or the shared components, H2
should be replaced with H1 or the zero matrix, respectively, in equation 2.19.
Finally, at the end of each iteration, the modified symmetric decorrelation
algorithm in equation 2.21 will be used to avoid convergence of different
ICs to the same solution.

2.6 Null Space Interpretation of the New Algorithm. Based on equa-
tion 2.13, the specific components of group 1 are in the null space (or the
kernel) of matrix H2, and the specific components of group 2 are in the
null space of matrix H1. Since the rank (the dimension of the row space) of
matrix H2 is Ng2 (see appendix A for the proof), the dimension of the null
space of H2, nullity(H2), is N − Ng2. So the maximum number of specific
components of group 1 which can be obtained from the dimension-reduced
data, is N − Ng2. Similarly, the number of specific components of group
2 is limited to N − Ng1. Recall that the dimension of the concatenated
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subject-level data is reduced via the middle-level PCA models from n2T2
to Ng2 for group 2 and from n1T1 to Ng1 for group 1. In fact, this step is
necessary to provide some free dimensions for the specific components.
This means that the specific components of one group are orthogonal to the
subspace spanned by the major principal components extracted from the
data of the other group.

Also note that the (I − HT
2 (H2HT

2 )−1H2) term has appeared as an ad-
ditional multiplier in equation 2.19 compared to the original algorithm
in equation 2.3. The columns of this matrix are in the null space of
H2: (H2.(I − HT

2 (H2HT
2 )−1H2) = ∅). Accordingly, this symmetric idempotent

matrix integrates the restriction of the specific components into the update
algorithm of the original FastICA.

2.7 Extension to Multigroup and Factorial Design. So far we have seen
the mathematical formulation to handle the between-group analyses for a
two-group (or a two-condition) design. We can extend our algorithm to
compare more than two groups or to the factorial design. Here we report
the formulation for a three-group design and then for a two-factor design.
The generalization to more complex conditions is straightforward.

2.7.1 Extension to Three-Group Design. Let X1, X2, and X3 denote the
whitened concatenated observed data matrix for group 1, group 2, and
group 3, respectively. By concatenating the data from all groups, and per-
forming the third-level PCA, we obtain

X = Z

⎡

⎢
⎣

X1

X2

X3

⎤

⎥
⎦ →

⎡

⎢
⎣

X1

X2

X3

⎤

⎥
⎦ = pinv(Z)X � HX, (2.24)

where Z and H are whitening and dewhitening matrices, respectively. Each
independent component of group 1 may belong to one of these four cat-
egories: ICs shared across groups (Ssh), ICs shared between group 1 and
group 2 (Ssh(1,2)), ICs shared between group 1 and group 3 (Ssh(1,3)), and ICs
specific to group 1 (Ssp1). Similar categorization of generative models can
be done for groups 2 and 3:

X1 = Ash
1 .Ssh + Ash(1,2)

1 .Ssh(1,2) + Ash(1,3)

1 .Ssh(1,3) + Asp1
1 .Ssp1,

X2 = Ash
2 .Ssh + Ash(1,2)

2 .Ssh(1,2) + Ash(2,3)

2 .Ssh(2,3) + Asp2
2 .Ssp2,

X3 = Ash
3 .Ssh + Ash(1,3)

3 .Ssh(1,3) + Ash(2,3)

3 .Ssh(2,3) + Asp3
3 .Ssp3.

(2.25)
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Equations 2.24 and 2.25 give the following formula for the aggregated data
of three groups:

HX = HAS =

⎡

⎢
⎢
⎣

Ash
1

Ash
2

Ash
3

Ash(1,2)

1

Ash(1,2)

2

0

Ash(1,3)

1

0

Ash(1,3)

3

0

Ash(2,3)

2

Ash(2,3)

3

Asp1
1

0

0

0

Asp2
2

0

0

0

Asp3
3

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ssh

Ssh(1,2)

Ssh(1,3)

Ssh(2,3)

Ssp1

Ssp2

Ssp3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.26)

This equation implies that nine blocks of matrix HA are to be zero.
Depending on the type of extracted component, zero (where si ∈ Ssh), one
(si ∈ Ssh(1,2), Ssh(1,3), or Ssh(2,3)), or two (si ∈ Ssp1, Ssp2, or Ssp3) constraints are
to be considered. Lagrange multipliers and then Newton’s method can be
employed in a similar manner, as explained in the case of two groups to
iteratively extract the converging solution of the three-group design. Prior
knowledge of the problem may allow some source types to be eliminated
from the general generative model reported in equation 2.25 to simplify the
equation.

2.7.2 Extension to Factorial Design. Let XC1, XC2, XP1, and XP2 denote
the whitened concatenated data matrix for a control group tested under
condition 1, control group in condition 2, patient group in condition 1, and
patient group in condition 2, respectively. Again, we may classify ICs based
on their types:

XC1 = Ash
1 .Ssh + AC

1 .SC + A1
1.S

1 + AC1
1 .SC1,

XC2 = Ash
2 .Ssh + AC

2 .SC + A2
2.S

2 + AC2
2 .SC2,

XP1 = Ash
3 .Ssh + AP

3 .SP + A1
3.S

1 + AP1
3 .SP1,

XP2 = Ash
4 .Ssh + AP

4 .SP + A2
4.S

2 + AP2
4 .SP2,

(2.27)

where Ssh denotes shared components across all groups and conditions,
SC is the shared components between two conditions of the control group,
S1 is the shared components between the control and patient groups in
condition 1, and SP2 is the specific components of patient group in condition
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2 (ditto for the other terms). Obtaining the matrix form of equation 2.27
is straightforward. It results in nine different source types and 20 blocks
of zero. Depending on the type of extracted component, zero (where si ∈
Ssh), two (si ∈ SC, SP, S1, or S2), or three (si ∈ SC1, SC2, SP1, or SP2) constraints
should be included in the cost function. Prior knowledge of the problem
may allow some of the nine different source types to be eliminated from the
general generative model reported in equation 2.27.

3 Results

We illustrate the operation of the proposed algorithm using two simulated
data sets: a simple one-dimensional and an fMRI-like two-dimensional data
set. The one-dimensional data were generated using four artificial source
signals (two subgaussian, and two supergaussian signals) as in Hyvarinen
(1999), plus an additional gaussian source signal, due to the importance
of gaussian distributions in biological processes (McKeown, Varadarajan,
Huettel, & McCarthy, 2002). Note that theoretically, ICA can extract one
gaussian source signal. In order to generate two groups of data sets, three of
the sources were randomly selected as shared components between groups
and one as a specific component for each group. For each group, 10 indi-
vidual data sets were generated. For each individual, the selected sources
(three shared and one specific depending on the individual’s group) were
mixed using different matrices, whose elements were drawn from a nor-
mal gaussian distribution. To account for interindividual variability within
each group, we added two additional types of noise to each individual’s
data. First, we randomly shifted each source vector for each individual in
a circular fashion. This manipulation is analogous to the observed spatial
variability in the anatomical maps of different individuals in the context
of fMRI functional connectivity analysis, so we refer to it as spatial noise.
Second, gaussian noise was added to the data matrix of each individual.
As performance measures, we calculated the root mean squared error be-
tween the extracted and the original source signals (RMSE) and the squared
correlation between them (r2) averaged over different sources, defined as
follows:

RMSE = 1
Ng

Ng∑

i=1

⎡

⎣
1
M

M∑

j=1

(si, j − s̃i, j)
2

⎤

⎦

1/2

r2 = 1
Ng

Ng∑

i=1

[
corr

(
si, s̃i

)]2
, (3.1)

where si, j denotes the jth element of the ith original source vector si, and
s̃i is the ith extracted source vector. Ng is the number of extracted sources,
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and corr(.) represents Pearson correlation. RMSE and r2 measure error and
performance of source signal reconstruction, respectively. To quantify the
classification error related to correct classification of shared and specific
sources for each group, we used receiver operating characteristics (ROC)
analysis. The area under ROC curve is calculated to measure the classifier
performance.

3.1 Simulation Results on One-Dimensional Data Set. We compare
the results of the proposed algorithm with two approaches that are used in
between-group ICA (Albert et al., 2009; Assaf et al., 2010; Calhoun et al.,
2009). One approach is based on applying ICA on the aggregate data of two
groups (Assaf et al., 2010). This approach may decrease the reconstruction
error for the shared components, but it is insensitive to detection of specific
components. The other approach is to apply two separate runs of ICA on
the concatenated data of each group and then compare the similarity of the
extracted ICs between groups to investigate the shared and specific com-
ponents (Albert et al., 2009). Then as a measure of similarity, the correlation
between ICs of one group and every IC of the other group is calculated and
ICs that pass a predefined threshold (TR; usually in the range of [0.5–0.7])
were identified as shared components. However, if the correlation between
one component of group 1 and every component of group 2 is insignificant
(e.g., less than 0.5), that component will be identified as a specific compo-
nent of group 1. In all simulations, the FastICA algorithm was applied on
the sphered data using the hyperbolic tangent as the derivative of contrast
function g (u) = tanh(u) and the symmetric decorrelation approach. The
value of ϕ defined in equation 2.22 is set at 0.7 for all simulations using our
algorithm (we manually checked that changing ϕ in the range of [0.5–0.9]
had a minimal effect on the performance results). Figure 1 illustrates an
example of the extracted components using different approaches (FastICA
on the concatenated data of two groups, FastICA on the concatenated data
of each group, and the proposed algorithm) overlaid on the correct solu-
tions in gray. As indicated in Figure 1C, the proposed algorithm correctly
classified three components as shared, one as SP1, and one as SP2.

To investigate the performance of source signal reconstruction, RMSE
and r2 measures were estimated and averaged over 600 runs for each com-
bination of shared and specific components for the five sources depicted in
Figure 1. We calculated the reconstruction performance at various spatial
noise levels (n = 0, 1, 2, 3, 4, or 5), where for each individual, the source
signals are shifted by a value randomly selected from the integers in the
range of [−n, n]. The correlation between some ground truth source signals
shifted by +3 steps and the same signal shifted by −3 steps was as low as
0.3. So for the shift levels greater than n = 3, when the correlations dropped
to a value around 0.1, it was not possible to extract some source signals.
As shown in Figure 2, the reconstruction performance is significantly im-
proved using our algorithm compared to the other approaches in which the
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Figure 3: RMSE and r2 averaged over 600 runs of ICA at different noise levels
and with three different numbers of extracted components. Each column shows
the results for different numbers of extracted components. Asterisks, circles,
and the dashed line, respectively, represent the performance of the proposed
algorithm (with parameters specified at the top of each column), FastICA on
the aggregate data (with N extracted components as specified at the top of
each column), and separate FastICA runs on either group (with N – 1 extracted
components in either case).

group membership information is neglected or half of the data set is not
used in different runs of ICA on each group data set. As shown for noise
levels equal to 4 or 5, when some of the source signals are almost uncor-
related between individuals, the performance of the proposed algorithm
converges to that of the method on the concatenated data of two groups.

It is also possible that since we input the exact number of shared and
specific components in our algorithm, the results are superior. To investigate
the robustness of our algorithm when the number of shared and specific
components is not correct, we ran the analysis on the same data set but with
erroneous numbers of shared and specific components to be extracted. As
explained in section 2.6, our algorithm extracts a total number of N ICs, with
a maximum of N − Ng2 specific ICs for group 1 and up to N − Ng1 specific
ICs for group 2. So the number of shared components may vary from
N − (N − Ng1) − (N − Ng2) = Ng1 + Ng2 − N, where the algorithm does not
find any specific components. As shown in Figure 3, the reconstruction
performance is robust with respect to the incorrect number of shared and
specific components. Note that to calculate the performance in Figure 3, the
first five components that showed the highest correlation with the ground-
truth signals are selected for all three methods.
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To investigate the classification performance, we calculated the false-
positive rate and the true-positive rate in the proposed and the regular
algorithms, where shared and specific components represent positive and
negative class labels, respectively. To simplify the ROC analysis, we did
not distinguish between specific components of either class. In our sim-
ulations, the proposed algorithm never classified a specific component of
one group as the other group’s specific component, and for the regular al-
gorithm, the occurrence was very rare (3 cases in 600 runs). As explained
before, the regular algorithm is based on comparing the correlation values
of the extracted components of two groups with a predefined threshold
(TR). So to construct the ROC curve in the regular algorithm, performance
is calculated at different TR values ranging from 0 to 1. Since in the pro-
posed algorithm the classification threshold (threshold in equation 2.23) is
implicit in the algorithm, we ran the algorithm multiple times with dif-
ferent threshold values ranging from 0 to 1, to get the classification per-
formance at different points of the ROC curve. Figure 4 shows the ROC
curves at different spatial noise levels (0, 2, or 4) for the new and reg-
ular algorithms using the one-dimensional data set explained before. As
shown in Figure 4, the classification performance is constantly superior in
the proposed algorithm. Comparison of the optimum points of ROC curves
shows the higher sensitivity of our algorithm in detecting shared and spe-
cific components and its greater specificity by having lower classification
error.

Figure 5 shows the classification performance when the numbers of ex-
tracted components are incorrect. As can be seen in the figure, the proposed
adaptive classifier is quite robust with respect to inaccuracy in numbers of
extracted components. Table 1 reports false- and true-positive rates at the
cut-off point for the best sensitivity and specificity in the ROC plot for the
regular and proposed algorithm at different noise levels and with differ-
ent numbers of extracted components. In the ROC plot, the cut-off is the
point closest to (0,1). The average threshold of the ROC curve at the best
cut-off point over different conditions was 0.25 for the proposed algorithm
(threshold) and 0.35 for the regular approach (TR).

3.2 Sensitivity to Detect Variations in Amplitude. One of the motives
behind the proposed approach is to obtain a higher sensitivity to detect
those shared components whose power (variance accounted for by that
component) significantly varies across groups (or conditions). We use the
percentage variance accounted for (PVAF) as a measure to quantify the
percentage of variability that a single IC can explain in an individual’s data
matrix as follows:

PVAF = 1 − var(X − X̂)

var(X)
, (3.2)
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where X is the individual’s demeaned data matrix and X̂ is the backpro-
jection of the component of interest onto X. var(.) denotes the average of
variances of different rows of a matrix. X̂ is calculated by making all the
columns of mixing matrix A zero, except the one corresponding to the com-
ponent of interest, and then applying all dewhitening transformations to
obtain the subject-level data matrix.

To investigate the sensitivity of our algorithm to the variations in the
PVAF of the shared components across groups, we manipulated the power
of a shared component in all individuals of one group by scaling the corre-
sponding column of that component in the generative mixing matrix (see
equation 2.1). At each spatial noise level ranging from 0 to 3, we performed
900 runs of the regular ICA algorithm on each group separately and 900
runs of the proposed algorithm, using all possible combinations of shared
and specific components with a shared component whose power was ma-
nipulated across groups on the one-dimensional data set. In every run of
either approach, we calculated the PVAF of each shared component for each
individual using equation 3.2. Then in both approaches, we compared the
PVAF measures of each shared component across groups using two-sample
t-statistics with various critical values α. Thus, if the observed t-value for
a shared component was less than a threshold α, that shared component
was identified as a power-varying shared component across groups. We
evaluated the performance of identification of power-varying type among
all shared components using an ROC analysis where power-varying and
fixed-power shared components represent positive and negative class la-
bels, respectively. For either the proposed or the regular approach, the criti-
cal value α served as the threshold at different points of the ROC curve. The
results of this analysis are illustrated in Figure 6. The sensitivity of the pro-
posed algorithm is superior in detecting changes in the power of the shared
component across groups, with a greater specificity of the classification (i.e.,
a lower false-positive rate).

3.3 Simulation Results on Two-Dimensional fMRI-Like Data Set. So
far we have used one-dimensional data sets to investigate various features
of the proposed algorithm. To investigate its performance in a more com-
plex and realistic situation, we used fMRI Simulation Toolbox (SimTB) to
generate a two-dimensional fMRI-like data set under a model of spatiotem-
poral separability (Allen et al., 2011; Dea, Anderson, Allen, Calhoun, &
Adali, 2011; Erhardt, Allen, Wei, Eichele, & Calhoun, 2012) . In the context
of fMRI functional connectivity analysis (Vahdat, Darainy, Milner, & Ostry,
2011), the simulated data can be expressed as the product of time histories
(mixing matrix) and spatial maps (sources). We used the conventional pa-
rameters of SimTB to define the tissue-type weights (to model variations
in the baseline intensity of different tissue types in the brain), the level of
spatial noise across individuals (translation, rotation, and spread), and the
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Figure 6: ROC curves representing the classification performance of power-
varying versus fixed-power shared components for different noise levels. Each
panel shows the results of 900 runs using all possible combinations of three
shared and two specific components. Among the three shared components,
two preserved the same power across groups, but the power of one shared
component was manipulated between two groups (scaling the corresponding
column of the mixing matrix by 0.6). threshold = 0.7, N = 5, Ng1 = 4, Ng2 = 4
were used in the proposed algorithm and N= 4 extracted components for either
group in the regular approach.

level of Rician noise added to the data set. We defined the mixing matrix
for each individual using convolution of different gaussian signals with the
canonical hemodynamic response function, bandpass-filtered in the fre-
quency range of 0.01 Hz to 0.1 Hz to model resting-state BOLD fMRI time
series (Fox & Raichle, 2007). Ten compound source signals (see Figure 7A)
were generated based on several one-part source signals defined in SimTB.
Also to account for the intracomponent variability in the time series across
distinct subparts of a compound component (e.g., because of the differences
in the hemodynamic response function between different brain areas), we
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created fluctuations in the time series of distinct subparts within a compo-
nent by adding different zero-mean gaussian noises with σ between 0.1 and
0.25. In order to generate two groups of data sets, K1 and K2(0 ≤ K1, K2 ≤ 3)

sources were randomly selected as specific components for group 1 and
group 2, respectively, and K = 10 − K1 − K2 sources as shared components
between groups. For each group, 10 individual data sets (of 50 time points,
64 × 64 pixels image) were generated. Figure 7 illustrates an example of
the extracted components based on the proposed algorithm, the regular
FastICA algorithm on each group, and the aggregate data of both groups.
Comparing the results of regular ICA on time-concatenated data of each
group separately (see Figures 7B, and 7C) shows significant discrepancy of
some shared components (e.g., SH2 or SH3) between groups, which may
lead to incorrectly classifying them as specific components. Also the re-
sults of the FastICA algorithm on the aggregated data of both groups (see
Figure 7D) illustrate that this method might totally fail to extract some of
the specific components (SP1-3in this example), resulting in low sensitivity
in identification of the pattern of differences between groups. As illustrated
in Figure 7E, in this example, the best performance is obtained using the
proposed algorithm.

To further investigate the classification performance of the proposed and
the regular approaches in differentiating specific from shared components,
we ran both algorithms on 800 different realizations using different num-
bers and combinations of shared and specific components and with different
levels of the intracomponent variability noise (std between [0.1–0.25]), as
explained above. Figure 8 illustrates the ROC curves using different num-
bers of extracted components for both approaches. As shown in Figure 8,
the proposed algorithm is much more robust with regard to the incorrect
number of extracted components compared to the regular approach. It is
worth noting that in our algorithm, the classification performance is almost
perfect when allowing four extra components to be extracted in this com-
plex data set. So in more complex regimes, the extra number of components
to be extracted may help the stability of the classification of shared and
specific components in the proposed algorithm.

Table 2 reports false- and true-positive rates at the point of the highest
sensitivity and specificity in the ROC plot for the regular and proposed al-
gorithm using different numbers of extracted components. In all cases, the
classification performance of the proposed algorithm was superior com-
pared to the regular approach. The average threshold of the ROC curve at
the best point over different conditions was 0.6 for the proposed algorithm
(threshold) and 0.43 for the regular approach (TR).

3.4 Simulation Results on Hybrid fMRI Data. Twelve right-handed
healthy adults ages 18 to 24 were scanned at the Montreal Neurological
Institute (MNI). The study was approved by the local ethics committee, and
subjects participated in the research after giving written informed consent.
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Figure 8: ROC curves representing the classification performance of shared
versus specific components using different numbers of extracted components
as input. Each ROC curve is derived based on the classification results using
different data sets generated from randomly selected numbers of shared and
specific components, with random assignment of components to categories.
The numbers of SP1and SP2 (K1 and K2) were randomly drawn from integers in
the range of [0–3]. N at the top of each panel specifies the number of extracted
components in the proposed algorithm. Ng1 = N − c1, Ng2 = N − c2, where c1 =
K2, c2 = K1 (top left), 3 ≤ c1, c2 ≤ 4 (top right), and 3 ≤ c1, c2 ≤ 6 (bottom left and
right, respectively). In the regular approach, N − K2 and N − K1 components
were extracted for group 1 and group 2, respectively.

Functional images were continuously acquired using a 32-channel 3T MR
scanner (Siemens Trio, Germany). A T1-weighted anatomical image was
first acquired (1 mm slice thickness, 256 × 256 matrix; TE = 7.4 ms and TR =
23 ms; flip angle 30◦) and used for superposition of the functional images
and inter subject group coregistration. Two runs of 200 s each were acquired
from every subject during the resting-state condition. The functional data
were acquired using a T2*-weighted EPI sequence (3.5 × 3.5 × 3.5 mm
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Table 2: False-Positive (FP) and True-Positive (TP) Rates at the Cut-Off Point for
the Highest Sensitivity and Specificity in ROC Plots of Figure 8 for the Regular
and Proposed Algorithm Using Different Numbers of Extracted Components
for the Two-Dimensional Data set.

Number of
Extra Components 0 2 4 6

Regular algorithm FP rate 0.064 0.054 0.027 0.002
TP rate 0.967 0.909 0.849 0.810

Proposed algorithm FP rate 0.002 0.035 .001 0.016
TP rate 0.982 0.995 0.999 0.996

Note: Number of extra components were 0, 2, 4, and 6 corresponding to N = 10, N = 12,
N = 14, and N = 16 extracted components in Figure 8, respectively.

voxels, 39 slices, 64 × 64 matrix; TE = 25 ms and TR = 2000 ms; flip angle
90◦). Resting-state was defined as a state of relaxed wakefulness when
subjects had their eyes open and were instructed to focus on a cross in the
middle of a white screen.

Data processing was carried out using the FMRIB Software Library (FSL)
(www.fmrib.ox.ac.uk, Oxford U.K.), FSL version 4.1 (Smith et al., 2004;
Woolrich et al., 2009). The following preprocessing steps were applied to
functional data: (1) removal of the first two volumes of each scan to allow for
equilibrium magnetization, (2) slice timing correction using Fourier-space
time-series phase shifting, (3) non brain tissue removal, (4) rigid-body mo-
tion correction, (5) global intensity normalization of all volumes of each run
as implemented in FSL, (6) spatial smoothing using a gaussian kernel with
6 mm full width at half maximum, and (7) high-pass temporal filtering with
cut-off frequency of 0.01 Hz. Conversion of the low-resolution functional
data to the average standard space (MNI152) involved two transformations.
The first was from the low-resolution EPI image to the T1-weighted struc-
tural image (using a 7 degree-of-freedom affine transformation), and the
second was from the T1-weighted structural image to the average standard
space (using a 12 degree-of-freedom linear affine transformation, voxel
size = 2 × 2 × 2 mm). The transformed data in MNI space were then
subsampled in 4 mm isotropic voxels. We randomly divided the subjects
into two groups, resulting in 12 resting-state functional runs for each group.
To create hybrid fMRI data, we added three arbitrary patches of activity: one
shared between groups located in the left prefrontal region (see Figure 9A,
left), one specific to group 1 located bilaterally in the cerebellum (see
Figure 9A, middle), and one specific to group 2 located bilaterally in the
basal ganglia (see Figure 9A, right). The maps have a relative amplitude of
1 in the central region and 0.7 in the outer region. For each subject, the time
course of each component was defined separately using different realiza-
tions of standard gaussian signals bandpass-filtered in the frequency range
of 0.01 Hz to 0.1 Hz to mimic the neuronal-related portion of resting-state
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Figure 9: The manipulated ground-truth networks (A), results of the back-
reconstruction method (B), and the proposed algorithm (C). The left column
shows the manipulated shared network, the middle column the specific network
for group 1, and the right column the specific network for group 2. In A the light
and dark color contrast within each network encodes the relative amplitude
of the inner (1) compared to the outer (0.7) part. In B and C the color-coded
Z-score component maps are shown in copper (for shared), blue (specific group-
1), and green (specific group 2) in the first row, and the corresponding t-statistics
map is coded in a red to yellow scale in the second row. As shown, the sensitivity
to identify specific networks is increased in the proposed method compared to
the back-reconstruction method.
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BOLD fMRI time series (Fox & Raichle, 2007). For each component and each
subject, the signal-to-noise ratio was set to 1.5 by scaling the time course of
the added component relative to the variance of time series averaged over
all gray matter voxels of that subject. In this way, we ensured that the added
components are among the five strongest components.

To extract the shared and specific components across groups, all hybrid
preprocessed resting-state fMRI runs were time-concatenated and fed to
the proposed algorithm. We compared the results of our algorithm with
the back-reconstruction method as implemented in GIFT software (Assaf
et al., 2010; Calhoun et al., 2001). This method is one of the most popular
methods for between-groups fMRI analysis of resting-state data using ICA
(Assaf et al., 2010; Ma, Narayana, Robin, Fox, & Xiong, 2011). We used the
same method as explained in Assaf et al. (2010) to obtain the group-level
t-statistics maps corresponding to each component. Briefly, this method
performs back-reconstruction on the results of ICA on time-concatenated
preprocessed data of all groups to generate spatial maps specific to each
subject. Then two-sample t−statistics (over a mask defined by the thresh-
olded map of one-sample t-test, t > 1.5) are performed to obtain the map
of differences between the two groups for every component (thresholded
at t = 4.02, p < 0.001, df = 11). Also, one-sample t-statistics on subject-level
maps of those components showing no significant difference across groups
were used to generate the statistical map of the shared components. For
a fair comparison with our algorithm, FastICA was selected as the ICA
approach in GIFT software with parameters as described earlier, though
the Infomax algorithm (Bell & Sejnowski, 1995) generated very similar re-
sults. We extracted 25 networks with both methods and let the proposed
algorithm extract up to 3 specific networks for each group. To generate the
t-statistics maps using our method, we also back-reconstructed components
to get subject-level spatial maps. Then to extract the shared components,
we performed one-sample t-statistics on the subject maps of both groups
and on the maps of subjects within the same group as the correspond-
ing specific component to extract the specific components. Note that the
back-reconstruction of the specific networks on the data of the other group
resulted in zero maps, since specific components were constrained to be
orthogonal to the subspace spanned by the other group’s data.

The results of both methods in extracting three commonly reported
resting-state networks (shared among groups) are illustrated in Figure 10:
visual, auditory, and default mode networks that were selected by visual
inspection among all extracted components (Damoiseaux et al., 2006). As
expected, both algorithms are capable of extracting the consistent shared
resting-state networks, even when extraneous patches of activity were
added to the hybrid fMRI data.

Figure 9 shows the results of analyses related to the manipulated net-
works. As demonstrated in Figure 9 (left column), both algorithms ex-
tracted the shared frontal network precisely, as projected in the Z-score
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maps. However, the back-reconstruction method generated some spuri-
ous activity in the prefrontal network t-statistics map as well. To find
the specific networks using the back-reconstruction method, first networks
with the highest correlation with the gold standards (see Figure 9A) were
identified. Then two-sample t-statistics were performed, as explained ear-
lier. The proposed algorithm identified only one specific network per group,
though we allowed extraction of up to three specific components. Figure 9B
shows the results of the back-reconstruction method and Figure 9C the pro-
posed algorithm for the specific networks. As it is shown, in contrast to
the back-reconstruction method, the proposed algorithm extracted the spe-
cific networks accurately and with significant t-statistics maps. The regular
back-reconstruction method was unable to extract the pattern of specific
networks, since it seeks networks that share variance across all subjects,
disregarding the group membership information.

4 Discussion

We developed a method to find shared and specific components between
different experimental groups in the context of linear ICA. For preprocess-
ing, we employed a three-step PCA to reduce the number of degrees of
freedom. In real data applications, this would also be useful for denoising
and eliminating redundancies. A new constraint was added to the FastICA
algorithm to simultaneously deal with the data of multiple groups. The pro-
posed method of between-group ICA has a number of desirable properties
when compared with the regular approach:

� The classification of shared and specific components is adaptive and
automatic. The classification improves iteratively until convergence
is achieved (under the assumptions made in the proof of convergence;
see appendix B).

� The source reconstruction performance is enhanced due to use of the
variability of the entire data set. Also the performance in detecting
and classifying specific components is improved due to the fact that
the specific components are constrained to be orthogonal to the space
spanned by the data set of other groups.

� Since a single ICA run is performed on the aggregate data of all
groups, even if a shared component splits, the resulting subcompo-
nents will be the same in all groups. So splitting a shared component
does not result in the misclassification of some subcomponents as
specific components.

� The sensitivity to detect changes in the amplitude of shared com-
ponents across groups is enhanced due to the fact that the shared
components are perfectly matched across groups.

One of the limitations of the proposed algorithm is in cases when the
within-group variability of some independent components is so large that
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the true component cannot be extracted in the regular FastICA or the pro-
posed approach. In these cases, the performance of the proposed algo-
rithm converges to that of the regular approach (see Figures 2 and 3 at
noise level = 4, 5). Another issue is the rate of convergence. Our algo-
rithm converges linearly to the solution (see appendix B), while the regular
FastICA algorithm has proven to converge quadratically. In our simulations,
it took about 20 to 80 iterations for the proposed algorithm to converge at
the epsilon level of 0.001 (epsilon is the stopping criterion in the FastICA
algorithm).

As the number of extracted components is a free parameter in the ICA
algorithm, a number of methods have been proposed to estimate its value
in different applications (Li, Adali, & Calhoun, 2007). Based on separate
estimations of the number of extracted components in each group, as well
as in the aggregate data of all groups, one may approximate the Ng1, Ng2,
and N parameters. Another approach is to start by allowing one specific
component per group (Ng1 = Ng2 = N − 1) and then gradually increasing
the number of specific components until adding more components results
in the repetition of existing components (this was the case specifically in
the two-dimensional fMRI-like data set).

Another method, which has been proposed to incorporate the group
membership information into the ICA cost function, is coefficient-
constrained ICA (Sui, Adali, Pearlson, & Calhoun, 2009; Sui, Adali,
Pearlson, Clark, et al., 2009). It is an efficient method that increases the
identification sensitivity of the components that show a significant group
difference. As this method optimizes the t-statistics values that test the mean
difference between distribution of mixing matrix coefficients among two
groups, it can be applied only to a set of scalar features extracted from the
data sets, and not directly to the untransformed signals (e.g., to the resting-
state fMRI time series). Another method sensitive to between-group differ-
ences is local linear discriminant analysis (McKeown et al., 2007; Palmer,
et al., 2010). It iteratively determines the combination of regions that maxi-
mally discriminate between groups or tasks based on sampling t-statistics
from each region of interest to create feature vectors. Although this method
can efficiently account for the spatial variations between anatomical maps
of different subjects, it needs prior information regarding the selection of
regions of interest, as well as extraction of some task-related features for
each voxel in advance.

In the context of fMRI functional connectivity analysis, some methods for
conducting between-group ICA have been proposed (Calhoun et al., 2001;
Erhardt et al., 2010; Zuo et al., 2010). Two frequently used methods are back-
reconstruction (Calhoun et al., 2001) and dual regression (Zuo et al., 2010).
These methods in general use the results of Infomax (Bell & Sejnowski,
1995) or FastICA algorithms (applied on either the concatenated data of each
group separately or the aggregate data of both) to construct Z-statistic maps
for each component, based on the consistency of that component within
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and across the individuals of different groups (Assaf et al., 2010; Erhardt
et al., 2010). This kind of analysis can be applied to the results obtained
from our algorithm to generate component-based t-statistic maps (as shown
in Figures 9 and 10). For instance, in the dual regression algorithm, the
second regression model can be adjusted according to the results of our
method: a contrast vector differentiating the subjects of two groups and a
vector representing the average of the individuals in both groups should
be used as regressors for specific components and shared components,
respectively.

It is worth noting that the first level (within-subject) data-reduction step
is not necessary for operating the proposed algorithm. However, in the
case of huge and noisy data sets such as fMRI or EEG, it is recommended
(Calhoun et al., 2009; Viviani, Gron, & Spitzer, 2005). Moreover, dimension
reduction prevents overlearning, which is observed in ICA (Hyvarinen,
1999). The second (within-group) data-reduction step can be helpful in
retaining the pattern of similarities shared among subjects of one group
and removing the components represented in just one or a few subjects,
though it may filter out some low-power shared components. The third-
level (between-groups) data-reduction step is essential to limit the number
of extracted components; as explained earlier, various methods have been
suggested to estimate this number, for example, in real fMRI data sets (Li
et al., 2007).

The values of different parameters used in our algorithm can be deter-
mined specifically based on the particular application. For example, in a
data set comprising data of healthy controls and patients, the threshold pa-
rameter can be specified as the lowest value in the range of [0–1], which
detects no specific component, when applying our algorithm to the healthy
control data, randomly assigned to two subgroups. One area of concern
is the quality of spatial registration of different subjects’ data sets into a
common space. Although simulations using SimTB software (see Figures 7
and 8) showed that the proposed algorithm is relatively robust to mo-
tion noise and variability in the location of components across subjects,
consistent with a recent study of group ICA using time concatenation
(Erhardt et al., 2012), future work is needed to evaluate the robustness of
our algorithm to normalization errors on real data. Further analyses on real-
world datasets are also needed to examine the efficiency of the proposed
algorithm and the sensitivity of its parameters in different experimental
designs.

Appendix A: Proof of Invertibility in Equation 2.15

For matrix H2HT
2 to be invertible, we need to show that the rank of the

Ng2-by-N matrix H2 is Ng2.
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Based on equations 2.8 and 2.12, we can write

[
X1

X2

]

=
[

H1

H2

]

X → X2 = H2X → rank(X2) = rank(H2X). (A.1)

Since X is an N-by-M matrix with rank of M,

rank(H2X) = rank(H2).

Also, as X2 is the result of the middle-level PCA model of the subject-
level concatenated data, the rows of X2 are orthogonal, and rank(X2) =
Ng2. So based on the above equations we have rank(H2) = rank(X2) = Ng2.
Similarly, for group 1, we get rank(H1) = rank(X1) = Ng1.

Appendix B: Proof of Convergence of Algorithm 2.19

The formula to find the shared components is similar to the regular FastICA
algorithm, so the convergence proof of appendix A.1 in Hyvarinen (1999)
can be applied. The convergence of equation 2.19 for the case of specific
components can be proven under an additional assumption that the number
of specific components of group 1 is equal to or greater than rank(Null(H2))

(the same is true for group 2). We need to make the following assumption
so that the denominator in equation 2.18 becomes nonzero:

E{sig(si) − g′(si)} �= 0, for any i. (B.1)

Inspired by the proof of the original algorithm, if we make the change of
variable z = ATw in equation 2.19 and assume that z is in the neighborhood
of a solution with the membership of SP1(z1 ≈ 1), it is easy to show that
‖ãdown

1 ‖ � ‖ã1‖:

ã1 = Hw̃1 =
[

H1

H2

]

w̃1 =
[

H1w̃1

H2w̃1

]

=
[

H1w̃1

ε

]

, (B.2)

where ŵ1 is in the vicinity of w1. Based on the condition in equation 2.23,
s1 ∈ SP1 and equation 2.19 should be used as the update formula. Thus, for
each element of vector z, we get

z+
i = {(I − HT

2 (H2HT
2 )−1H2)wi}TE{xg(zTs)} − E{g′(zTs)}zi. (B.3)

Equation B.3 is derived from the fact that matrix (I − HT
2 (H2HT

2 )−1H2) is
symmetric and W = AT . Based on the constraint in equation 2.13, if wi ∈
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SP1, then H2wi = 0. So equation B.3 will be simplified to

z+
i = E{sig(z

Ts)} − E{g′(zTs)}zi, for si ∈ SP1. (B.4)

This equation is similar to the one extracted in the original FastICA al-
gorithm, which has been proven to quadratically converge to the correct
solution (z1 converges to 1 and zi, i �= 1, converges to zero). For the remain-
ing independent components (wi ∈ SP2 or SH), because they are orthogonal
to the subspace spanned by SP1, they become orthogonal to the null space
of H2 according to the assumption that n(SP1) ≥ rank(Null(H2)). Given
that the rows of matrix (I − HT

2 (H2HT
2 )−1H2) are in the null space of H2, we

get (I − HT
2 (H2HT

2 )−1H2)wi = 0, so equation B.3 will be simplified to

z+
i = −E{g′(zTs)}zi, for si ∈ SP2, or si ∈ SH. (B.5)

Applying the condition that z∗ = z+/‖z+‖, it is clear that zi (for si ∈
SP2, or si ∈ SH) linearly converges to zero. Thus, algorithm of equation 2.19
converges to a solution with z1 = ±1 and zi = 0 for i > 1.
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