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Abstract

At Bradlow’s limit, the moduli space of Bogomol’ nyi vortices on a compact Riemann surface of genus g is determined.
The Kahler form, and the volume of the moduli space is then computed. These results are compared with the corresponding
results previously obtained for a general vortex moduli space. © 1998 Elsevier Science B.V.

1. The Abelian Higgs modd in (2+ 1) dimen-
sions is an interesting arena to study vortices. The
coupling constant of the model determines the nature
of interactions among vortices. At the critica cou-
pling, the model admits static and finite energy
Bogomol’nyi vortex solutions [1]. Stability of these
solutions is ensured by topology. We will consider
vortices in a space-time of the form R X M, where
M is a compact two dimensional manifold. The
metric of the space-time is taken to be ds? = dx3 —
0(x,,%x,)(dx2 + dx3), where x, and x, denote local
coordinates on M. Let A,,(u=0,12) be a U(1)
gauge potential and ¢ be a complex scalar field.
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Working in the gauge A, = 0, the Lagrangian of the
model at the critical coupling is L =T —V, where

o ax(AA b)) sz @

V= %f dzxﬂ[%FijF” + D, D+ 5(I1o* — 1)2]
M
(2)

are respectively, the kinetic and the potential ener-
gies. Here, D, = 9, —iA;, and Fj, = 9, A, — 0, A, IS
the magnetic field. The following first order Bogo-
mol’ nyi vortex equations are obtained by minimizing
the potential energy

(D1 +iDy)¢=0 (3)

Y 2
Fio+ - (161 = 1) =0. (4

The above equations admit static multi-vortex solu-
tions. The solutions are parametrized by a 2N di-
mensional moduli space, M, where N is the num-
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ber of zeros of the Higgs field counted with multi-
plicity [2,3]. N— called the vortex number — is
related to the total magnetic flux by N
= 5= [y d®XF,,. The potential energy of a configura-
tion of static N-vortices is wN. Topologically, My
is just the symmetrized N-th power of M. The
moduli space has a natural Riemannian metric in-
duced from the kinetic energy expression (1). Thisis

given by
1 _

ds?= = [ d?x(8ABA + 25456), i=12.
mIM

©)

In obtaining (5) from (1) we have multiplied (1) by
2/ to agree with the conventions of [4]. It is to be
noted that there is a Gauss law constraint arising
from the equation of motion of A,. This constraint
ensures that My, consists of the solutions of Egs. (3),
(4) modulo gauge transformations connected to the
identity. Hereafter, by ‘gauge transformations’ we
will mean those gauge transformations connected to
the identity. Through Manton’s work [5] it is known
that at low energy — when most of the degrees of
freedom remain unexcited — the moduli space can be
used to describe interesting physica phenomena as-
sociated with vortices, such as scattering [6], thermo-
dynamics [4,7,8], and the phase transition of vortices
at near-critical coupling [9], etc. In the moduli space
approximation the vortex dynamics can be thought
of as geodesic motion on the moduli space.

For a compact surface, in order for vortex solu-
tions to exist one has to satisfy Bradlow’s bound
[10]. The bound is 47N < A, where A is the area of
M. This can be obtained by integrating (4) over M,
and noticing that the integral of |$|° over M is
positive. The bound means that for a given area there
is alimit on the number of vortices one can have on
M. At Bradlow’'s limit, A= 4N, the Higgs field ¢
must vanish everywhere on M. Then, the
Bogomol’ nyi equations reduce to the following sin-
gle equation

0

Fio = o (6)

This is an equation for a constant magnetic field on
M. The energy of the configuration is still 7 N.

It might be thought that (6) has a unique solution
up to gauge equivalence, which in turn will mean

that the moduli space is just a point. However, if M
has non-contractible loops (one-cycles), i.e. if the
first homotopy group of M is non-trivial, then the
moduli space of solutions of (6) is non-trivial as
well. A solution of (6) up to gauge equivalence is
given, in addition to a gauge potential that solves (6),
by specifying holonomies around a basis of one-
cycles. The holonomies around any two homol ogous
loops are generally different as the magnetic field is
non-zero on M, but the difference can be completely
determined by using Stokes' theorem. Now, lineariz-
ing (6) around a particular solution one can see that
the perturbed gauge potentials satisfy the equations
for flat U(1) connections for which the magnetic
field is zero. Flat connections are associated with
large gauge transformations. Flat connections up to
gauge equivalence are also given by specifying their
holonomies around a basis of one-cycles. Hence,
when ¢ = 0 the moduli space of Bogomol’ nyi vor-
tices is no longer M. Locally, the tangent space of
the vortex moduli space at Bradlow’s limit can be
identified with the tangent space of the space of flat
U(2) connections on M. With an abuse of notation,
in future the moduli space of solutions of (6) and the
space of flat U(1) connections will be denoted by
M;. It was demonstrated long ago by Aharonov and
Bohm [11] that flat connections play quite a non-triv-
ia role in quantum physics. It should be noted that
flat connections do not contribute to the moduli of
the Bogomol’' nyi equations when the Higgs field is
non-vanishing.

In passing we would like to point out that when
¢ =0, one may consider F,, = 0 as solutions of the
static Abelian Higgs model. The energy isthen A/8
with no restriction on the value of A. However,
these solutions cannot be obtained from Bogomol’ nyi
equations. Henceforth, we will only consider vortices
at Bradlow’s limit, and M is taken to be of genus
g=1

2. Let A=A, dx, + A, dx, solve(6). Then, A+
SA, where 6A = a,dx, + a,dx, is aflat connection,
is also a solution of (6). The equation satisfied by 5 A
is d6A= 0. The metric on My isobtained by putting
¢=20in(5). Thisis

z_i 2 2 2
ds? = — [ d*x{(a)’+ (2)7]. M
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Notice that the metric of M does not appear in the
above expression. This means that the metric infor-
mation of M is not carried over to M;. One can see
that M; inherits a complex structure from M. The
map .~ given by .71, = — €, where ¢, is the
antisymmetric tensor with €, = 1, leaves invariant
(7) and the equation for a flat connection. Moreover,
#2=—1,. Hence, .7 defines an almost complex
structure on M. This ailmost complex structure can
be used to define the following (1,1) form on M;

1 _ —
w(8A,5B) = ;fM(BAZA 5B, - 5B, A BA,).
(8)

Here, we have used complex coordinates (z = x,; +
ix,), and 6A=(8A,+cc). Clearly, w is mani-
festly real. Using d6A=déB=0, it can aso be
shown that « is a closed form. Thus, .7 is a
complex structure and o defines a Kahler form.
Among many uses of this Kahler form one can, for
example, compute the volume of M;. Recently, we
obtained an expression for the Kahler form on My
and also, we computed the volume of M, [8]. We
will see that when A = 4w N, the Kéhler form on M,
gets mapped to the Kahler form on M.

Although a known fact, in order to setup the stage
for the main part of this paper we intend to show that
the space of flat U(1) connections on M modulo
gauge transformations, i.e. M, is parametrized by
the Picard variety, J, of M [12]. J is dua to the
Jacobian J of M. J is a 2g-dimensional real torus.
Let v,(i=1,---,29) be a basis of 2g one-cycles
of M. Let w,(p=1,---,9) beabasisof g holo-
morphic one-forms on M. Define the period matrix
W=(w,), where w;,=¢w, (p=1"---,9,i=
1,---,29). The columns W,(i=1,---,2g) of W
can be thought of as spanning a 2g-dimensional
lattice in C9. J is defined as the torus C9/W.
Riemann’s bilinear relations can be used to normal-
ize the period matrix W [13]. One can choose W
such that (W', W?") is a symmetric matrix with
Im(W) > 0. Further, the elements of W can be
restricted to satisfy w,; =§,; for p=1,---,g and
i=1,---,0, the remaining elements being arbitrary
with positive imaginary parts [13]. Let us choose a
basis of 2g one-cocycles «; such that ¢, a;=
8;,(i,j=1,---,29). These one-cocyclesare the 2¢g

generators of the cohomology group H*(M,Z). A
canonical basis of »; can be chosen such that the
cocycles also satisfy [y a;a;=§; .4, Wherein the
integration wedge product is implied. The g holo-
morphic one-forms can be expressed in terms of «;
asw,=Y9w, o for(p=1,---,g). Reciprocally,
a; can be expressed in terms of w, as «;=
X3_i(y,w,+cc), for (i=1,---,29) where the
matrix I"= (v,;) is required to satisfy

I'w+T'wW=1,,. (9)

We note that J is defined as the torus C9/r.
Hence, J is dual to J.

Let c,,(p=1,---,9) denote complex coordi-
nates on M; (that M; is 2g-dimensiona will be
evident below). Then a rea flat connection A;
(modulo gauge transformations) can be expressed as

9
Ac=2m ), (c,w,+cc.). (10)
p=1
Imposing Gauss' law on the flat connections one can
see that the above is the most general expansion for
aflat connection. The holonomy, h;, of A around a

one-cycle v; is given by

g
h, = exp(igﬁ Af) = exp(eri Y (cw,;+cc.)|.
v p=1
(11)

As noted earlier, for a complete specification of A,
one needs to specify all of the holonomies h;. Eq.
(11) implies that h; is periodic with the period
matrix being A =(A,;),(p=1---,g,i=
1,---,29), say. Then the 2g columns of A span a
2g-dimensional lattice in C9 Thus, M; is
parametrized by a 2 g-dimensional real torus C9/A.
Further, the following relation for A is implied by
1D

AW+ AW=1,,. (12)

Comparing the above equation with (9) one gets
A=T. Thisidentifies M; with J.

There are g independent holomorphic one-forms
on M;. Using c, as coordinates of My, these are
givenby dc,,(p=1,---,g). A basis of one-cycles
in M; is given by the 29 lines tA;, 0 <t <1, with
A; identified with O to produce a closed loop. Then
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from the discussion preceeding (9), one deduces that
the 2g generators of H*(M;,Z) are given by & =
X9_(w,dc, + c.c.). Now from (8), we get the fol-
lowing Kahler form on M
g
d=41 ), (WW,q—W,W,, )dc, AdC,.
p.pi=1
(13)

In terms of &, & can be written as
[¢]

5’:4772 §i§i+g- (14)
i=1

In obtaining the above from (13) we have used the
Riemann bilinear relations. The volume of M; is
then

1
— ~g— g
Vol = 5 erwg_(m) (15)

where use has been made of the fact that
Ju, TIL 1 & &4y =1 Itis useful to notice that the
volumes of J and J are the same. The computation
of the volume of the space of flat connections on a
compact Riemann surface is not new. For SU(2) and
S0(3) Yang-Mills theory, Witten [14] computed the
volume of the space of flat connections by a remark-
able use of the Verlinde formula [15] in conformal
field theory.

3. The genera formulafor the Kahler form on the
vortex moduli space My, when ¢ is non-vanishing,
is[8]

g
w=(A—-4aN)n+47m ) £ &y (16)
i=1
where 7 is an areaform on My normalized to unity
and &,(i=1,---,2g) are the 2g generators of
HY(My,Z). When ¢ =0 is zero, i.e. A=4mN, the

Kahler form in (16) reduces to

g
w=4772 & §i+g- (17)
i=1

At this point we should remind the reader that this
Kahler form is defined on My, not on J whose
tangent space coincides with the tangent space of the
moduli space of vortices when ¢ = 0. However, it
can be shown that the Kahler foom w on M is

mapped in a one-to-one way to the Kahler form @
on J. As J is isomorphic to J it is enough to
establish an isomorphism between H(M,,Z) and
H(J,2). Firgt, notice that Jacobi’s inversion theo-
rem [13] implies that there is an isomorphism be-
tween J and M, where M, is the moduli space of g
vortices, and g is the genus of M. This implies the
isomorphism between H'(J,Z2) and H'(M,,2).
Next, using the Lefschetz hyperplane section theo-
rem [13], one sees that there is an isomorphism
between H*(My,Z) and H*(J,Z) for N>g and
g > 1. The isomorphism for other values of N and g
can also be easily established by arguments used in
[16].

It is of interest to see if one can relate Vol ; to the
volume of My near Bradlow’s limit when e= A —
47N is a small positive quantity. For genus g> 1
and N>2g—1, My has a bundle structure, where
the base is J, and the fibre is CP,_,. For N<g,
M, is analytically homeomorphic to a 2N-dimen-
sional submanifold of the Jacobian. Genericaly, the
volume of My, is not just a product of the volume of
the base and the volume of the fibre. The volume of
M, as computed in [8] is

Vol = (A—4xN)"" ¢

y 29: (4m)'(A—4mN)*'g!

18
i—o (N=D!(g-D)!i! (18)
In this formula N> g. It is easy to write an analo-
gous formula for N < g. Near Bradlow’s limit the
above volume can be written as

VO|N=(47T)grg)! +O(€N_g+1). (19)

Neglecting the higher order corrections the above
can be written as

eN-9
VO|N=VO|fX W (20)

where the factor €N~ 9/(N — g)! can be thought of
as a contribution coming from the fibre CPy_,.
Indeed, using (16) and the cohomolgy class of the
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fibre one can show that the volume of the fibre is
(A—47N)N"9/(N—g).

In conclusion, we would like to clarify the follow-
ing apparent puzzle. In computing the Kéhler form
(16), one needs to extract the non-singular parts of
the expressions like d,log|¢| around the zeros of ¢.
This, however, does not invalidate the derivation of
(16) when ¢ = 0 as one may think. From the Bogo-
mol’ nyi equations one can always express d,log|¢|*
in terms of the gauge potentials, which can in princi-
ple be used to derive (16) regardless of whether ¢ is
zero or not.
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