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Vortices and flat connections
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Abstract

At Bradlow’s limit, the moduli space of Bogomol’nyi vortices on a compact Riemann surface of genus g is determined.
The Kahler form, and the volume of the moduli space is then computed. These results are compared with the corresponding¨
results previously obtained for a general vortex moduli space. q 1998 Elsevier Science B.V.

Ž .1. The Abelian Higgs model in 2q1 dimen-
sions is an interesting arena to study vortices. The
coupling constant of the model determines the nature
of interactions among vortices. At the critical cou-
pling, the model admits static and finite energy

w xBogomol’nyi vortex solutions 1 . Stability of these
solutions is ensured by topology. We will consider
vortices in a space-time of the form R=M, where
M is a compact two dimensional manifold. The
metric of the space-time is taken to be ds2 sdx 2 y0
Ž .Ž 2 2 .V x , x dx qdx , where x and x denote local1 2 1 2 1 2

Ž . Ž .coordinates on M. Let A , ms0,1,2 be a U 1m

gauge potential and f be a complex scalar field.

1 E-mail address: S.M.Nasir@damtp.cam.ac.uk.

Working in the gauge A s0, the Lagrangian of the0

model at the critical coupling is LsTyV, where

1 2 ˙˙ ˙ ˙Ts d x A A qVff , is1,2 1Ž .H i i2 ž /
M

221 1 12 i j i < <Vs d xV F F qD fDfq f y1Ž .H i j i2 2 4
M

2Ž .
are respectively, the kinetic and the potential ener-
gies. Here, D sE y iA , and F sE A yE A , isi i i 12 1 2 2 1

the magnetic field. The following first order Bogo-
mol’nyi vortex equations are obtained by minimizing
the potential energy

D q iD fs0 3Ž . Ž .1 2

V
2< <F q f y1 s0. 4Ž .Ž .12 2

The above equations admit static multi-vortex solu-
tions. The solutions are parametrized by a 2 N di-
mensional moduli space, M , where N is the num-N
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ber of zeros of the Higgs field counted with multi-
w xplicity 2,3 . Ny called the vortex number – is

related to the total magnetic flux by N
1 2s H d xF . The potential energy of a configura-M 122p

tion of static N-vortices is p N. Topologically, MN

is just the symmetrized N-th power of M. The
moduli space has a natural Riemannian metric in-

Ž .duced from the kinetic energy expression 1 . This is
given by

1
2 2ds s d x d A d A qVdfdf , is1,2.Ž .H i i

p M

5Ž .
Ž . Ž . Ž .In obtaining 5 from 1 we have multiplied 1 by

w x2rp to agree with the conventions of 4 . It is to be
noted that there is a Gauss’ law constraint arising
from the equation of motion of A . This constraint0

Ž .ensures that M consists of the solutions of Eqs. 3 ,N
Ž .4 modulo gauge transformations connected to the
identity. Hereafter, by ‘gauge transformations’ we
will mean those gauge transformations connected to

w xthe identity. Through Manton’s work 5 it is known
that at low energy – when most of the degrees of
freedom remain unexcited – the moduli space can be
used to describe interesting physical phenomena as-

w xsociated with vortices, such as scattering 6 , thermo-
w xdynamics 4,7,8 , and the phase transition of vortices

w xat near-critical coupling 9 , etc. In the moduli space
approximation the vortex dynamics can be thought
of as geodesic motion on the moduli space.

For a compact surface, in order for vortex solu-
tions to exist one has to satisfy Bradlow’s bound
w x10 . The bound is 4p NFA, where A is the area of

Ž .M. This can be obtained by integrating 4 over M,
< < 2and noticing that the integral of f over M is

positive. The bound means that for a given area there
is a limit on the number of vortices one can have on
M. At Bradlow’s limit, As4p N, the Higgs field f

must vanish everywhere on M. Then, the
Bogomol’nyi equations reduce to the following sin-
gle equation

V
F s . 6Ž .12 2

This is an equation for a constant magnetic field on
M. The energy of the configuration is still p N.

Ž .It might be thought that 6 has a unique solution
up to gauge equivalence, which in turn will mean

that the moduli space is just a point. However, if M
Ž .has non-contractible loops one-cycles , i.e. if the

first homotopy group of M is non-trivial, then the
Ž .moduli space of solutions of 6 is non-trivial as

Ž .well. A solution of 6 up to gauge equivalence is
Ž .given, in addition to a gauge potential that solves 6 ,

by specifying holonomies around a basis of one-
cycles. The holonomies around any two homologous
loops are generally different as the magnetic field is
non-zero on M, but the difference can be completely
determined by using Stokes’ theorem. Now, lineariz-

Ž .ing 6 around a particular solution one can see that
the perturbed gauge potentials satisfy the equations

Ž .for flat U 1 connections for which the magnetic
field is zero. Flat connections are associated with
large gauge transformations. Flat connections up to
gauge equivalence are also given by specifying their
holonomies around a basis of one-cycles. Hence,
when fs0 the moduli space of Bogomol’nyi vor-
tices is no longer M . Locally, the tangent space ofN

the vortex moduli space at Bradlow’s limit can be
identified with the tangent space of the space of flat
Ž .U 1 connections on M. With an abuse of notation,

Ž .in future the moduli space of solutions of 6 and the
Ž .space of flat U 1 connections will be denoted by

M . It was demonstrated long ago by Aharonov andf
w xBohm 11 that flat connections play quite a non-triv-

ial role in quantum physics. It should be noted that
flat connections do not contribute to the moduli of
the Bogomol’nyi equations when the Higgs field is
non-vanishing.

In passing we would like to point out that when
fs0, one may consider F s0 as solutions of the12

static Abelian Higgs model. The energy is then Ar8
with no restriction on the value of A. However,
these solutions cannot be obtained from Bogomol’nyi
equations. Henceforth, we will only consider vortices
at Bradlow’s limit, and M is taken to be of genus
gG1.

Ž .2. Let AsA dx qA dx solve 6 . Then, Aq1 1 2 2

d A, where d Asa dx qa dx is a flat connection,1 1 2 2
Ž .is also a solution of 6 . The equation satisfied by d A

is dd As0. The metric on M is obtained by puttingf
Ž .fs0 in 5 . This is

1 2 22 2ds s d x a q a . 7Ž . Ž . Ž .H 1 2
p M
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Notice that the metric of M does not appear in the
above expression. This means that the metric infor-
mation of M is not carried over to M . One can seef

that M inherits a complex structure from M. Thef

map II given by II:a ™ye a ,, where e is thej jk k jk

antisymmetric tensor with e s1, leaves invariant12
Ž .7 and the equation for a flat connection. Moreover,
II 2 sy1 . Hence, II defines an almost complex2

structure on M . This almost complex structure canf
Ž .be used to define the following 1,1 form on Mf

1
v d A ,dB s d A ndB ydB nd A .Ž . Ž .H z z z z

p M

8Ž .

ŽHere, we have used complex coordinates zsx q1
. Ž .ix , and d As d A qc.c. . Clearly, v is mani-2 z

festly real. Using dd AsddBs0, it can also be
shown that v is a closed form. Thus, II is a
complex structure and v defines a Kahler form.¨
Among many uses of this Kahler form one can, for¨
example, compute the volume of M . Recently, wef

obtained an expression for the Kahler form on M¨ N
w xand also, we computed the volume of M 8 . WeN

will see that when As4p N, the Kahler form on M¨ f

gets mapped to the Kahler form on M .¨ N

Although a known fact, in order to setup the stage
for the main part of this paper we intend to show that

Ž .the space of flat U 1 connections on M modulo
gauge transformations, i.e. M , is parametrized byf

˜ ˜w xthe Picard variety, J, of M 12 . J is dual to the
Jacobian J of M. J is a 2 g-dimensional real torus.

Ž .Let n , is1, PPP ,2 g be a basis of 2 g one-cyclesi
Ž .of M. Let w , rs1, PPP , g be a basis of g holo-r

morphic one-forms on M. Define the period matrix
Ž . ŽW s w , where w s E w , r s 1, PPP , g, i sr i r i n ri

. Ž .1, PPP ,2 g . The columns W , is1, PPP ,2 g of Wi

can be thought of as spanning a 2 g-dimensional
lattice in C g. J is defined as the torus C grW.
Riemann’s bilinear relations can be used to normal-

w xize the period matrix W 13 . One can choose W
t tŽ .such that W , W is a symmetric matrix with

Ž .Im W )0. Further, the elements of W can be
restricted to satisfy w sd for rs1, PPP , g andr i r i

is1, PPP , g, the remaining elements being arbitrary
w xwith positive imaginary parts 13 . Let us choose a

basis of 2 g one-cocycles a such that E a si n ji

Ž .d , i, js1, PPP ,2 g . These one-cocycles are the 2 gi j

1Ž .generators of the cohomology group H M,Z . A
canonical basis of n can be chosen such that thei

cocycles also satisfy H a a sd , where in theM i j i, jqg

integration wedge product is implied. The g holo-
morphic one-forms can be expressed in terms of a i

2 g Ž .as w sÝ w a for rs1, PPP , g . Reciprocally,r is1 r i i

a can be expressed in terms of w as a si r i
g Ž . Ž .Ý g w qc.c. , for is1, PPP ,2 g where thers1 i r r

Ž .matrix Gs g is required to satisfyr i

t tG Wq G Ws1 . 9Ž .2 g

˜ gWe note that J is defined as the torus C rG .
˜Hence, J is dual to J.
Ž .Let c , rs1, PPP , g denote complex coordi-r

Žnates on M that M is 2 g-dimensional will bef f
.evident below . Then a real flat connection Af

Ž .modulo gauge transformations can be expressed as
g

A s2p c w qc.c. . 10Ž . Ž .Ýf r r

rs1

Imposing Gauss’ law on the flat connections one can
see that the above is the most general expansion for
a flat connection. The holonomy, h , of A around aj f

one-cycle n is given byj

g

h sexp i A sexp 2p i c w qc.c. .Ž .ÝEj f r r jž / ž /n j rs1

11Ž .

As noted earlier, for a complete specification of Af

one needs to specify all of the holonomies h . Eq.j
Ž .11 implies that h is periodic with the periodj

Ž . Žmatrix being L s l , r s 1, PPP , g , i sr i
.1, PPP ,2 g , say. Then the 2 g columns of L span a

2 g-dimensional lattice in C g. Thus, M isf

parametrized by a 2 g-dimensional real torus C grL.
Further, the following relation for L is implied by
Ž .11

t tL Wq L Ws1 . 12Ž .2 g

Ž .Comparing the above equation with 9 one gets
˜LsG . This identifies M with J.f

There are g independent holomorphic one-forms
on M . Using c as coordinates of M , these aref r f

Ž .given by dc , rs1, PPP , g . A basis of one-cyclesr

in M is given by the 2 g lines tL , 0F tF1, withf i

L identified with 0 to produce a closed loop. Theni
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Ž .from the discussion preceeding 9 , one deduces that
1 ˜Ž .the 2 g generators of H M ,Z are given by j sf i

g Ž . Ž .Ý w dc qc.c. . Now from 8 , we get the fol-rs1 r i r

lowing Kahler form on M¨ f

g

X X Xvs4p w w yw w dc ndc .˜ Ž .Ý r i r iqg r i r iqg r r
X

r , r , is1

13Ž .
˜In terms of j , v can be written as˜i

g

˜ ˜vs4p j j . 14Ž .˜ Ý i iqg
is1

Ž .In obtaining the above from 13 we have used the
Riemann bilinear relations. The volume of M isf

then

1 ggVol s v s 4p 15Ž . Ž .˜Hf g ! Mf

where use has been made of the fact that
g ˜ ˜H Ł j j s1. It is useful to notice that theM is1 i iqgf ˜volumes of J and J are the same. The computation

of the volume of the space of flat connections on a
Ž .compact Riemann surface is not new. For SU 2 and

Ž . w xSO 3 Yang-Mills theory, Witten 14 computed the
volume of the space of flat connections by a remark-

w xable use of the Verlinde formula 15 in conformal
field theory.

3. The general formula for the Kahler form on the¨
vortex moduli space M , when f is non-vanishing,N

w xis 8
g

vs Ay4p N hq4p j j 16Ž . Ž .Ý i iqg
is1

where h is an area form on M normalized to unityN
Ž .and j , is1, PPP ,2 g are the 2 g generators ofi

1Ž .H M ,Z . When fs0 is zero, i.e. As4p N, theN
Ž .Kahler form in 16 reduces to¨

g

vs4p j j . 17Ž .Ý i iqg
is1

At this point we should remind the reader that this
˜Kahler form is defined on M , not on J whose¨ N

tangent space coincides with the tangent space of the
moduli space of vortices when fs0. However, it
can be shown that the Kahler form v on M is¨ N

mapped in a one-to-one way to the Kahler form v¨ ˜
˜on J. As J is isomorphic to J it is enough to

1Ž .establish an isomorphism between H M ,Z andN
1Ž .H J,Z . First, notice that Jacobi’s inversion theo-

w xrem 13 implies that there is an isomorphism be-
tween J and M where M is the moduli space of gg g

vortices, and g is the genus of M. This implies the
1Ž . 1Ž .isomorphism between H J,Z and H M ,Z .g

Next, using the Lefschetz hyperplane section theo-
w xrem 13 , one sees that there is an isomorphism

1Ž . 1Ž .between H M ,Z and H J,Z for NGg andN

g)1. The isomorphism for other values of N and g
can also be easily established by arguments used in
w x16 .

It is of interest to see if one can relate Vol to thef

volume of M near Bradlow’s limit when esAyN

4p N is a small positive quantity. For genus gG1
and N)2 gy1, M has a bundle structure, whereN

the base is J, and the fibre is CP . For NFg,Nyg

M is analytically homeomorphic to a 2 N-dimen-N

sional submanifold of the Jacobian. Generically, the
volume of M is not just a product of the volume ofN

the base and the volume of the fibre. The volume of
w xM as computed in 8 isN

NygVol s Ay4p NŽ .N

i gyig 4p Ay4p N g !Ž . Ž .
= . 18Ž .Ý ž /Ny i ! gy i !i!Ž . Ž .is0

In this formula NGg. It is easy to write an analo-
gous formula for N-g. Near Bradlow’s limit the
above volume can be written as

e Nyg
g Nygq1Vol s 4p qO e . 19Ž . Ž . Ž .N Nyg !Ž .

Neglecting the higher order corrections the above
can be written as

e Nyg

Vol sVol = 20Ž .N f Nyg !Ž .

Nyg Ž .where the factor e r Nyg ! can be thought of
as a contribution coming from the fibre CP .Nyg

Ž .Indeed, using 16 and the cohomolgy class of the
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fibre one can show that the volume of the fibre is
Ž .Nyg Ž .Ay4p N r Nyg !.

In conclusion, we would like to clarify the follow-
ing apparent puzzle. In computing the Kahler form¨
Ž .16 , one needs to extract the non-singular parts of

< < 2the expressions like E log f around the zeros of f.z

This, however, does not invalidate the derivation of
Ž .16 when fs0 as one may think. From the Bogo-

< < 2mol’nyi equations one can always express E log fz

in terms of the gauge potentials, which can in princi-
Ž .ple be used to derive 16 regardless of whether f is

zero or not.
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