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Twisted vortices in a gauge field theory
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Abstract

We present a numerical construction of a straight but twisted line vortex in a gauge field theory model, describing the
properties of a variety of physical systems including a charge neutral two-component plasma, a Gross–Pitaevskii functional of
two charged Cooper pair condensates, and a limiting case of the bosonic sector in the Salam–Weinberg model. We compute
the energy per unit length as a function of the twist along the vortex. The result is described by a function which acquires a
minimum for a nontrivial value of twist. This suggests that the model can also support stable toroidal solitons. 2002 Published
by Elsevier Science B.V.

Recently, a gauge field theory model with two
charged bosons has been proposed to describe a
two-component plasma of negatively and positively
charged particles [1]. The model also relates to a
large variety of other physical phenomena, including
a Gross–Pitaevskii functional of two band supercon-
ductivity [2] and the bosonic sector in the Salam–
Weinberg model in the limit where the Weinberg an-
gle θW → 0 [3]. In [1] (see also [3]) it has been
proposed that the model also supports stable, self-
confining knot-like solitons. This would be somewhat
remarkable, since it would partiallycontrast some of
the widely held views in plasma physics that such con-
figurations of plasma cannot exist in general. This is
due to the Shafranov virial theorem which states that
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a static configuration of plasma in isolation is dissi-
pative [4]. The present model escapes the no-go theo-
rem by incorporating nonlinear interactions which are
not accounted for by mean field variables such as the
pressure [5]. The ensuing soliton, if it indeed exists,
can be viewed as a bundle of filaments of twisted,
closed magnetic flux lines. The twisting is governed
by a certain topological quantity, the Hopf invariant.
Nontriviality of the Hopf invariant ensures that the
flux lines are knotted or linked. Numerical simula-
tions, in the absence of effective analytical tools, seem
so far to be the best way to explore the existence
and nature of such soliton solutions. But even then
the intricate knotted and linked structure makes full
three-dimensional simulations a daunting task. Con-
sequently in the present Letter we analyse a tractable
and also physically interesting simulation of the model
where the magnetic flux lines are twisted in an axis-
symmetric manner. Such configurations can then be
viewed as straight but twisted vortex tubes, or as the
limiting case of an infinite radius toroidal soliton. We
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present numerical evidence that such configurations
may indeed be stable solutions to the equations of mo-
tion. As such, they can be applied to a number of inter-
esting physical scenarios. For example, they may re-
late to the coronal loops on the solar photosphere [1],
to Meissner effect in two-band superconductors [2]
or to higher energy topological configurations in the
weak sector of the standard model [3,6]. Moreover,
our study should motivate serious three-dimensional
searches for knotted structures in gauge field theory
models, extending the previous work in the numeri-
cally much simpler, non-gauged Faddeev model [7,8]
(see also [9–12]).

We start from a classical kinetic theory model
of a two-component plasma of electromagnetically
interacting electrons and ions, given by the non-
relativistic action [1],

S =
∫

d4x

[
ih̄Ψ ∗

e

(
∂t + ieAt

h̄c

)
Ψe

+ ih̄Ψ ∗
i

(
∂t − ieAt

h̄c

)
Ψi

− h̄2

2m

∣∣∣∣
(
∂k + ieAk

h̄c

)
Ψe

∣∣∣∣
2

(1)− h̄2

2M

∣∣∣∣
(
∂k − ieAk

h̄c

)
Ψi

∣∣∣∣
2

− 1

4
F 2
µν

]
.

Here,Ψe andΨi are the two complex nonrelativistic,
macroscopic Hartree wave functions describing the
electrons (e) and ions (i) with their respective masses
m and M. Numerically, with deuterons we have
α = m

M
= 1

3670. The electron and ion densities are,
respectively, given byΨ ∗

e Ψe andΨ ∗
i Ψi , and their total

integrals over the three-space give the total electron
numberNe and the total ion numberNi . Charge
neutrality requiresNe = Ni .

The ensuing static Hamiltonian in the Coulomb
gauge is,
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where B is the magnetic field. Note the similarity
of the above with the Hamiltonian that describes

the bosonic sector of the Salam–Weinberg model as
θW → 0: at this limit of the Weinberg angle the masses
of W± andZ boson become infinite and decouple.
Now, assigning the hypercharge matrix of the Higgs
doublet to be proportional to the third Pauli matrix
τ3 the static Hamiltonian of the bosonic sector of the
Salam–Weinberg model becomes

HSW =
∫

d3x
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where the Higgs doublet is given by,

Φ =
(
φ+
φ−

)
.

In the limit of weak self-couplings between the Higgs
fieldsHSW is then notably similar to the Hamiltonian
in Eq. (2) with the obvious identificationφ+,− ≡ Ψe,i .

An effective static energy functional of plasma can
be obtained from Eq. (2) in a self-consistent gradient
expansion by keeping terms with at most fourth order
in the derivatives of the variables. In order to describe
the ensuing tubular field configurations appearing in
the model, it is natural to introduce a new set of
variables [1],
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Here α is a parameter which is expressed in terms
of the reduced massµ through the relationµ =
msin2α = M cos2α. The variableρ2 is related to the
plasma density. The remaining variablesθ,ϕ,χ are
like standard toroidal coordinates inR3, with θ a shape
function that measures the distance from the center
of the configuration andϕ andχ are very much like
the toroidal and poloidal coordinates, respectively. By
defining a three component unit vector

−→n = (
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)
,

it can be shown that the static energy is [1],
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where
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4
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8e2 and C4 = g

4
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The effective couplingg describes the remnant of the
Coulomb interaction in the plasma, in the limit of short
Debye screening length. At this point, it is of interest
to compare the above energy density with that of [8].
There, the energy density consists of the two middle
terms in the above expression, for a constantρ. Indeed,
the presence of a nontrivial coupling betweenρ and−→n
in the above expression for energy density is especially
noticeable.

In order to have finite energy configurations, as-
ymptotically at large distances−→n must go to a constant
value with n3 = cos2α, and alsoρ = ρ0 asymptoti-
cally at large distances. Here,ρ0 is a constant valued
characteristic plasma parameter related to the plasma
density at the bulk. For example, on the solar photo-
sphereρ0 is of order of magnitude 1015/m3. The unit
vector −→n , when combined with the boundary condi-
tions, describes a map from the one-point compactified
R3 ∼ S3 to the targetS2. Under this map the pre-image
of a point on the target is generically a circle, knotted
or linked, and such circle is a constituent element of
the magnetic field lines in the plasma. Any two pre-
image circles are linked with their Gauss linking num-
ber given by the topologically invariant, integer valued
Hopf numberH ,

(6)H = 1

4π2

∫
d3x

−→
A · −→

B.

so that stable finite energy knotted and linked soliton
solutions are classified by the Hopf numberH of the
map−→n : R3 ∼ S3 → S2.

The equations of motion arising from varying
Eq. (5) depend on two parametersρ0 andg. However,
by re-scalingρ → ρ0ρ̃ andx → x0x̃, whereρ̃ and x̃
are both dimensionless quantities, the equations of
motion can be recast to make dependent only ong.
Henceforth, all the expressions are written in terms of
the dimensionless variables̃ρ and x̃ and we continue
to denote them asρ andx, respectively. The parameter
x2

0 = C3
C1ρ

2
0

has the dimension of length.

Here we are particularly interested in the axially
symmetric straight twisted vortes solutions. These
solutions can be viewed as limiting cases of toroidal
solitons, in the limit where their radius tends to
infinity. Instead ofR3 ∼ S3 → S2 the vector−→n now
sendsS3 ∼ S2 × S1, or ratherS2 × R1 to the targetS2,
and the ensuing Hopf numberH acquires a product
structure, computing theS2 → S2 homotopy class
multiplied by the amount of twist along theS1 ∼ R1.
The vector field generating the axis-symmetric twist
is

V =
(

1

k
∂φ − 1

a
∂z

)

and the Lie derivative of the field variables with
respect toV must be zero. The ansatz for the fields,
satisfying the previous condition, are:(χ + ϕ) =
az + kφ, ρ = ρ(r), and θ = θ(r). Here,k is a real
number, anda denotes the twist per unit length, which
in the case of a line vortex can be arbitrary. We
consider a tube of lengthL. The Hopf invariant now
becomesH = kaL

2π . It is finite per unit length, with
theS2 × R1 ∼ S2 × S1 product structure. (Notice that
for a straight tube with toroidal topology the fields
are periodic inz with periodL, which in turn implies
thatkL is an integer multiple of 2π . One would then
havea to be a rational number only.)

The energy functional Eq. (5) in the axially sym-
metric ansatz reads,
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and the Coulomb coefficient
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Extraction of the parameter dependence of the field
variables of the above energy functional is particularly
revealing, as we will see shortly.

The numerical solution to the Euler equations of
motion arising from (7) are obtained by seeking the
fixed points of the following system of equations:

(8)ρ̇ = −δE

δρ
,

(9)θ̇ = −δE

δθ
.

The simulations are run on a lattice of finite size. At
one boundary end, withr large, we take asymptotic
values to beρ = 1, andθ = 2α. At the other end,
which is the origin, we also need boundary values ofρ

and θ . For this we note that even though the radial
variabler � 0 the equations of motions are formally
invariant underr → −r. Therefore we can circumvent
the fixing of the a priori unknown (but nonvanishing)
boundary value ofρ at r = 0 by considering the
equations for all values ofr. We are then free to
choose independentlyθ and ρ to be either odd or
even function inr. We selectθ(0)= 0 corresponding
to choosingθ to be odd but as we wantρ to be
nonvanishing at the origin, we takeρ to be even. It
should be mentioned thatρ could have been chosen
equally well to be an odd function, but for a physically
meaningful system we would like charge densities
to be nonvanishing at the origin. With the boundary
conditions so chosen and for technical reasons in
order to facilitate the simulations, the range of the
lattice is also extended to the negative values ofr.
Next, we choose initial profiles forρ andθ matching
with the boundary conditions. Finally, the equations
are solved for fixedk = 1, since higherk would
corresponds to the configurations with higher energies
and are, therefore, excluded from our simulations.
In the simulations we have performed the Coulomb
term C is chosen to be of small value, 0.1, 1.0,
and 10.0, and the twist parametera is made to lie in
the range[0.2,2.0].

In Fig. 1 we have drawn plots for the energy per
unit Hopf number,E/H , against the twist per unit
lengtha. Each point on the plot corresponds to a solu-
tion of the equations of motion for a givena. These en-
ergy plots for different Coulomb couplings can be de-
scribed by spectral functionsf (a,C). As visible from

Fig. 1. The total energy per unit Hopf number as a function ofa, for
different values ofC.

the plots, these spectral functions all have the follow-
ing features in common: for eachC the spectral func-
tions are smooth, positive, and strictly convex with a
nontrivial minimum. That for a givenC the spectral
functionf (a,C) is a positive convex function of the
twist a could be seen a priori from the form of the en-
ergy Eq. (7). As both fora → 0 and∞, E/H diverges,
given that the solutions are smooth. However, what is
remarkable is the form of the graph of the function.
The unique minimum point of the graph, occurring
at aC , represents the true stable solution that an axis-
symmetric vortex tube with a given number of twist
would settle to. Too many, or too few, twists per unit
length in the tube to begin with would result in insta-
bility. It is to note that asC varies so doesaC , but lit-
tle. We have performed the numerical simulations for
a number of representative values of the parameters,
quite far away from realistic values applicable, e.g., to
coronal loops on the solar photosphere. It would cer-
tainly be of interest to extrapolate our calculations for
the physically interesting values ofC. Unfortunately,
in this case the various numerical parameters involved
deviate from each other by several orders of magni-
tude. As a consequence we find numerical intractabil-
ity as a hindrance for achieving this goal, and postpone
it to future publications.

The plots for the energy and ion densities have
also some interesting features, as described in Figs. 2
and 3. Namely, the peak of the ion density plot lies,
somewhat counter-intuitively, slightly off the center.
The reason for this can be traced to the twisting of
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Fig. 2. The energy density versus distance for different values ofC.

Fig. 3. Ion density versus distance at the minimumaC for different
values ofC.

the field lines. By looking at the energy density plot,
one can furthermore estimate the thickness of the
vortex tube and, on the other hand, by reading off the
minimum point of the spectral curve one can estimate
its length. We find that the ratio between the length and
the thickness turns out to be 2.5. This suggest that for
a would-be toroidal configuration the energy density
becomes lumped at the center of the toroidal structure
in analogy with the model [7]; see [10,11].

The total number of ion and electron numbers,
respectively,Ne andNi , are tabulated in Table 1 for
different values ofa andC. Clearly, we do not obtain
Ne = Ni implying the vortices carry charge, but this
we consider to be a finite size-effect as the simulations
are run on a finite lattice. One can, however, conclude
from the table that the heavier ions are concentrated

Table 1
Total number of ions,Ni , and electrons,Ne , for different values of
the twist per unit length,a, and the Coulomb coupling,C

a C4 = 0.1 C4 = 1.0 C4 = 10.0

Ni Ne Ni Ne Ni Ne

0.2 5632 784 5554 641 1448 633
0.3 3334 774 2753 716 1384 623
0.4 2057 751 1821 720 1061 628
0.5 1325 722 1250 706 1019 622
0.6 910 693 888 685 782 628
0.7 667 666 660 661 619 624
0.8 515 641 512 638 494 613
1.0 342 596 342 595 338 583
1.2 250 557 250 557 249 551
1.4 194 524 194 524 193 520
1.6 157 495 157 494 157 492
1.8 131 469 131 469 131 467
2.0 112 446 112 446 112 445

more towards the center of the tube and the lighter
electrons are spread out more to the bulk.

To conclude, we have presented numerical evi-
dence that the gauge field theory model of plasma [1]
admits stable, twisted line vortices. Furthermore, even
though we have only considered a cylindrically sym-
metric ansatz, the similarity with the somewhat simpler
Faddeev model where noncylindrically symmetric,
knotted solitons have been numerically constructed [10,
11] suggests that the present model might also ad-
mit toroidal or even knotted solitons. Consequently it
would be very interesting to extend our analysis to the
general case of knotted configurations. This requires
a full three-dimensional simulation which at the mo-
ment remains a highly demanding numerical problem.
Moreover, in the line vortex case it would also be inter-
esting to run simulations in the physically interesting
regime of the parameter space in order to understand
for example the origin of the coronal loops on the solar
photosphere. At the moment this is also hampered by
technical reasons, as the various parametes involved
deviate from each other by several orders of magni-
tude, in the case of solar surface. This unfortunately
undermines the numerical stability in our present sim-
ulations. Besides finding plausible applications in ar-
eas of plasma and condensed matter physics, our study
also suggests the study of knot solitons in gauge field
theories in general [13]. Indeed, a highly interesting
question would be whether the weak sector of the stan-
dard model admits knot solitons [3,6].
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