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Study of Bogomol’nyi vortices on a disk
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Abstract. Bogomol’nyi vortices on a disk with Dirichlet boundary conditions are investigated
and solutions are shown to exist. The dimension of the moduli space of solutions is twice the
vortex number. For one vortex near the boundary of the disk, the moduli space looks like a
hyperbolic plane. To check these findings various numerical tests are made on square domains
with/without holes.

PACS number: 1110

1. Introduction

Bogomol’nyi vortices arise in two dimensions as topologically stable, static, and finite
energy solutions to the critically coupled Abelian Higgs model [3]. It is of interest to know
more about their properties and dynamics. The moduli space of Bogomol’nyi vortices,
which is a finite-dimensional manifold that parametrizes the solutions, plays an important
role in the study of dynamics. According to Manton [10], at low energy—when most of
the degrees of freedom remain unexcited—the dynamics of these vortices can be effectively
modelled as geodesic motion on the moduli space. This moduli space approximation thus
enables us to describe various physical phenomena of Bogomol’nyi vortices [11–13].

Bogomol’nyi vortices have usually been studied either onR2 or on a compact two-
dimensional region without a boundary [14, 15, 4]. However, one may also study vortices
on a compact two-dimensional region with a boundary. This may be applicable to the study
of superconductivity. In a region with a boundary one is first confronted with the choice of
boundary conditions. These choices must be made in such a way as to ensure the existence
of vortices. Moreover, it is desirable in the study of vortices in a compact region with a
boundary to retain as much as possible the features of vortices onR2 or in a compact region
without a boundary. It is known that for vortices in a compact region without a boundary
or in R2, the energy, as well as the total magnetic flux, is quantized. Thus, for vortices in
a compact region with a boundary one would like to see quantization of energy and total
magnetic flux.

One can think of two types of natural boundary conditions: Dirichlet boundary
conditions or Neumann boundary conditions. For Dirichlet boundary conditions, the Higgs
field takes its vacuum expectation value on the boundary. This choice essentially gives
the winding necessary for the topological existence of vortices. Besides, it also guarantees
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the quantization of energy, although the total magnetic flux is not quantized. On the other
hand, for Neumann boundary conditions, the normal component of the covariant derivative
of the Higgs field, vanishes at the boundary. Such a choice may not produce any vortex-like
solution at all. In this paper we will consider the Dirichlet case only. As a model of the
compact region with a boundary, we will consider a two-dimensional region,M, which is
topologically a disk. Occasionally, we will also consider a flat disk—which will be denoted
by M as well—with a circular boundary of radiusR.

After choosing the boundary conditions, one can then ask questions about the existence
of solutions and, if solutions do exist, about the dimension of the moduli space and about
what it looks like. It is known that onR2 [14, 15] or on a compact region without boundary
[4, 8] Bogomol’nyi vortices do exist. The dimension of the moduli space is determined by
the vortex number, which is the number of zeros of the Higgs field counted by multiplicity.
In the sector with vortex numberN , this dimension is 2N . For the Bogomol’nyi vortices
on a disk, we show, following Taubes [14, 9], that solutions do exist and the moduli space
is 2N dimensional. Below, we give numerical evidence supporting this. Incidentally, we
should point out that a naive application of index theory in this case gives a different count
for the dimension. However, for vortices inR2 or in a compact region without a boundary,
index theory gives the correct dimension.

The choice of Dirichlet boundary conditions makes it possible to explore the moduli
space near the boundary. We do this explicitly for one vortex. In this case, near the
boundary, one can approximate the nonlinear Bogomol’nyi equation for the Higgs field by
a Laplace equation with a source. The well known image method for solving a Laplace
equation can be used to obtain the approximate behaviour of the Higgs field near the
boundary. The solutions in turn can be used to extract information about the volume, and
about the metric of the moduli space near the boundary. The moduli space for one vortex
near the boundary is found to be a hyperbolic plane and hence, the volume of the moduli
space diverges. This came as a surprise. It might have been expected that for Bogomol’nyi
vortices on a finite region, the moduli space should also be a finite region.

This paper is organized as follows. We begin section 2 with a brief introduction to the
Abelian Higgs model and the associated Bogomol’nyi equations with the various choices of
boundary conditions and their relation to energy and magnetic flux quantization. In section 3
we show how Taubes’ work [14, 9] can be adapted to our case to prove the existence of
the solutions. This also shows that the dimension of the moduli space is 2N . In section 4
we compute the volume, and the metric of the moduli space near the boundary. Finally,
section 5 describes various numerical tests of the analytic calculations.

2. Bogomol’nyi vortices

We start with a complex scalar field,φ, coupled to aU(1) gauge potential,Aµ, in 2+1
dimensions with the metric signature(1,−1,−1). The metric of the spacetimeR×M, can
be taken to be of the form

ds2 = dx2
0 −�(x1, x2)(dx

2
1 + dx2

2). (2.1)

For a flat disk we can set� = 1. The Lagrangian density for the Abelian Higgs model is

L = − 1
4FµνF

µν + 1
2DµφDµφ − 1

8λ(|φ|2− 1)2 (2.2)

whereDµ = ∂µ − iAµ, Fµν = ∂µAν − ∂νAµ, (µ, ν = 0, 1, 2) and the units are chosen such
that both the gauge-field coupling constant and the mass of the Higgs field are one. The
free parameterλ determines the nature of interaction between the vortices. Forλ < 1 the
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vortices attract—a case relevant to type I superconductivity—and forλ > 1 they repel—a
case relevant to type II superconductivity. Forλ = 1, dubbed the critically coupled case
and the case we are considering here, the total force is zero, permitting static multivortices
to exist. In this case it is possible to factorize the Lagrangian in such a way that vortices
satisfy the first-order Bogomol’nyi equations.

Working in the gaugeA0 = 0, the Lagrangian isL = T − V where,

T = 1
2

∫
M

d2x (ȦiȦi +�φ̇ ˙̄φ), (i = 1, 2) (2.3)

V = 1
2

∫
M

d2x �( 1
2FijF

ij +DiφDiφ + 1
4(|φ|2− 1)2) (2.4)

are, respectively, the kinetic and the potential energies. Further, we need to impose Gauss’
law. This arises from the equation of motion ofA0 as the following constraint

∂iȦi −�Im (φ̇φ̄) = 0, (i = 1, 2). (2.5)

In the static case the total energy,E = V , becomes

E = 1

2

∫
M

d2x

[
(D1± iD2)φ (D1±D2)φ +�−1

{
F12± �

2
(|φ|2− 1)

}2

±i{∂2(φ̄D1φ)− ∂1(φ̄D2φ)} ± F12

]
. (2.6)

Bogomol’nyi vortices, which minimize the above energy integral, satisfy the first-order
Bogomol’nyi equations:

(D1± iD2)φ = 0 (2.7)

F12± �
2
(|φ|2− 1) = 0. (2.8)

Here, the positive sign gives rise to vortices and the negative sign to antivortices. One can
obtain antivortices from vortices by changing the orientation of the plane. In this paper we
will only consider vortices.

Before discussing the choice of the boundary condition, we rewrite the Bogomol’nyi
equations in terms of a new fieldh, whereh = 2 log|φ|. The fieldh is singular at the zeros
of φ. From (2.7), expressing the gauge potentials in terms ofh and the phase of the Higgs
field, and substituting them back into (2.8), we obtain the following equation satisfied byh

4h+�(eh − 1) = 4π
N∑
i=1

δ2(x− xi ) (2.9)

wherexi denote the position of the zero of the Higgs field associated with theith vortex
and4 is the flat-space Laplacian∂2

1 + ∂2
2. This equation will play an important role in

proving the existence of the solutions.
The vacuum solution withE = 0, corresponds to takingφ = 1 everywhere with the

gauge potentials zero. In order to obtain finite-energy Bogomol’nyi vortices inR2, one
usually sets on the boundary,|φ| = 1 andDtφ = 0, whereDt is the tangential component
of the covariant derivative. The first condition makes it possible to classify the vortices into
topologically stable sectors determined by vortex numberN . The second condition allows
us to express the energy solely in terms of the total magnetic flux,8. One finds that the
energyE = πN and the total magnetic flux8 = 2πN , respectively.

As in the R2 case, for the Bogomol’nyi vortices on a disk one can take Dirichlet
conditions

|φ| = 1 (2.10)
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on the boundary. As in theR2 case, this gives the necessary winding number for vortices
to be classified into different topological sectors. However, unlike theR2 case, one cannot
imposeDtφ = 0 on the boundary. This can be seen heuristically as follows. IfDtφ = 0, the
Bogomol’nyi equation (2.7) would imply thatDnφ, which is the normal component of the
covariant derivative of the Higgs field, vanishes on the boundary as well. This means that
∂n|φ|2 = 0, on the boundary. Written in terms of the fieldh, the two boundary conditions,
|φ| = 1 and∂n|φ|2 = 0, would then read,h = 0 and∂nh = 0. Now, away from the zeros
of the Higgs field and also very close to the boundary, (2.9) reduces approximately to a
Laplace equation. Thus, close to the boundary we are left with a Laplace equation with
both Dirichlet and Neumann boundary conditions. This is too strong a constraint for any
interesting solution to exist.

Choosing Dirichlet conditions retains the energy quantization property, but the total
magnetic flux is no longer quantized. To see this, we rewrite the energy integral (2.6) for
Bogomol’nyi vortices as

E = 1
2

∫
M

[±i{∂2(φ̄D1φ)− ∂1(φ̄D2φ)} ± F12]. (2.11)

In the sector with vortex numberN , one can take the phase of the Higgs field on the
boundary to be eiNθ , 06 θ < 2π . A straightforward computation gives

E = πN. (2.12)

On the other hand, sinceDtφ 6= 0 on the boundary, the tangential component of the gauge
potential is not directly related to the winding number. Thus, the total magnetic flux, which
is the integral of the tangential component of the gauge potential on the boundary, is no
longer quantized.

Before concluding this section, let us briefly point out that the non-vanishing ofDnφ on
the boundary, which is a consequence of Dirichlet boundary conditions, is not uncommon in
superconductivity. In the phenomenological Ginzburg–Landau theory for superconductivity,
which is the non-relativistic version of the Abelian Higgs model, one usually requires the
vanishing of the normal component of the supercurrent on the boundary. The current in the
Ginzburg–Landau theory is given by

Ji = i

2
(φ̄Diφ − φDiφ), i = 1, 2. (2.13)

To haveJn = 0 on the boundary it is enough to setDnφ = aφ, for some reala, on
the boundary. Such a choice is usually considered for the type II superconductors and
metal/alloy junctions [5].

3. The existence of solutions

The question of existence of Bogomol’nyi vortices has been dealt with in various ways.
Taubes [14, 9] used functional analysis in order to prove their existence onR2 whereas
others [4, 8] used differential geometric arguments to prove their existence on a compact
manifold without a boundary. Our case, topologically a disk, is closely related to Taubes’
work. Taubes’ arguments can be applied to our case with only minor changes. Moreover,
since our domain is compact, Taubes’ arguments simplify greatly. In what follows we will
just point out the changes necessary to make Taubes’ arguments work in our case. For
details the reader is referred to [9].

In this section unless otherwise stated we will takeM to be a flat disk of circular
boundary of radiusR. We can set� = 1 in all of the formulae of the previous section.
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For a givenN zeros of the Higgs field onR2, Taubes basically proved the existence and
uniqueness of the solutions to the equation (2.9) onR2. We will do the same forM. Let us
take theN zeros of the Higgs field to be atxi , i = 1, . . . , N . The first task is to eliminate
the singularities on the right-hand side of (2.9). To do this, writeh as

h = v + u0 (3.1)

such that

4u0 = 4π
N∑
i=1

δ2(x− xi ). (3.2)

We take the boundary condition foru0 to be u0 = 0 on the boundary. Sinceh = 0 on
the boundary, this means thatv = 0 on the boundary as well. Such au0 is given by the
following Green function of the disk

u0(x,xi ) =
N∑
i=1

log

[
R2|x− xi |2

(R2− x2)(R2− x2
i )+ R2|x− xi |2

]
. (3.3)

Note that our choice ofu0 is different from Taubes’. In the notation of Taubes this choice
of u0 makes ‘g0 = 0’. In terms ofv, (2.9) becomes

4v = ev+u0 − 1. (3.4)

Thus, in order to deal with the existence problem, one needs to prove the existence of
solutions to (3.4). Here,v lives in the spaceC∞0 (M), the space of smooth functions with
support on the interior ofM.

The strategy to show the existence and uniqueness of solutions to (3.4) is first to define
a suitable convex functional and then to prove the existence of a unique minimum of the
functional. Such a convex functional is

a(v) =
∫
M

[ 1
2|∇v|2− v + eu0(ev − 1)] d2x (3.5)

which is defined onC∞0 (M). Again note that this functional is different from Taubes’. The
variation of the functional gives (3.4). The domain of the functionala(v) can be extended
from C∞0 (M) to the Sobolev spaceH1, which is the completion ofC∞0 (M). Proving this
assertion, along the line of Taubes’, for the flat diskM is rather easy; since due to the
compactness of the disk one only needs to worry about the logarithmic singularities ofu0

which are locally square-integrable. For the functionala(v), whose domain is nowH1,
one can show the existence of the functional derivatives. Next, following Taubes, it can be
shown that (3.5) satisfies similar coercive estimates as in theR2-case. In order to prove this
we may use lemma 3.8 in [9]. There, in the notation of Taubes, one should take ‘b = 1

2’.
This can be seen by puttingg0 = 0 and eu0 6 1 in the latter part of the proof of that
lemma. Using all these facts, the existence of a unique minimum of the functionala(v) is
guaranteed (propositions VI.7.7, 7.8 in [9]). Thus, given the positions ofN zeros of the
Higgs field, there exists a unique solution to the Bogomol’nyi equations for vortices on a
flat disk with a circular boundary. We conjecture that in the same way, which could be
technically more difficult, one should be able prove the existence of solutions for vortices
on a region which is topologically a disk.

The positions of the zeros of the Higgs field parametrize the moduli space. In the given
sector of vortex numberN the dimension of the moduli space is 2N . We would like to point
out that one might try to compute the dimension of the moduli space using Atiyah–Singer
index theory. We will relegate this computation to the appendix. However, using the index
theory we obtain a different count for the dimension of the moduli space. This is because,
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in index theory computation one needs to use global boundary conditions which are not
compatible with our choice of Dirichlet boundary conditions.

We should note that for vortices onM, which is topologically a disk, there is one
important difference from vortices on a compact region without a boundary, namely that
there is no Bradlow’s bound [4] as far as the existence of the solutions is concerned. On
a compact region without boundary, integrating the Bogomol’nyi equation (2.8) and noting
that |φ|2 is positive, one obtains an upper bound to the first Chern number. This bound is
N 6 A/4π , whereA is the area of the compact region. Thus, for a given vortex number
N , there is a minimal choice for the area of the compact region for the vortex solutions to
exist. On the other hand, for Bogomol’nyi vortices onM, there is no such bound. This is
because the corresponding Bradlow’s bound is expressed in terms of the first Chern number,
which is usually a fraction, and is no longer the vortex number. Our numerical calculations
in the last section confirm this fact.

4. The moduli space near the boundary

4.1. Disk with a smooth boundary

In this section unless otherwise stated we will takeM to be a two-dimensional region which
is topolgically a disk and we will use complex coordinates. As mentioned in the introduction,
according to Manton [10], the kinetic energy given by (2.3) determines a natural metric on
the moduli space. Samols [12] obtained an expression for this metric using data around
the zeros of the Higgs field. As his analysis is local, the same formula of the metric can
be adapted for the diskM. The only thing to worry about is a contribution to the metric
coming from the boundary. However, Dirichlet conditions,h = 0 on the boundary, can be
used to show that such a contribution is zero. Letzi = x1i+ ix2i , (i = 1, . . . , N) denote the
zeros of the Higgs field. The boundary contribution to the metric is−i

∫
∂M

dz̄ η̃∂z̄η̃, where

η̃ =∑N
i=1 dzi ∂h∂zi [12]. Clearly, this boundary contribution to the metric is zero asη̃ is zero

on the boundary.
Near a simple zerozi of the Higgs field,h has the following series expansion

h = log |z− zi |2+ ai + 1
2{bi(z− zi)+ b̄i (z̄− z̄i )}

+ci(z− zi)2− �(zi)
4

(z− zi)(z̄− z̄i )+ c̄i (z̄− z̄i )2+ · · · . (4.1)

Here, the coefficient�(zi)/4 of the mixed quadratic term is obtained by substituting the
above expression in (2.9). The metric of the moduli space is

ds2 =
N∑

i,j=1

(
�(zi)δij + 2

∂b̄j

∂zi

)
dzi dz̄j . (4.2)

The metric has two contributions. The first is induced from the metric ofM on which the
vortices are moving and the second is a modification to it which we will call the excess
metric. The associated Kähler form is

ω = i

2

n∑
i,j=1

(
�(zi)δij + 2

∂b̄j

∂zi

)
dzi ∧ dz̄j . (4.3)

Then, the volume of the moduli space is

VolN = 1

N !

∫
ωN. (4.4)
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For one vortex the volume (area) of the moduli space is

Vol1 = i

2

∫
M

�dz ∧ dz̄+ i
∫
∂M

b̄1 dz̄ (4.5)

where the first integral is the area ofM and the second integral is a modification to it which
we will call the excess volume. It is to be noted that for a single vortex onR2 the excess
volume is zero, sinceb1 = 0 due to the translational symmetry. In future, for a single
vortex we will denote the excess metric and the excess volume of the moduli space by ds2

1
andV1 respectively. We will also denoteb1 by b. In the rest of this section we will be
concerned with findingb near the boundary. This can be used to obtain the metric of the
moduli space near the boundary and the excess volume of the moduli space. Our primary
concern will be a one-vortex case, since knowing that will be the first step to obtaining the
metric for theN vortex moduli space which is topologically the symmetrizedN th power
of the one-vortex moduli space.

We have already mentioned that near the boundary, due to Dirichlet boundary conditions,
it is possible to approximate the nonlinear equation (2.9) by a Laplace equation with a source.
Heuristically, this can be seen as follows. There are two distance scales involved in the
problem. One is the size of the disk and the other is the distance of the vortex from the
origin. Near the boundary it may appear that one can forget about the exponential term in
(2.9), but the nonlinear nature of the equation may not permit this. The effect of nonlinearity
can be unravelled by noting that (2.9) can be solved by an iteration of the following form [1]

h = h0+ hn (4.6)

where

4h0 = 4πδ2(z− z1) (4.7)

with h0 = 0 on the boundary and

4hn = �(ehn−1 − 1) (4.8)

with hn = 0 on the boundary. It is amusing to note the absence of� in (4.7). h0 is the
Green function of the diskM. In terms ofh0, the solution ofhn is

hn(z, z1) = 1

4π

∫
M

�(z′)h0(z, z
′)(ehn−1(z1,z

′) − 1) dz′ dz̄′. (4.9)

The iterative solutionhn is smooth and moreover, it can be shown that it converges to a
unique limit [1]. Now, if z is near the boundary then irrespective of the position of the
source|hn(z, z1)| ∼ O(ε′). Here ε′, a small positive number, is the distance betweenz

and the nearest point on the boundary. On the other hand, assuming that the source is not
near the boundary, one can estimate using the Green function ofM that h0 ∼ hn near the
boundary. In order to haveh0 ∼ O(1) near the boundary, so that the nonlinear correction
hn can be neglected, we require|z − z1| ∼ ε′. Thus, to use a Laplace equation with a
source as an approximation to the nonlinear equation (2.9), the source as well as the point
we are looking at should lie quite close to the boundary. However, this is quite well suited
to our purpose, since in order to evaluate the volume of the moduli space we need to know
b while keeping the vortex always a small fixed distance away from the boundary.

We will now solve (4.7). The vortex is at a distanceε, say, away from the boundary
and we want to solve a Laplace equation with a source with the correct boundary value, for
length up to O(ε) along the boundary (i.e. the part of the boundary nearest to the vortex). In
such a case, the method of images can be applied. For generality, we consider the boundary
of M to be given by a closed curve. We will first linearly approximate the boundary by its
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Figure 1. Geometry of the boundary at an arbitrary point.

tangent and next we will quadratically approximate it by taking curvature into consideration.
Let APE be a section of the boundary and let the position of the source, S, be atξ = ξ1+ iξ2,
and SP be the normal to the boundary with P on the boundary being atξP = ξ1P+ iξ2P

(figure 1). The image, I, is atξI = ξ1I+ iξ2I. PI is normal to the boundary at P, and SP= PI,
in the linear approximation.

Then,h0 is sum of the potentials due to the source, S, and the image, I,

h0 = log |z− ξ |2− log |z− ξI |2. (4.10)

From this, we find that

b = (ξP− ξ)−1. (4.11)

Let us consider the vortex restricted to being more than distanceε away from the boundary.
The leading contribution to the volume (area) of the moduli space comes from the excess
volume and the next subleading contribution (up to an O(ε) ambiguity) is given by the
actual area of the disk. The excess volume of the moduli space is

V1 = S
ε

(4.12)

whereS is the perimeter of the boundary andε = |ξ − ξP| = SP. The excess metric of the
moduli space near the boundary is

ds2
1 =

2

(ξ̄P− ξ̄ )2
∂ξ̄P

∂ξ
[dξ2

1 + dξ2
2 ]. (4.13)

From (4.12) it can be seen that the excess volume of the moduli space diverges as one
approaches the boundary. In fact we will see shortly that near the boundary, apart from a
constant factor, the metric is that of a hyperbolic plane. This divergence of the volume is
due to Dirichlet boundary conditions. Actually, very close to the boundary the magnitude
of the Higgs field has to rise sharply from 0 to 1. This makes the derivative and, hence,
the volume divergent.

In terms of the normal to the boundary,N = êx1N1 + êx2N2, at P,b̄ can be written as
b̄ = (N1+ iN2)/ε. This can be used to obtain

∂b̄

∂ξ
=
∣∣∣∣∇ · (N2ε

)∣∣∣∣+ i

∣∣∣∣∇ × (N2ε
)∣∣∣∣ . (4.14)

Now, let us go to a coordinate system such that its origin coincides with the position of the
vortex. Then,N2 = 0 andN1 = −1 which means thatξ1 = ξ2 = ξ2P = 0 andξ1P = −ε.
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Equation (4.14) gives∂b̄
∂ξ
= 1/2ε2. Using (4.13), we obtain the following excess metric

near the boundary

ds2
1 =

1

ε2
(dε2+ dξ2

2 ). (4.15)

Clearly, this is the metric of a hyperbolic plane.
For a flat disk with a circular boundary of radiusR, one can exactly solve a Laplace

equation with a source. This can be compared with the above results obtained by the linear
approximation where the boundary is taken to be of arbitrary shape. First, one finds that
ξP = Rξ/|ξ |. Then, in the linear approximation, using (4.5), the excess volume is

V1 = (2πR)/ε, (4.16)

and from (4.13), the excess metric near the boundary is

ds2
1 = ((R − r))−2(dr2+ r2 dθ2). (4.17)

In the coordinate system used in the previous paragraph one obtains

ds2
1 =

1

ε2
(dε2+ dξ2

2 ). (4.18)

On the other hand, using the exact Green function for a flat disk, (3.3) withN = 1, we find
that

b = 2ξ̄ /(R2− |ξ |2). (4.19)

Thus, when the vortex is near the boundary, one obtains the excess volume

V1 = (2πR)/ε (4.20)

which is divergent. Note that this is the same as (4.16). The excess metric is

ds2
1 = 4r2(R2− r2)−2(dr2+ r2 dθ2) (4.21)

which reduces to (4.17) whenr ∼ R.
Now, we will take into account the curvature of the boundary. Here, we take the source,

S, to be atξ with SP= ε. Let aP and cP be, respectively, the radius and the centre of
curvature, C, of the boundary at P (figure 1). Then, the solution of (4.7), such that it satisfies
the boundary condition for a boundary length O(ε), is

h0 = log

[
a2

P|z− ξ |2
(|z− cP|2− a2

P)(|ξ − cP|2− a2
P)+ a2

P|z− ξ |2
]
. (4.22)

This gives

b = 2(ξ̄ − c̄P)

a2
P− |ξ − cP|2

. (4.23)

If, as before|ξP− ξ | = ε, i.e. the vortex is quite close to the boundary, we obtain

b = 2(ξ̄ − c̄P)

ε(2|ξ − cP| + ε) . (4.24)

After a lengthy calculation one can show that the excess volume is

V1 = S
ε
− 3π (4.25)

whereS is the perimeter of the boundary. The volume still diverges. At O(1/ε), both the
linear, (4.12), and the quadratic approximation, (4.25), give the same result for the excess
volume. Going to a special coordinate system withcP = 0, at O(1/ε), b of (4.23) and (4.11)



454 S M Nasir

agree. Thus, the hyperbolic nature of the metric emerges here also. This means that the
divergence of the volume of the moduli space and the appearance of the hyperbolic metric
near the boundary is a generic feature for a single vortex moving on a two-dimensional
region which topologically looks like a disk. Further, these properties are independent of
the shape of the boundary.

Let us briefly comment on the the constant term in the expression (4.25). Such a
constant term cannot be obtained by adding the nonlinear correction termhn to h0. Its
appearance initially seems to have the following inconsistency. As we shrink the disk size
by letting aP ∼ ε andε → 0 so that the vortex cannot move, one obtainsV1 = −π . This
contradicts the expectation that whenaP = 0, the excess volume (also, the total volume)
is zero. However, in this case (4.25) is no longer valid. This is because to obtain (4.25)
we used (4.24) which is obtained by assuming that bothaP and |ξ | � ε. In the case when
the disk radius goes to zero one should consider the exact expression (4.23) forb. Hence,
taking the limit when bothaP → 0 and |ξ | → 0, one finds thatb = 0. Thus, the excess
volume is zero as expected.

4.2. Region with corners

We will briefly discuss the case when the vortex moves on a rectangle or region with corners,
since the numerical study of the next section will involve vortices on a square. The linear
approximation works here as well, except at the corners.

Let us consider a vortex on a flat rectangle. We will see that at O(1/ε) the excess
volume of the moduli space still agrees with the previous results. For a rectangle of width
a and lengthl (figure 2), a single source inside the rectangle produces an infinite lattice of
images. It can be shown that the solution of (4.7) is

h0 = 1

2
log

∣∣∣∣P(z− ξ̄ )P(z+ ξ̄ )P(z− ξ)P(z+ ξ)
∣∣∣∣2 (4.26)

whereP( ) denotes Weierstrass’P-function with the complex period 2a + i2l. It is clear
from (4.26) thath0 vanishes on the edges of the rectangle. The excess volume is

V1 = (2a + 2l − 8ε)/ε = S/ε (4.27)

as expected.

ξ
S

x1

x2

O

Figure 2. One vortex inside a rectangle.
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Figure 3. Geometry around a corner.

Now, we will work out the changes in the formulae for the excess volume and the excess
metric for a vortex moving around a corner of arbitrary opening angle. These will be used
for comparison with the numerical result of the next section. Let us first find the change in
the excess volume. Suppose that the corner, ABC, with opening angleβ, is situated at the
origin and one of its edges lies on thex1-axis (figure 3). The source, S, is atξ. Then

h0 = log

∣∣∣∣zπ/β − ξπ/βz̄π/β − ξπ/β
∣∣∣∣2 (4.28)

which gives

b = (π/β − 1)/ξ − 2π

β

ξπ/β−1

ξπ/β − ξ̄ π/β . (4.29)

Let us consider that, around the corner the vortex traverses a symmetrically located path of
length 2ε (DEF in figure 3). Then, the contribution from the corner to the excess volume is

δV1 = (2ε)

ε
− 2(1− π/β)(α1− α2) (4.30)

whereα1, α2 are, respectively, the phases of the initial and the final position of the vortex.
These are,α1 = tan−1(1+ cotβ/2) and α2 = β − α1. The first term in (4.30) is from
a corresponding region with the corner being rounded off and the second term is solely
a corner effect. Once again the excess volume is divergent. Similarly, the excess metric
around the corner is

ds2
1 = 4(π/β)2

(ξ ξ̄ )π/β−1

(ξ̄ π/β − ξπ/β)2 (dξ
2
1 + dξ2

2 ). (4.31)

4.3. An example of a closed and circular geodesic

The hyperbolic nature of the metric near the boundary of the one-vortex moduli space has
motivated us to look into this. Let us consider a vortex on a flat diskM ′ with an outer
circular boundary of radiusR. Further, we takeM ′ to contain a hole of radiusR′. The one-
vortex moduli space is topologicallyM ′. The circularly symmetric nature of the problem
suggests that the most general form of the metric of one-vortex moduli space is

ds2 = ρ(r)(dr2+ r2 dθ2). (4.32)
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Figure 4. Two-vortex solution on a square of size 0.5.
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Figure 5. Contour plot of the Higgs field for two vortices on a square of size 0.5.

From our previous analysis we know that the vortex moduli space looks like a hyperbolic
plane near the outer boundary. The same result also holds true near the inner boundary.
Thus, near the two boundaries, respectively, atr = R andr = R′, we obtain, using (4.21)

ρ ∼ 4R2

(R2− r2)2
asr → R (4.33)

and

ρ ∼ 4R′2

(r2− R′2)2 asr → R′. (4.34)
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Figure 6. Two-vortex solution on a square of size 0.5 with the hole size 0.1.
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Figure 7. Contour plot of the Higgs field for two vortices on a square of size 0.5 with the hole
size 0.1.

Now, if r = r(θ) denotes a geodesic in the moduli space, the equation of the geodesic
is

r ′′ −
(

1

r
+ ψ(r)

2

)
r ′2− r

2

2
ψ(r) = 0 (4.35)

wherer ′ = dr/dθ , r ′′ = d2r/dθ2 andψ = d(ln(ρr2))/dr. From (4.35) one sees that at each
zero ofψ(r) there exists a closed circular geodesic. Equations (4.33) and (4.34) imply that
ψ is negative nearr ∼ R′ andψ is positive nearr ∼ R. Hence, there must be at least
one zero ofψ at r = R0, say. This proves the existence of a closed, circular geodesic at
r = R0 in the moduli space of one vortex onM ′. This closed, circular geodesic will be
unique ifψ has a unique zero. If there is such a unique geodesic it may be plausible that
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Figure 8. Real part ofb as a function of vortex position, for one vortex on a square of size 0.5.
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Figure 9. Contour plot of Re(b) for one vortex on a square of size 0.5.

this will be unstable. By this we mean that any nearby geodesic will always hit either one
of the two boundaries.

5. Numerical results

In this section we will verify numerically some of the analytical results obtained in the
previous sections. We will set� = 1 throughout this section. To check if there are
solutions to the Bogomol’nyi equations with Dirichlet boundary conditions, we consider
(2.9) to be solved by numerical methods. For computational convenience, we first rewrite
h in a slightly different way, ash = f + u1, where

u1 =
N∑
i=1

log |x− xi |2. (5.1)
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Figure 10. Magnitude ofb for one vortex on a square of size 0.5.
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Figure 11. Contour plot of|b| for one vortex on a square of size 0.5.

Then, the equation forf is

4f = ef+u1 − 1 (5.2)

with the boundary conditionf |∂M = −u1|∂M . In terms off , the modulus of the Higgs
field and the coefficientsbi ’s in the expansion ofh are, respectively,|φ| = ef+u1 and
bi = ∂f/∂z|z=zi , i = 1, . . . , N . To compute the energy of the vortex configuration we
rewrite (2.6) using the Bogomol’nyi equations, in the following way

E =
∫
M

d2x [(∂1|φ|)2+ (∂2|φ|)2+ 1
4(1− |φ|2)2] (5.3)

which is more amenable to numerical computation. The elliptic equation (5.2) can be solved
numerically using the successive over relaxation (SOR) method [7].
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Figure 12. Moduli space metric (i.e. the coefficient of dz dz̄) for one vortex on a square of size
0.5.
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Figure 13. A section of the metric across the middle of the moduli space and sections of the
hyperbolic metric.

For computational ease, instead of taking a disk we considered vortices on a square
domain. The square domains we took were of various sizes, namely 0.5, 1, 1.5 units which
were discretized into meshes of sizes 33×33, 43×43, and 53×53, respectively. We found
that (5.2) relaxes to give vortex solutions by takingf = 0 inside the square and the required
boundary value on the edges (figures 4 and 5). The tolerance for the residual norm was taken
to be 10−4. It was found that for the square of size 0.5, about 100 sweeps were required for
the relaxation to reach below the tolerance level and the number of sweeps varied linearly
with the size of the square. Concerning whether these solutions really describe Bogomol’nyi
vortices, we also computed the energy and the total magnetic flux. It was found that the
energy varied linearly with the vortex number. Also, the energy was independent of the
size of the square and of the positions of the vortices. As an example, for the square of size
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Figure 14. Real part ofb as a function of vortex position, for one vortex on a square of size
0.5 with the hole size 0.1.
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Figure 15. Contour plot of Re(b) for one vortex on a square with the hole size 0.1.

0.5, andN = 1 the energy was found to be 3.144. This is pretty close to the theoretical
value,E = π . On the other hand, the total magnetic flux varied with the size of the square,
and also, with the position of the vortices. However, for a given vortex number, the total
magnetic flux did not vary much when the size of the square was sufficiently large. This is
consistent with the fact that in the limit when the disk size is infinite the total magnetic flux
is constant. To check the dimension of the moduli space we considered all of the squares
and put two vortices in various positions. In one case they were only one grid point away
from the boundary. Vortex solutions were found in all cases. Moreover, the existence of
solutions in these cases means that there is no Bradlow’s bound as such.
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Figure 16. Magnitude ofb for one vortex on a square of size 0.5 with the hole size 0.1.
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Figure 17. Contour plot of|b| for one vortex on a square of size 0.5 with the hole size 0.1.

Next, we carried over the whole procedure onto squares with square holes centred at
the origin. For the inner boundary we took the same boundary condition as the outside one.
Solutions were found in these cases as well, with energy varying with the vortex number
only and, the total magnetic flux likewise not a constant. One interesting feature in this case
is that vortices are more localized—the Higgs field taking the vacuum expectation value
almost everywhere (see e.g. figures 6 and 7)—but, as we decreased the size of the hole,
the Higgs field was more spread out in space with the field configuration approaching the
no-hole case.

The excess volume of the moduli space was computed in the one-vortex case. We kept
the vortex one grid point away from the boundary. This computation has some interesting
features. First, there is nice symmetry in the plot of the real and imaginary parts ofb. The
plot and the contour plot of the real part ofb are shown in figures 8 and 9, respectively. The
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corresponding plots of the imaginary part ofb can be obtained by a 90◦ rotation of figures 8
and 9. Second, the imaginary part in the formula (4.5) for the excess volume was found to
be zero as it should be since the volume is a real number. We found quite good agreement
between the numerical and the analytical result of the excess volume. As an example, for
the square of size 0.5, divided into 33× 33 grid points, the O(1/ε) contribution to the
excess volume is 129.22. On the other hand the corresponding result found numerically
was 129.62. To get some feeling about the size of the volume, we also computed the
magnitude ofb (figures 10 and 11). Close to the boundary,b takes very large values. From
the contour plot ofb, figure 11, one can see that the magnitude ofb is fairly constant
around the edges except at the corners. A close inspection of these figures reveal that there
are glitches around the corners. There the drop in the value ofb is about 30%. It is in
close agreement with the analytical result (4.29) (opening angleβ = π/2). Moreover, such
corner effects are concentrated in regions O(ε). This validates the assumption we made in
the corner analysis of the previous section. We also computed the metric of the moduli
space (figure 12). To explore the hyperbolic nature of the metric, we took a section of the
metric across the middle of the square, and superimposed on it the corresponding sections
of the hyperbolic metric (figure 13).

Finally, the excess volume and the various components ofb for the squares with holes
were computed (figures 14–17). There also, we found quite good agreement between the
numerical and the analytical result as long as the hole size is relatively small compared
with the square size. In one case with the square (size= 0.5, hole size= 0.1) divided
into 33× 33 grid points, the excess volume was found to be equal to (128.3+ 51.7). The
first and the second terms in the bracket are, respectively, due to the outer and the inner
boundaries. This is in good agreement with our analytical result. It appears that the two
boundaries do not interfere with each other. Actually this is so, as long as the hole size is
small relative to the size of the square. When the hole was taken to be comparable to the
square itself, the numerical value of the excess volume ceased to agree with the analytical
result. In these cases the boundaries interfere in a complicated way; these effects were not
taken into consideration in our simple approximation.
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Appendix. Index theory and the dimension of the moduli space

A.1. The dimension of the moduli space

The computation of the dimension of the moduli space using index theory [15] is quicker
than other means. In this appendix we first use Atiyah–Singer index theory [2] to compute
the dimension in the case of a compact manifoldX, without a boundary. Then, we do
the same for a compact manifold with a boundary. We shall see how the global boundary
conditions [2], which are not compatible with the Dirichlet boundary conditions we are
dealing with, changes the result. Finally, in order to appreciate the role of the global
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boundary conditions we compute the contribution to the index of the dominant elliptic
operator by counting the number of the zero modes.

Perturbing the Bogomol’nyi equations (2.7), (2.8) around a solution(Ai, φ) to (Ai +
δAi, φ + δφ) we obtain the following linearized equations,

∂1δA2− ∂2δA1+ �
2
(φδφ̄ + φ̄δφ) = 0 (A.1)

∂̄Aδφ − i(δA1+ iδA2)φ = 0 (A.2)

where∂̄A = D1 + iD2. The gauge transformation(Ai, φ)→ (Ai − i∂iλ, φ + iλφ) satisfies
the above equations. Now, the following elliptic complex can be defined

0→ 30(X)
d→ 31(X)⊕ 0(X,Lc) τ→ 32(X)⊕ 0(X,Lc)→ 0 (A.3)

whereτ = (d + ∂̄A), 3i is the space of thei-forms onX and0(X,Lc) is the space of the
sections,φ, of the line bundleLc. In terms of the elliptic operatorD = τ + d?, the above
complex can be written as

D : 31(X)⊕ 0(X,Lc)→ 30(X)⊕32(X)⊕ 0(X,Lc). (A.4)

The index ofD is then IndD = Ind(d+d?+∂̄A). Now, Ind∂̄A = 2
∫
X

Ch(φ)td(X) [6] where
td(X) is the Todd class ofX, Ch(Lc) is the Chern character of the line bundleLc, and the
factor of 2 is there due to the consideration of the line bundle over the real numbers. In two
dimensions, keeping only zero- and two-dimensional cohomology classes in the expansion
of the Chern character and the Todd class, we obtain, Ind∂̄A = χ(X) + 2

∫
X
c1(φ). Here,

χ(X) is the Euler characteristic ofX [6]. On the other hand, Ind(d + d?) is −χ(X).
Summing up, the index ofD, dim(kerD)− dim(cokerD), is 2

∫
X
c1(φ).

It can be shown that dim(cokerD) is 0 by noting thatDD? is a positive operator
(assuming the first Chern number is positive). Hence, the dimension of the moduli space,
dim(kerD), is given by IndD. It is just twice the first Chern number. Thus, in the sector
with vortex numberN , the dimension is 2N .

A.2. Contribution from the boundary

For the diskM with a boundary the above result receives two more corrections of the
following form [6]. We will takeM to be a flat disk with a circular boundary of radiusR.
Let the elliptic operatorD be expressed near the boundary asD = ∂

∂n
+ B, where∂/∂n is

the normal derivative on the boundary. Then,

IndexD = V [M] + S[∂M] + ξ [∂M]. (A.5)

Here,V [M] is a contribution from the bulk.S[∂M] is a boundary contribution expressed
as an integral of a Chern–Simons form. Finally,ξ [∂M] expresses the spectral asymmetry
of the boundary operatorB. It is equal to−(q+η(0))/2 whereq is the number of the zero
modes ofB andη(0) is the analytic continuation ofη(s) to s = 0; η(s) can be written as,
η(s) =∑λi 6=0sign(λi)/|λi |s , whereλi ’s are the eigenvalues ofB.

Let us evaluate the above contributions for a disk. We take the first Chern numberc, to
lie in the ranget < c 6 t+1, wheret is an integer. By a suitable gauge transformation it is
always possible to makeAθ = c on the boundary. Only the operator∂̄A contributes toV [M].
We obtainV [M] = 2c. S[∂M] gets contributions from(d + d?) only. One can show that
S[∂M] = χ(M) = 1. For a disk of radiusR the boundary operatorB is − eiθ

R
(i∂θ + Aθ).

Now, the eigenvalues of the boundary operator,B, are simplyλm = m − c with the
corresponding eigenfunctions eimθ , m ∈ Z. After a straightforward computation, using the
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properties of the Riemann zeta function [16], it can be shown thatη(0) = 2(c − t) − 1.
Finally, using (A.5), the index ofD is 2(t + 1). Here, one should bear in mind a factor
of 2 in the computation ofξ [∂M] which has the same origin as in the computation of the
index on the bulk. Thus, the index is determined by the next nearest integer to the first
Chern number. Unfortunately, this is not a topologically invariant quantity. This is clearly
evident from the fact that as one changes the radius of the disk the tangential component
of the gauge potential on the boundary also changes. This changes the index. The reason
for getting this topologically non-invariant result is due to the fact that in Atiyah–Singer
index theory the boundary operator,B, is assumed to satisfy some kind of global boundary
conditions. These global boundary conditions clash with the Dirichlet conditions. For a
disk, its role can be appreciated by computing directly the number of the zero modes of the
operator∂̄A as shown below. Moreover, the computation of the zero modes can be regarded
as an independent check to our index calculation.

A.3. Counting zero modes

Here, we will count the number of zero modes of the operator∂̄A in a background where
the gauge potential is circularly symmetric. We will work in the radial gaugeAr = 0. It is
possible to chooseAθ(0) = 0. With this choice we are then required to solve the following
equation

∂̄Al = eiθ

[
∂r + 1

r
(i∂θ + Aθ(r))

]
l = 0. (A.6)

Expandingl in a Fourier series asl =∑n gn(r)e
inθ , n ∈ Z and substituting into the above

equation, we findgn = rn exp(− ∫ R0 dr Aθ(r)/r). On the boundaryl(R) = ∑n gn(R)e
inθ .

The global boundary conditions mean in this case that, on the boundary, the projection of
l(R) onto the space of the eigenfunctions corresponding to the positive eigenvalues of the
boundary operatorB is zero. This means thatgn = 0 for n > t + 1. Further, demanding
that the modes are normalizable, we obtaingn 6= 0 only if 0 6 n 6 t . Thus, Ker(∂̄A), the
number of the zero modes (over the real numbers) of the operator∂̄A, is 2t + 1. On the
other hand, to find the zero modes of the the adjoint operator we need to solve

∂̄?Al
′ = e−iθ

[
−∂r + 1

r
(i∂θ + Aθ(r))

]
l′ = 0. (A.7)

Expandingl′ in a Fourier series asl′ =∑n dn(r)e
inθ , n ∈ Z and substituting into the above

equation we obtaindn = r−n exp(
∫ R

0 dr Aθ(r)/r). The global boundary condition gives
dn = 0 for n 6 t . The condition that these modes are normalizable givesdn = 0 for
n > t + 1. Hence, Ker(∂̄?A) = 0. Thus, Ind∂̄A = 2t + 1.
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