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We argue that in four dimensions bosonic strings can be bundled together in a manner
which resembles the way how individual filaments become bundled together to form a
cable. The energy of such a bundle of strings is described by its extrinsic geometry,
and it involves both torsion and curvature contributions. This leads to ordinary four-
dimensional field theories, that describe the bundles of strings in terms of closed knotted
solitons. Examples of field theories that can be constructed in this manner include the
Faddeev model and the Skyrme model.

A closed bosonic string describes a circle that moves in a D-dimensional manifold.
At very high energies the dynamics is governed by the Polyakov action. But at lower
energies there can be corrections due to higher derivative terms that characterize the
extrinsic geometry of the string. Particularly interesting is the extrinsic curvature
contribution that relates to the second fundamental form of the string worldsheet.1

Here we shall be interested in additional correction terms that are present when a
bosonic string moves in three dimensions. We are mostly interested in the classical
aspects of such an effective string theory. However, we suggest that the quantum
theory can also be consistently formulated, even though we are not in 26 dimensions.
This follows since the string theories we consider are effective theories that relate
to four-dimensional quantum field theories which can be consistently quantized.

The embedding of a closed string S in a three-dimensional Euclidean space is
uniquely determined by the Frenet equations, modulo rigid rotations and transla-
tions. These equations involve the curvature κ and torsion τ of the string, viewed
as a curve in R3. In order to write the Frenet equations we describe the string by
coordinates x(s) ∈ R3 that we parametrize by the arclength s ∈ [0, L] of the curve.
The total length L of S can vary, and since the string is closed x(s + L) = x(s).
The unit tangent to x(s) is

t =
dx
ds

. (1)
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The Frenet equations are

dt =
1
2
κ(c+ + c−)ds , (2)

dc± = −(κt± iτc±)ds . (3)

Here c± = n±ib and n is the unit normal vector and b is the unit binormal vector.
The curvature κ and torsion τ are

κ =
1
2
c± ·

dt
ds
, (4)

τ =
i

2
c− ·

dc+

ds
. (5)

Both (4) and (5) are natural quantities for defining an energy functional for a string.
For example, in classical continuum mechanics one often selects the energy of an
elastic rod to contain at least the following three terms:

E = cLL+
∫ L

0

ds(cκκ2 + cτ τ
2) . (6)

Here the first term reflects the Polyakov action, in the static case. The second
term relates to the extrinsic curvature of the string. It specifies the contribution
introduced in Ref. 1 to the three-dimensional case. The last term measures the
twisting of the string. To our knowledge this term has not really been discussed in
connection to high energy string theories. But we find that it can be quite important
when one relates effective string theories to field theories in (3+1) dimensions. The
cL,κ,τ are some numerical parameters.

We are mainly interested in energy functionals like (6) that relate to four-
dimensional field theories. For reasons that become apparent, from the present
perspective the appropriate starting point is not an individual string but rather a
collection of strings where the individual strings are bundled together in a smooth
and well-groomed manner, much like individual filaments are bundled together to
form a cable. For this we need to generalize (6) to an energy functional that de-
scribes the entire bundle in terms of its geometric quantities like extrinsic curvature
and torsion. A priori there can be several distinct alternatives to bundle individual
strings together. Here we shall employ a smooth three-component unit vector field
m(x) which maps R3 to an internal two-sphere S2

m. As we shall see this will indeed
lead to a field theory description with a relativistic dynamics, in terms of geometric
quantities that also relate to the torsion and curvature of the individual strings.

We are interested in configurations described by m that are localized in R3.
This implies that at large distances m must approach a constant vector. Without
any loss of generality we select the asymptotic vector to point along the negative
z-axis, m(x)→ −e3 as |x| → ∞. The region where m deviates from the asymptotic
value −e3 then describes our bundle of strings: The localized m is a mapping from
the compactified three-space R3 ∼ S3 to the internal S2

m, and the pre-image of any
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point in S2
m corresponds to some individual closed string of the bundle in R3. These

are the curves in R3 along which m(x) is a constant

dm
ds

=
dxi

ds

∂m
∂xi
≡ ti∂im = 0 (7)

with ti the unit tangent vector to the ensuing individual string S ∼ x(s) in the
bundle.

In the general case the individual strings S are linked, so that the bundle forms
a smooth and well-groomed knotted configuration in R3. Its self-linking number
is computed by the Hopf invariant of m which coincides with the Gauss linking
number for any pair of the closed strings S. To compute the Hopf invariant we
consider the curves along which m remains constant in R3. For this we introduce
a four-component unit vector ψµ(x): R3 ∼ S3 → S3 that embeds the bundle in the
configuration space R3 ∼ S3, and define the combinations

z1(x) = ψ1(x) + iψ2(x) and z2(x) = ψ3(x) + iψ4(x) . (8)

We can select ψµ so that it yields the unit vector m by

m = Z†σZ , (9)

where Z = (z1, z2). Notice that this does not define Z uniquely but there is a U(1)
gauge symmetry, the relation (9) remains intact when we multiply Z by a phase

Z → e
i
2 ξZ . (10)

When we parametrize

Z =

(
eiφ12 sin 1

2ϑ

eiφ34 cos 1
2ϑ

)
(11)

and set β = φ34 − φ12 and γ = π − ϑ we get

m =

 cosβ sinγ
sinβ sin γ

cos γ

 . (12)

Hence the bundle resides in the region in R3 where γ 6= π. Since m is indepen-
dent of α = φ12 + φ34, we can identify α(x) as a coordinate generalization of the
parameters s. Thus α(x) is the bundle coordinate that describes the individual
strings S in the directions t, the curves in R3 which are traced by constant values
of m(x). The U(1) gauge transformation (10) sends α → α + ξ and relates to the
reparametrizations s→ s̃(s) of the individual strings. Since the physical properties
of the bundle should be reparametrization invariant, any physical quantity should
reflect an invariance under the gauge transformation (10).

We define

Ai = i(∂iZ†Z − Z†∂iZ) . (13)
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We substitute (11) into (13) and combine the individual terms as follows:

A = cos γdβ + dα . (14)

The U(1) gauge transformation (10) sends A into

A→ cos γdβ + d(α+ ξ) (15)

which identifies A as the corresponding gauge field. Its exterior derivative yields
the pull-back of the area two-form on S2

m,

F = dA = sin γ dβ ∧ dγ = −1
2
m · dm ∧ dm (16)

and the dual one-form with components

Bi =
1
2
εijkFjk

is parallel to the tangents of the individual strings x(s) since

εijktjBk = 0 .

The Hopf invariant is

QH =
1

8π2

∫
F ∧A =

1
8π2

∫
sin γ dα ∧ dβ ∧ dγ . (17)

If the Hopf invariant is nonvanishing, the bundle forms a nontrivial knot. In that
case the flat connection dα cannot be entirely removed by the gauge transformation
(15) since the Wilson loops ∮

S
dα =

∫ L

0

ds ti∂iα

along the closed strings S in the bundle are necessarily nontrivial.
In order to obtain appropriate generalizations of the curvature and torsion (2),

(3) and in particular the ensuing version of (6) we consider a generic point m ∈ S2
m.

Its pre-image corresponds to a generic string S in the bundle. We introduce the
tangent vectors e± = e1 ± ie2 of S2

m in R3
m so that (e1, e2,m) is a right-handed

orthonormal triplet. When we parametrize m according to (12) the canonical choice
is

e1 =

 sinβ
− cosβ

0

 , e2 =

 cosβ cos γ
sinβ cos γ
− sinγ

 . (18)

These vectors describe a (small) neighborhoodM around m in S2
m. The pre-image

ofM under m(x) defines a (thin) tubular neighborhood T around S in R3. At each
point x(s) along S we intersect the tube T by a disk-like surface D(s), normally
to each of the strings that lies inside T . For each s the surface D(s) then provides
a cross-section of the tube T . This is mapped onto M by the vector field m(x).
In the limit of a very narrow tube T the discs D(s) become surfaces with an area
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element which is given by the pull-back of (16), with a unit normal which coincides
with the pertinent vector t.

In general the D(s) are curved in R3 and their curvature relates to the bending
and twisting of the tube T in R3. A natural local measure of the curvature of the
surface D(s) is given by the pull-back of the vector-valued one-form

dm = −∂axBab dub , (19)

where Bab are the components of the curvature tensor on S2
m ∈ R3

m and ua are local
coordinates in M. According to (7), the components of (19) are indeed tangential
to D(s). The projections of (19) along the tangent vectors of S2

m

Φ±i =
1
2
e± · ∂im =

1
2
(±i∂iγ − sin γ∂iβ) (20)

then characterize the local curvature of D(s) along the directions in R3 that are
determined by the pre-images of e±. Obviously (20) is a natural starting point for
generalizing the curvature (4) to the bundle. But besides (10) we now also have a
second U(1) gauge transformation. It acts in the internal R3

m by rotating the basis
e± according to

e± → e±iχe± . (21)

Since any physical property of the bundle should be independent of a particular
choice of basis vectors (18), the physical properties of the bundle should also reflect
gauge invariance under (21).

The components in (20) are independent of the coordinate α, and hence mani-
festly invariant under the U(1) gauge transformations (10), i.e. reparametrizations.
However, these components do not remain intact under the internal U(1) gauge
transformations (21). Instead they transform according to

e± · ∂im→ e±iχe± · ∂im .

But there is also an obvious, intimate relationship between rotating the points
around each other inM and rotating the strings around each other in T . This leads
to a relation between the configuration space U(1) gauge transformations (10), i.e.
reparametrizations of the strings, and the internal U(1) gauge transformations (21),
i.e. rotations of the internal space basis vector. Consequently we redefine (20) into

Φ±i → κ±i =
1
2
e±iαe± · ∂im . (22)

These κ±i have a nontrivial weight under both U(1) gauge transformations. But they
remain intact under the diagonal U(1)×U(1) gauge transformation where we com-
pensate the internal U(1) rotation (21) by the configuration space reparametrization

α→ α− χ . (23)

We propose that (22) are the appropriate quantities that characterize the curvature
of the bundle, for the purpose of constructing energy functionals.
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In order to describe the torsion along the bundle we observe that besides (20),
there is exactly one additional natural bilinear that can be constructed from the
three unit vectors at our disposal

Ci =
i

2
e− · ∂ie+ = cos γ∂iβ . (24)

A comparison with (5) suggests that Ci should indeed relate to the torsion along
the bundle. However, we find that under the frame rotation (21) the Ci do not
remain intact but transform like a U(1) gauge field

Ci =
i

2
e− · ∂ie+ →

i

2
e− · (∂i + i∂iχ)e+ = Ci − ∂iχ .

Consequently we need to improve (24): Since the coordinate α relates to the param-
eters s along the individual strings, it becomes natural to employ the flat connection
dα in (14) to generalize (24) into

Ci → τi =
i

2
e− · (∂i + i∂iα)e+ = cos γ∂iβ − ∂iα .

This should be compared with (14). The U(1) gauge transformation (21) now acts
as follows:

τi =
i

2
e− · (∂i + i∂iα)e+ →

i

2
e− · (∂i + i∂i[α+ χ])e+

and τi remains invariant under the diagonal U(1)×U(1) gauge transformation where
we compensate (21) by the U(1) gauge transformation (10) that reparametrizes
the bundle according to (23), much like in the case of (22). We propose that the τi
are quantities that relate to the torsion of the bundle, in a natural generalization
of (5) for the purpose of constructing energy functionals.

We note that the one-form with components τi has also been employed in the
differential geometry of surfaces. There it is called the connection form2 and can
be shown to be a globally defined one-form on the unit tangent bundle of S2.

We also note that the components in κ±i and τi are not independent but there
are the following flatness relations between the ensuing one-forms

dτ − 2iκ+ ∧ κ− = dκ± − τ ∧ κ± = 0 . (25)

These reduce the number of independent field degrees of freedom in κ±i , τi into
three corresponding to the torsion, the curvature and the position along each of the
individual strings.

We now proceed to construct an energy functional for the bundle. It turns out
that the following has particularly interesting properties:

E = µ2

∫
d3x(〈κ+, κ−〉+ c|τ |2 + λκ〈dκ+, dκ−〉+ λτ |dτ |2) . (26)

Here µ has dimensions of mass, and c and λκ,τ are positive parameters. The first
two terms in (26) are clearly analogs of the curvature and torsion terms in the
Frenet energy (6). These two terms are also relevant operators in the ir limit,
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in the sense of renormalization group equations. The third and fourth terms in (26)
are examples of marginal operators in the infrared limit; according to (25) these
terms are both quartic polynomials in κ± and τ . There are also additional cubic and
quartic polynomials in κ± and τ that could be added to the energy functional to
produce a positive-definite energy functional. But here we limit ourselves to the four
terms that are present in (26) since they have particularly interesting properties.

For example, if we set c = λκ = 0 the energy functional becomes independent
of the flat connection dα and we arrive at the Faddeev model,3

E → µ2

∫
d3x

(
∂im · ∂im +

λτ
4

(m · dm ∧ dm)2

)
. (27)

This energy functional is bounded from below by the Hopf invariant (17),4

E ≥ f · |QH |3/4

with f a nonvanishing number, and the model is known to support stable knotted
solitons.5,6 From the point of view of the present article, these solitons then admit
an interpretation as knotted bundles of the closed strings S.

Since each term in (26) is positive-definite the energy remains bounded from
below by the Hopf invariant also in the more general case when all parameters are
nonvanishing. Of particular interest is the case when c = 1 and λκ = λτ : We recall
the definition (8) of the unit four-vector ψµ which we employ to define the following
SU(2) matrix:

U = ψ4 + iψaσ
a .

We can then combine the four terms in (26) into the following form:

E =
∫
d3x{µ2 ·Tr ∂iU−1∂iU + λ · Tr[U−1∂iU,U

−1∂jU ]2} , (28)

where we recognize the energy functional of the Skyrme model. Consequently from
the present point of view the solitons of the Skyrme model are then knotted config-
urations in m but coupled to the connection dα and with a degenerate structure.7

Both the Faddeev and the Skyrme Hamiltonian lead to a relativistically covari-
ant dynamics. The relation with the Skyrme model also tells that we can introduce
statistics using the Wess–Zumino term.8 This yields the important conclusion that
the knotted solitons can be quantized either as bosons or as fermions.

For generic values of the parameters we expect the solitons of (26) to be knot-
ted and qualitatively quite similar to those discussed in Refs. 5 and 6, except for
degenerate cases such as the Skyrme model.7

Finally, we show how field theories lead to energy functionals of the form (6). For
this we reduce the energy functional of the Faddeev model to that of an individual
string in the bundle, by computing the leading contribution to the energy of the
center-line of a knotted soliton: We describe an arbitrary point X in the bundle by

X = x(s) + r(cos θn + sin θb) ≡ x(s) + ru ,
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where x(s) is a coordinate for the center-line and (r, θ) are plane polar coordinates
in the plane through x(s), defined by the vectors n and b. The angle θ is measured
from the direction of n and s is the arclength measured from an arbitrary point
on the center-line. When we move along x(s) by varying the parameter s, the
vector u rotates around the center-line x(s). We define N to be the Gauss linking
number between the center-line and a generic nearby curve of the form x(s)+εu(s)
with some (small) constant ε. We define g(s) to be an arbitrary function but with
g(L) = g(0) + L, and introduce the angle variable

φ = θ +
2πN
L

g(s) .

The mapping s → g(s) implements a reparametrization, while the use of φ as an
independent variable instead of θ leads to a zero-framing of the curve x(s).9 In the
coordinates (r, φ, s) any point in a (thin) circular tube T with a (small) radius R
surrounding the center-line can be described by

X = x(s) + r cos
[
φ− 2πN

L
g(s)

]
n(s) + r sin

[
φ− 2πN

L
g(s)

]
b(s) .

The components of the ensuing metric tensor are

dX · dX = dr2 +

(
1− rκ cos

[
φ− 2πN

L
g(s)

]
+ r2τ̂2

)
ds2 + r2 dφ2 + 2r2τ̂ dφ ds ,

where

τ̂ (s) = τ(s) − g′(s) .

We solve the equations of motion that follow from (27) for β and γ in (12) to the
leading order r in the thin circular tube R → 0 limit, and substitute the result to
the action (27). When we select the function g(s) so that it cancels an s-dependent
contribution to γ, we find a static energy functional that involves the following
universal terms:

E = aR2

∫
ds|∂sx|2 + bR4

∫
ds(3τ2(s) +R2 · κ2τ2) + · · · . (29)

Observe that the energy does not contain a term which involves the curvature κ
only, such as the middle term in (6). This is entirely consistent with the result that
a stable knotted soliton must have a nontrivial self-linking number: A curvature
contribution such as the middle term in (6) scales inversely in the length L of the
string. Since the first term in (29) is proportional to L, the presence of such a
curvature contribution would lead to a stable circular planar configuration with no
self-linking.

In conclusion, we have studied relations between field theories and string the-
ories. In particular, we have proposed that certain field theories can be viewed as
effective theories of bundled strings, which then correspond to knotted solitons in
the field theory model. We have constructed a general class of such field theory
models by employing the natural geometric concepts of torsion and curvature of
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curves in R3. In the limit of thin bundles we recover the usual closed string action
with additional torsion and curvature contributions. Since a field theory admits a
natural particle interpretation, this leads to a curious dual picture between string-
like excitations and pointlike particles. We hope that our results lead to a better
understanding of such duality relations between strings and particles. Indeed, the
investigation of these structures in the context of a Yang–Mills theory might pro-
vide new insight to the properties of colored flux tubes, and the appearance of a
mass gap and color confinement in the theory.
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