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Abstract 

The capacity for skill development over multiple training episodes is fundamental to 

human motor function. We have studied the process by which skills evolve with training 

by progressively modifying a series of motor learning tasks that subjects performed over 

a one-month period. In a series of empirical and modelling studies, we show that 

performance undergoes repeated modification with new learning. Each in a series of 

prior training episodes contributes such that present performance reflects a weighted 

average of previous learning. Moreover, we have observed that the relative weighting of 

skills learned wholly in the past changes with time. This suggests that the neural 

substrate of skill undergoes modification following consolidation.  
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Introduction 

The ways in which skills depend upon past learning have been examined in a number of 

recent studies (Brashers-Krug et al. 1996; Shadmehr and Brashers-Krug 1997; 

Caithness et al. 2004; Walker et al. 2003). These studies have used variants of a 

procedure known as an ABA design where A and B are often opposite patterns of force 

applied to the hand by a robotic device. In these experiments subjects learn task A and 

then following a variable interval, they learn task B. Subjects are then re-tested on task A 

to assess retention of initial learning. The interval between A and B is manipulated to 

investigate the time-course of consolidation of task A learning. Some studies suggest 

that once consolidated, skills are not affected by further learning. Evidence for this idea 

comes from studies in which the learning associated with task A was retained provided 

that the interval between A and B was sufficiently long (> ~ 5 hours (Brashers-Krug et al. 

1996; Shadmehr and Brashers-Krug 1997)). In contrast, other recent work suggests that 

new learning can displace original learning (Caithness et al. 2004; Walker et al. 2003). 

Evidence suggests that when A and B involve opposite patterns of force, learning B 

interferes with the retention of A regardless of whether the interval between A and B is 

five minutes, one day or one week. This suggests that consolidated skills, even those 

learned long ago, can be disrupted by new learning. 

 

In the present study we have tested the hypothesis that performance reflects a 

combination of past learning, and that skills are neither fixed following consolidation nor 

displaced with new learning. Support for the idea that motor learning reflects a neural 

averaging of previous learning comes from studies that have explored generalization of 

learning across the workspace (Malfait et al. 2005). In these studies, subjects learned to 

make movements in each of two workspace locations. Different patterns of force were 

applied to the hand in each location. Performance at a location intermediate to the two 
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training areas could be predicted in modelling studies based on a spatial average of the 

commands learned at the flanking locations. It has also been shown that for movements 

to benefit from earlier training they must be made in areas of the workspace intermediate 

to previously trained movement directions, where spatial averaging of prior learning is 

possible (Gandolfo et al. 1996). This generalization falls off sharply for movements 

outside of these boundaries. These studies and others (Gharamani and Wolpert 1997) 

suggest that motor skills learned separately in different spatial locations can be 

combined. Here we have tested whether a combinatorial process also applies to the 

development of skills over time. 

 

We designed two experiments in which subjects were tested a number of times over an 

extended period. This allowed us to track performance as it evolved with repeated 

training. In experiment 1, we left delays of either 24 hours or one month between training 

sessions to allow for consolidation of learning. In experiment 2, subjects trained on 2 

consecutive days followed by delays of 2 or 10 days prior to final testing. Results 

suggest that consolidated skills are modifiable but they are not entirely replaced by new 

learning. Instead performance reflects a combination of prior learning that changes with 

time.  

 

Materials and Methods 

Subjects 

89 young adults (48 females, overall mean age ± SE, 22.51 ± 0.38 years) took part in 

the experiments described below. 48 and 41 subjects participated in experiments 1 and 

2, respectively. The McGill University Ethics Review Board approved all procedures. 

Subjects were right-handed, neurologically healthy and had normal or corrected vision. 
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Apparatus 

Subjects made movements while holding the handle of a two-joint robotic device 

(InMotion2, Interactive Motion Technologies Inc., Cambridge MA USA) that allows 

movements in the horizontal plane. An air sled supported the arm during movement and 

eliminated friction. Torque motors connected to the shoulder and elbow joints of the 

robot applied forces (see below) to subjects’ hands during movement. Sixteen-bit optical 

encoders (Gurley Precision Instruments, Troy NY, USA) sensed the robot’s (and hence 

the subject’s) joint angles. Data were sampled at 400Hz and stored offline for later 

analysis. 

 

Experimental Task 

In each experimental session, subjects made movements to a set of five targets (figure 

1a). The targets were 3cm in diameter and were arranged around the upper arc of a 

circle with a radius of 15cm. The starting position was defined by shoulder and elbow 

angles of 45° and 90° relative to the frontal plane and the upper arm, respectively. 

Subjects were told to observe the workspace and wait for a target to be illuminated 

before moving. After waiting at the start position for 1000ms, subjects were required to 

move to a pseudo-randomly selected target within 500 ± 50ms and to stay within its 

boundaries for an additional 750 milliseconds. Visual and auditory cues informed 

subjects about the duration of each movement, after which the robot brought the hand 

back to the start position. 
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Force Fields 

The robot was programmed to apply forces to the hand that were dependent on 

instantaneous movement velocity. Force, fx and fy, was applied according to the equation
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where x and y are the lateral and sagittal directions, vx and vy are movement velocity, c =

15 N⋅s⋅m-1 and θ defined the direction of force relative to the direction of movement (see 

below and figure 1b). 

 

Procedure 

We performed two experiments. In the first experiment subjects were tested a number of 

times over a one month period. This allowed us to track performance as it evolved with 

repeated training. On each of four days, subjects made movements to five targets while 

holding the handle of a robotic device that was programmed to apply forces to the hand 

that varied with movement velocity (see figure 1a).  We left delays of either 24 hours or 

one month between training sessions to allow for consolidation of learning. During 

session 1, subjects familiarized themselves with the task and no forces were applied. 

One day later in session 2, subjects were divided into five groups (n = 8 for each group) 

and each made movements in one of the force-fields depicted in figure 1b. Two of these 

fields pushed the hand laterally (θ = 0° and θ = 180°); an assistive field, acted in the 

direction of movement (θ = 90°); two other fields had assistive and lateral components, 

resulting in forces that acted at 45° to the direction of movement (θ = 45°, assistive + 

clockwise and θ = 135°, assistive + counter-clockwise). A sixth group of control subjects 

(n = 8) did not make movements during session 2. One day later in session 3, all 

subjects made movements in a lateral field that pushed the hand in a counter-clockwise 

Page 6 of 36



7

(CCW) direction relative to the direction of movement (θ = 180°). This allowed us to 

determine the effect of session 2 training on session 3 performance. Approximately one 

month later (session 4: mean delay 34.3 ± SD 7.2 days), to test the effect of the entire 

training history, subjects returned to make movements in a clockwise (CW) field that 

pushed the hand in a direction opposite to the session 3 field (θ = 0°).  Figure 1c 

summarizes the experimental protocol. Four of the 48 subjects tested in experiment 1 

did not return for session 4 testing. Subjects made 100 movements each session. For 

each individual, testing sessions occurred at approximately the same time of day. 

 

In the second experiment, we randomly selected the direction of load in each of two 

training sessions. By examining how performance on a final test session varied as a 

consequence of the wide variety of training histories we could directly test the idea that 

performance reflects a combination of past learning. In this experiment, session 1 

(familiarization) was followed immediately by session 2 training. For session 2 the field 

was chosen randomly from the five used in experiment 1. For session 3 (24 hours later) 

the training field was again chosen randomly. This resulted in 25 possible combinations 

of session 2 and session 3 training fields. During session 4 (after a 2-day or 10-day 

delay) subjects were tested in a clockwise lateral field (θ = 0° relative to the direction of 

movement). For the 2-day and 10-day delay conditions, we ran 25 subjects (all 

combinations) and 16 subjects (a subset of the combinations), respectively. 

 

Measures and Statistics 

Hand position data were numerically differentiated and then low-pass Butterworth filtered 

at 20 Hz to generate velocity profiles. Movement start and end were scored at 5% of 

peak tangential velocity. To assess movement curvature we computed a measure of 
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perpendicular error (PE), which is defined as the signed distance at maximum velocity 

from the vector linking movement start and end positions. We computed PE at the 

moment of peak velocity to assess movement curvature prior to any voluntary response 

to the load applied by the robot. We also computed initial angular deviation (the angle 

between the vectors linking start and end, and start with the point of maximum tangential 

velocity) and found results similar to those reported here. Throughout, we use the term 

performance to refer to movement path error in the lateral direction (PE). 

 

Statistical tests were conducted using analyses of variance (ANOVAs) and, were 

followed by post-hoc Tukey comparisons where appropriate. In experiment 1, we divided 

subjects (48 in total) into groups of 8 on the basis of the field in which they were trained 

during session 2. To compare session 2 performance for the different directions of load 

application, we performed an ANOVA on movement curvature (PE). We compared PE 

for movements 6-25 (the 2nd-5th movement to each of 5 targets; the first movement to 

each target was excluded). We also compared the unsigned PE at the end of training 

(movements 91-100) to assess the extent to which the magnitude of final error differed 

between groups. Since the assistive loads did not curve movements laterally but instead 

applied force in the direction of movement, we also examined movement velocity 

profiles. We computed the difference between time-normalized velocity profiles for 

movements made in force fields and those made to the same target in the absence of 

load (Malfait et al. 2005). We used the sum of squared differences as a dependent 

measure of the force fields’ effect on velocity, and performed ANOVAs to determine 

whether velocity profiles changed over the course of training and whether final 

movements (91-100) were still affected by the force field.  
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To determine whether learning with assistive loads is retained over time in a fashion 

comparable to that observed with lateral loads, we examined the effects of training with 

assistive loads on movement duration. Our rationale for choosing this measure was that 

assistive loads affect timing along the intended trajectory, rather than error in the lateral 

direction. Since training with assistive loads was limited to session 2, our analysis 

focused on day 3 performance with or without previous training with assistive loads. 

Specifically, we examined the duration of the initial movement segment (up to 1.0 cm 

from movement start) in order to preclude possible voluntary correction for the load. We 

examined the first 5 movements and used an independent samples t-test to compare 

session 3 movement durations for naïve subjects with those of subjects who trained in 

an assistive load in session 2. 

 

For session 3 and session 4 we computed mean movement curvature (PE) for 

movements 6-25. We also computed PE for the final training movements in session 3 

(91-100). Using ANOVA and post-hoc comparisons, we assessed the dependence of 

movement curvature on the field in which subjects trained during session 2. For subjects 

that trained in the same lateral counter-clockwise field for both session 2 and session 3, 

we tested whether initial session 3 performance (movements 6-25) was facilitated 

relative to final session 2 performance (movements 91-100) by performing a paired-

samples t-test. 

 

We performed a further set of analyses to determine whether the rate of learning was 

affected by the direction of movement. For each of the five fields, we used repeated 

measures ANOVAs to examine whether adaptation rate varied across the 5 targets in 

the workspace. For these analyses we focused on movements 6-25. 
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In experiments 1 and 2, we used regression analyses to determine the relationship 

between performance on the test session and subjects’ previous training histories. In 

experiment 1, we evaluated the dependence of initial session 3 curvature (PE for 

movements 6-25) on the five fields learned during session 2. We decomposed the loads 

experienced in the five fields into their lateral and assistive components and used each 

to predict performance in the counter-clockwise lateral field that subjects learned during 

session 3. The analyses reported here focus on how session 3 performance was 

affected by the lateral strength of the force fields. No relationship was found between 

performance with lateral loads in session 3 and assistive loads in session 2.  

 

We used regression again in experiment 2. We assessed the dependence of initial 

session 4 curvature (after 2- or 10-days of rest) on the loads experienced during session 

2 and session 3. This allowed us to determine whether session 4 performance could be 

accounted for by either session 2 or session 3 alone or both training sessions in 

combination. For these analyses, we decomposed both the session 2 and session 3 

fields into lateral and assistive components. We carried out a regression in which 

session 4 performance (PE) was assessed as a linear combination of session 2 and 

session 3 training. The coefficients of terms representing the lateral loads experienced 

during session 2 and session 3 were used to estimate the relative effects of session 2 

and session 3 training on session 4 performance. No relationship was found between 

session 4 performance and the assistive loads experienced during session 2 and 

session 3. 

 

Statistical tests of differences in regression weights between the 2-day and the 10-day 

delay were conducted using the bootstrap function BOOTSTRP in Matlab (The 
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Mathworks, Natick MA). We repeated each regression 100 times and performed an 

independent samples t-test on resulting weights. 

 

Simulations 

For simulations we used a model of planar two-joint arm movement (Gribble et al. 1998) 

based on the λ-version of the equilibrium point hypothesis (Feldman 1986). According to 

the model, movement and muscle co-contraction result from neural input that takes the 

form of time-varying shifts in the threshold muscle length for motor neuron recruitment 

(λ). Motor neuron activation depends on the difference between actual and threshold 

lengths as specified in the equation 

)()()()()( dt
dt
dlttdtltA −+−−= µλ

In this equation, A is positive or zero, l is the actual muscle length, λ is the centrally 

specified threshold length for motor neuron activation, µ is a constant specifying the 

dependence of threshold length on velocity, dl
dt

is the rate of change of muscle length 

and d is a constant reflex delay. Muscle force, F , is generated in proportion to motor 

neuron activation according to the exponential function 

 [ ]1)exp( −= AF ρ

where each muscle’s force generating ability varies with its cross sectional area, ρ . The 

model includes six muscles: biceps long head and triceps lateral head at the elbow, 

pectoralis and deltoid at the shoulder, and biceps short head and triceps long head 

spanning both joints. Passive muscle stiffness also contributes to total muscle force. 

 

The coordinated control of muscle λs results in movement and muscle co-activation. We 

assume that movements are produced by time-varying shifts in the limb’s equilibrium 
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trajectory (and in the associated muscle λs), where each point on the trajectory is given 

by the set of λs that minimizes total muscle force. The co-contraction command is 

defined by a separate set of λ shifts that act to increase muscle force in the most equal 

proportions without changing net joint torque. As in Gribble et al. (1998), for purposes of 

these simulations the co-contraction command is defined initially in force space and 

hence its units are N and specify average muscle force. The vector in λ space 

associated with this muscle force in statics is used as the co-contraction command.  

 

Force field adaptation was simulated using a learning algorithm in which the equilibrium 

trajectory and associated muscle λs are adjusted on a trial-by-trial basis in proportion to 

the difference between desired and actual trajectories (see Gribble and Ostry, 2000 for 

details). In particular, we assumed that commands were updated on the basis of 

squared position error, such that large errors led to large adjustments in the modelled 

motor commands while small errors resulted in small adjustments. These adjustments 

were scaled by a constant such that differential rates of adaptation could be modelled. 

Control signals were thus updated according to the following equation: 

( )2)()()( ttlrdt nm λλ −⋅=−∆

where ∆λ is a vector of changes to muscle threshold length which reflect position error.  

This vector is summed on a trial-by-trial basis with the vector of muscle threshold 

lengths, λ , that was used to produce movements on the preceding trial. The position 

error is calculated as the time-varying difference between centrally-specified and actual 

muscle lengths, λ and l . The parameter dnm is a constant that time-advances the 

position error vector by an amount corresponding to the neuromuscular delay, and r is a 

gain parameter that scales the rate with which squared position error is minimized. In the 

modelling studies described below we varied rate and co-contraction parameters to best 
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fit the empirical data (Table 1). We found similar results in a set of simulations in which 

these parameters were held constant. 

 

The simulations replicated the experimental conditions in our month-long study. We 

began by simulating movements to 5 targets, arranged as they were for subjects (see 

figure 1a). Each movement direction was considered separately and then averaged for 

graphical presentation. Total movement duration (1200ms) matched values observed 

empirically and for each session we simulated 100 movements. 

 

We began with session 1 by simulating movements in the absence of load. This 

generated five sets of modelled control signals (one for each movement direction) that 

compensated for the dynamics of the arm and produced straight-line movements. For 

session 2 we used the five sets of final session 1 control signals as initial commands for 

movements in each of the five force fields. For session 3 and session 4, initial 

commands for each movement direction were based on a weighted average of the 

control signals for that direction from preceding sessions. For each movement direction, 

the modelled control signals were averaged according to the following equation: 

 2211 λλλ wwavg +=

where λ1 and λ2 are time-varying vectors of threshold muscle lengths associated (in this 

example) with session 1 and session 2 training, w1 and w2 are the relative weights for 

each session, and λavg  is the vectorally averaged control signal. To obtain initial 

commands for session 3, session 1 and session 2 control signals were weighted 20% / 

80% (according to the 2-day delay group in figure 5b). The same weightings were used 

for all movement directions. To select weightings for session 4, we performed a number 

of simulations in which weights for session 2 and session 3 ranged from 0% / 100% to 
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100% / 0%. We then computed the sum of squared differences between actual and 

simulated session 4 performance. Based on this analysis, session 2 and session 3 

control signals were weighted 50% / 50% to produce initial commands for session 4.  

 
Results 

The data support the idea that skills reflect a neural averaging of past learning. The 

evidence is as follows: During session 2 (the first training session) subjects learned to 

move in one of the five force fields.  Initial movements (figure 2a) were deflected 

consistent with the direction of the loads but straightened over the course of session 2 

training (figure 2b) such that final movements did not differ in terms of the magnitude of 

movement curvature (p > 0.05). Fields that had assistive components resulted in velocity 

profiles that were initially different than those of reference movements (figure 2c). 

However, with training these differences decreased (p < 0.05) such that by the end of 

training, with one exception, velocity profiles were no different than those of reference 

movements (p > 0.05). These findings suggest that neural control was modified in order 

to normalize movements in the presence of load (figure 2c). 

 

Subjects returned 24 hours later for session 3 to make movements in a lateral field that 

displaced the hand in a counter-clockwise direction. Movements during session 3 were 

initially curved consistent with the lateral load (figure 3a) and straightened over time 

(figure 3b). Session 3 performance was affected by what subjects learned during 

session 2. This effect could be quantified in terms of the angle between the loads 

experienced during session 2 and session 3. As the difference increased from 0° to 180° 

we observed effects that ranged from facilitation to interference (figure 3c). When the 

directions of load were the same for both session 2 and session 3, facilitation was 

observed. Initial session 3 movements were straighter than those of naïve controls (p <
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0.001). For these subjects, movements at the start of session 3 were also straighter than 

those made at the end of session 2 (p < 0.05) indicating that session 2 learning 

facilitated session 3 performance. When the directions of load were opposite for session 

2 and session 3, we observed interference. Initial session 3 movements were worse than 

naïve controls’ (p < 0.01). Subjects who trained in an assistive field during session 2 

performed no different than naïve controls in terms of movement curvature during 

session 3 (p > 0.05). This indicates that when learned forces were orthogonal (90°), 

performance in the lateral direction in session 3 was unaffected. When the angle 

between loads for session 2 and session 3 was 45° or 135° we saw movement curvature 

consistent with partial facilitation (p < 0.01) and partial interference (p < 0.05), 

respectively (figure 3c). By the end of session 3, all subjects learned the counter-

clockwise field such that performance for all groups was no different than that of controls 

(p > 0.05). A regression analysis showed that initial session 3 performance could be 

predicted on the basis of the magnitude of lateral load experienced during session 2 

(figure 3d, p < 0.001, 82.5% of variance accounted for). 

 

In a separate analysis, we examined the effects of having previously learned assistive 

loads on the temporal characteristics of movements one day later. We focused on the 

duration of the initial segment of session 3 movements. We found that subjects who 

trained in an assistive field during session 2 moved slower than naïve controls over the 

first 5 movements of session 3 (p < 0.05). This indicates that modifications in the timing 

of movements that compensate for assistive loads are retained even when the original 

learning did not alter the spatial profile of the movement. 

 

Subjects returned one month later (session 4) to be tested in a clockwise field that 

pushed the hand laterally in a direction opposite to that in session 3 (mean 34.3 ± SD 
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7.2 days). Movements during session 4 were initially curved in a direction that was 

consistent with the clockwise load (figure 4a) and straightened over the course of 

training (figure 4b). The initial movement curvature differed depending on subjects’ 

training history (p < 0.001, figure 4c).  

 

The performance we observed during session 4 is not consistent with the idea that after 

consolidation, skills are resistant to modification by new learning (Brashers-Krug et al. 

1996; Shadmehr and Brashers-Krug 1997). It is similarly inconsistent with the idea that 

new learning eliminates earlier learning (Caithness et al. 2004). The evidence that 

consolidated skills can be modified is that subjects who experienced the same field in 

both session 2 and session 4 showed no benefit from their session 2 learning (and 

performed no differently than naïve subjects (p > 0.05) when tested in session 4 in a 

clockwise field). The evidence that new learning does not simply displace earlier learning 

is that even though all subjects adapted to the same field during session 3, they 

performed differently when tested in session 4. The differences observed during session 

4 reflect subjects’ original session 2 training (post-hoc comparisons are summarized in 

figure 4c). Taken together, our results suggest that neither of the individual previous 

training sessions could account for the performance we observed, but instead that both 

prior training sessions were important one month later. 

 

We tested whether the adaptation rate was affected by the direction of movement. We 

found no systematic effects of movement direction on rate of learning. Out of 20 possible 

combinations (5 force field directions X 4 sessions), only 3 showed a dependence of 

adaptation rate on movement direction (p < 0.05). 
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We designed a second experiment that directly tested the idea that performance reflects 

a combination of prior skill learning. In this experiment we randomly varied each 

subject’s training history and assessed the effects on later performance. The study 

involved an initial familiarization session, two subsequent training sessions separated by 

24-hours and a final test session. For each of the two training sessions (session 2 and 

session 3) the training field was selected randomly from the five shown in figure 1b, 

resulting in 25 possible training sequences. During session 4, subjects were tested in a 

field that perturbed the hand laterally in the clockwise direction. Two separate 

experiments followed this basic procedure, with either a 2-day or 10-day delay between 

the training sessions and final session 4 testing.  

 

Subjects’ training histories (session 2 and session 3 learning) strongly influenced initial 

performance in the final test session (figure 5a, p < 0.001 for both the 2-day and 10-day 

delays, 91.1% and 80.4% of variance accounted for, respectively). Session 4 

performance could be predicted on the basis of both session 2 (p < 0.001, p < 0.05 for 

the 2-day and 10-day delays) and session 3 (p < 0.001 for both delays) training. Session 

3 training had a stronger influence on session 4 performance, but its relative effect 

decreased (p < 0.01 using bootstrap tests) as the interval between the training and 

testing sessions grew from 2 days to 10 days (figure 5b). Representations of skill thus 

involve a weighted average of past training that changes over time.  

 

Computational modelling of neural averaging in motor learning  

We carried out simulation studies using a computer model of two-joint arm movement 

and our results were consistent with the idea that performance reflects a weighted 

combination of past training. Control signals in the model were updated on a trial-by-trial 

basis based on the difference between the desired and actual trajectory on the most 

Page 17 of 36



18

recent movement trial (Gribble and Ostry 2000). This iterative adjustment of modelled 

neural commands permits compensation for externally applied loads. 

 

In the simulation studies the model was trained over four successive “sessions” to mirror 

the experimental manipulation. For the initial training session (simulated session 1), we 

modelled movements in the absence of external load. This resulted in modelled control 

signals that produced straight movements to each of the five targets and effectively 

compensated for the mechanical behaviour of the two-joint arm.  

 

To simulate session 2, we modelled movements in the presence of each of the five fields 

depicted in figure 1b, using the final session 1 control signals as initial commands for 

session 2. Like in session 2 of our experiment, the five fields resulted in movements 

whose curvature was consistent with the externally applied load. As control signals were 

updated on the basis of position error this curvature was eliminated as it was in our 

experimental subjects (compare figures 2b and 2d). Velocity profiles were also altered 

by the presence of load but returned to normal with training. The iterative procedure 

resulted in five different sets of modelled control signals (one for each movement 

direction in each field) that reflected learning at the end of simulated session 2.  

 

For session 3, we modelled movements in a lateral field that pushed the hand in a 

counter-clockwise direction. Initial performance during session 3 depended on what the 

model learned previously. By using a weighted vector average of the final session 1 and 

session 2 control signals (20% session 1 and 80% session 2) as initial session 3 

commands we observed effects that were similar to those obtained empirically during 

session 3 of the experiment (compare figures 3b and 3e, 3c and 3f). 
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Session 4 simulations involved movements in a field that pushed the hand laterally in a 

clockwise direction. We used a weighted vector average of the control signals generated 

during session 2 and session 3 (50% session 2, 50% session 3) as initial commands for 

session 4 (see below). We found that the model produced a pattern of performance 

similar to that observed empirically during session 4 (compare figures 4b and 4d, 4c and 

4e). This suggests that the training history affected session 4 performance and skills 

reflect weighted combinations of the control signals learned on previous training 

episodes. 

 

Figure 6 shows that a weighted average of session 2 and session 3 control signals best 

accounts for the pattern of performance observed empirically. When the final control 

signals from session 2 alone (figure 6a) or session 3 alone (figure 6c) were used as 

initial commands for session 4, performance was not well simulated. Instead, error 

between actual and simulated session 4 performance was minimized (figure 6d) when 

initial control signals comprised an equally weighted combination of final session 2 and 

session 3 commands (figure 6b). 

 

Discussion 

Here we have shown that motor performance is affected by previous learning, which can 

produce effects that range from facilitation to interference. Consolidated skills do not 

appear to be resistant to change nor are they entirely replaced by new learning. Instead, 

performance reflects a combination of prior learning. These combinations are not fixed 

but rather change over time in a fashion consistent with the idea that relative recency 

weights the influence of prior training sessions. Modelling studies suggest that the neural 

basis for performance is a weighted combination of the control signals learned during 

prior training episodes. 
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Much recent research on learning and memory has focused on the idea that following 

recall, memories are labile and subject to displacement. Reactivated memories can be 

displaced by interfering events such as disruption of cellular protein synthesis (Kleim et 

al. 2003; Nader et al. 2000) and also appear to be displaced by new learning (Caithness 

et al. 2004; Walker et al. 2003). The present studies point to a further possibility, that 

original learning is not replaced by new learning but rather that old and new learning are 

combined at a neural level and that subsequent performance is mediated by this neural 

average. Consistent with this idea, when subjects complete multiple training episodes 

one can observe a continuum of effects that range from facilitation to interference. When 

training episodes repeat the same sensorimotor mapping, the two training sessions 

facilitate each other. When training episodes involve opposite sensorimotor mappings, 

interference results and on later testing performance is no different than naïve. In 

between these extremes, training sessions produce a range of effects on one another 

from partially facilitating to partially interfering. Thus when a range of sensorimotor 

mappings is examined, a gradation of effects results that is not consistent with the idea 

that new learning simply displaces old. Rather it suggests that the neural substrate of 

skill is a combination of previous training. 

 

Recent studies have also shown that consolidation does not permanently fix learning 

within the brain. Studies have shown that during periods of sleep following training, skills 

improve (Walker et al. 2002) and neural activation patterns shift location (Walker et al. 

2005). These studies highlight that there is substantial “off-line” processing of learning 

following consolidation. Here, we report a complementary result. As the delay between 

the end of training and final performance increases, the relative influence of each 

training session on final performance shifts towards equivalence. These changes in 
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relative weighting suggest that the neural substrate of skill can change following 

consolidation of learning. 

 

A number of studies have reported that subjects can learn two different fields 

simultaneously and independently access both encodings. This has been observed 

following extensive training (Krouchev and Kalaska 2003), or when each field is tied to a 

particular posture (Gandolfo et al. 1996) or other contextual cues (Osu et al. 2004) (note, 

however, that in some cases these arbitrary cues are insufficient (Gandolfo et al. 1996)). 

Other cues, such as temporal separation, are not useful (Karniel and Mussa-Ivaldi 

2002). Here we have shown that subjects do not have separate access to the learning 

associated with individual training sessions even when the fields involved orthogonal 

mappings between state of the limb and perturbing force. Instead, later performance was 

affected by a weighted combination of past learning. The situations in which the nervous 

system can separately access prior learning seem to involve information beyond the 

different forces each field involves. Perhaps, by engaging processing elements related to 

more cognitive or conceptual abilities, these cues allow the nervous system to 

categorize new learning as a component of one skill without affecting others. 

 

Our modelling studies produced results that closely matched the performance of 

experimental subjects. For session 4, the best match was produced when the rate of 

adaptation was slower and muscle co-contraction was elevated relative to the previous 

three sessions. While the source of this effect is unclear, previous research has shown 

that when subjects encounter environments whose mechanical properties vary, they 

respond by elevating limb impedance (Takahashi et al. 2001). In the present study, it is 

possible that having learned different force fields on session 2 and session 3 may have 

resulted in increased limb stiffness on session 4. At the same time, it should be 
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emphasized that the overall pattern of results in our modelling studies is not dependent 

on the particular values for co-contraction and learning rate. As noted above, we found 

similar results in a set of simulations in which these parameters were held constant. 
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Figure 1. Robotic device, force fields and experimental protocol. A. Subjects made 

movements to targets arranged in a semi-circle about the hand. B. The robotic device 

was programmed to apply velocity-dependent forces to the hand in 5 directions relative 

to the direction of movement (a straight out movement is shown as an example). The 

size of the arrows schematically represents the force magnitude as it scales with 

velocity. C. Subjects in experiment 1 were tested in 4 sessions over a one-month period. 

The colors shown identify each group in figures 1-4.  

 

Figure 2. Empirical and modelled performance for session 2. A. Initial movements made 

in the five fields during session 2. For each group, two movements representative of the 

mean curvature for movements 6-25 are shown. Curvature was consistent with the 

direction of loads applied by the robot. B. Change in movement curvature over the 

course of session 2 training. Movements straightened with training during session 2. C. 

Change in velocity profiles over the course of session 2 training. With training, 

differences between velocity profiles for movements made in force fields and those of 

movements made in the absence of load decreased. D. Simulated movements in the 5 

force fields were initially curved but straightened as modelled control signals were 

updated to account for position error (compare with B). 

 

Figure 3. Performance during session 3: The effects of session 2 training ranged from 

facilitation to interference. A. Initial movements in a counter-clockwise (CCW) lateral 

field: Movement curvature depended on the field in which subjects were trained during 

session 2. For each group, two movements representative of the mean curvature 

depicted in panel C are shown.  B. Change in movement curvature over the course of 

session 3 training. C. Initial curvature (average PE for movements 6-25, highlighted by 

the horizontal grey bar in B) differed depending on the field in which subjects trained 
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during session 2. Facilitation, interference and effects in between were observed. D. 

Regression revealed that session 3 performance could be predicted on the basis of the 

lateral loads learned during session 2. E. Simulated movements show a pattern similar 

to that observed empirically (compare with B). The simulations used a weighted average 

of final session 1 and session 2 control signals (20% / 80%) as initial movement 

commands for session day 3. F. Initial curvature (PE) for simulated movements 6-25 

(highlighted by the horizontal grey bar in D, compare with C).  

 

Figure 4. Session 4 performance reflects both session 2 and session 3 learning. A. 

Initial movements in a clockwise (CW) lateral field. For each group, two movements 

representative of the mean curvature depicted in panel C are shown. B. Change in 

movement curvature over the course of session 4 training. C. Initial curvature (average 

PE for movements 6-25, highlighted by the horizontal grey bar in B) differed depending 

on training history. D. Simulations in which initial session 4 commands were an equally 

weighted average (50% / 50%) of the final session 2 and session 3 control signals 

(compare with B). E. Initial curvature (PE) for simulated movements 6-25 (highlighted by 

the horizontal grey bar in D, compare with C). 

 

Figure 5. Motor learning reflects a weighted combination of previous training. A. For 

both 2- and 10-day delays, regression showed that session 4 performance depended on 

a weighted average of the lateral loads learned during session 2 and session 3. B. As 

the delay between training and testing increased from 2- to 10-days, the relative 

influence that session 2 and session 3 training had on session 4 performance shifted 

towards equivalence. Bars depict the relative influence of each day (mean ± SE, derived 

from bootstrap tests). 
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Figure 6. A combination of session 2 and session 3 control signals provide the best 

simulation of session 4 performance. A. Predicted session 4 movement curvature when 

initial commands comprised final session 2 control signals. Black outlines show empirical 

session 4 performance (as in panels B and C). B. Predicted movement curvature when 

initial commands were an equal combination of final session 2 and session 3 control 

signals. C. Predicted curvature when initial commands comprised final session 3 control 

signals. D. Error between empirical and simulated session 4 performance was minimized 

by using an equal weighting of session 2 and session 3 control signals as initial values 

on session 4. Session 4 performance associated with small letters a-c is shown in 

panels A-C. 
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Session 1 Session 2 Session 3 Session 4 

Rate 
(Arbitrary Units) 10.5 10.5 10.5 6.0 

Co-contraction 
(Total force, Newtons) 45 47-80 42-70 73-95 

Table 1. Parameters used to fit simulations to empirical data. 
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Figure 1. Robotic device, force fields and experimental protocol. A. Subjects made 
movements to targets arranged in a semi-circle about the hand. B. The robotic device was 
programmed to apply velocity-dependent forces to the hand in 5 directions relative to the 
direction of movement (a straight out movement is shown as an example). The size of the 

arrows schematically represents the force magnitude as it scales with velocity. C. 
Subjects in experiment 1 were tested in 4 sessions over a one-month period. The colors 

shown identify each group in figures 1-4.  
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Figure 2. Empirical and modelled performance for session 2. A. Initial movements made in 
the five fields during session 2. For each group, two movements representative of the 

mean curvature for movements 6-25 are shown. Curvature was consistent with the 
direction of loads applied by the robot. B. Change in movement curvature over the course 
of session 2 training. Movements straightened with training during session 2. C. Change 

in velocity profiles over the course of session 2 training. With training, differences 
between velocity profiles for movements made in force fields and those of movements 
made in the absence of load decreased. D. Simulated movements in the 5 force fields 

were initially curved but straightened as modelled control signals were updated to 
account for position error (compare with B). 
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Figure 3. Performance during session 3: The effects of session 2 training ranged from 
facilitation to interference. A. Initial movements in a counter-clockwise (CCW) lateral 

field: Movement curvature depended on the field in which subjects were trained during 
session 2. For each group, two movements representative of the mean curvature depicted 

in panel C are shown. B. Change in movement curvature over the course of session 3 
training. C. Initial curvature (average PE for movements 6-25, highlighted by the 

horizontal grey bar in B) differed depending on the field in which subjects trained during 
session 2. Facilitation, interference and effects in between were observed. D. Regression 
revealed that session 3 performance could be predicted on the basis of the lateral loads 

learned during session 2. E. Simulated movements show a pattern similar to that 
observed empirically (compare with B). The simulations used a weighted average of final 
session 1 and session 2 control signals (20% / 80%) as initial movement commands for 
session day 3. F. Initial curvature (PE) for simulated movements 6-25 (highlighted by the 

horizontal grey bar in D, compare with C). 
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Figure 4. Session 4 performance reflects both session 2 and session 3 learning. A. Initial 
movements in a clockwise (CW) lateral field. For each group, two movements 

representative of the mean curvature depicted in panel C are shown. B. Change in 
movement curvature over the course of session 4 training. C. Initial curvature (average 
PE for movements 6-25, highlighted by the horizontal grey bar in B) differed depending 
on training history. D. Simulations in which initial session 4 commands were an equally 

weighted average (50% / 50%) of the final session 2 and session 3 control signals 
(compare with B). E. Initial curvature (PE) for simulated movements 6-25 (highlighted by 

the horizontal grey bar in D, compare with C). 
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Figure 5. Motor learning reflects a weighted combination of previous training. A. For both 
2- and 10-day delays, regression showed that session 4 performance depended on a 

weighted average of the lateral loads learned during session 2 and session 3. B. As the 
delay between training and testing increased from 2- to 10-days, the relative influence 

that session 2 and session 3 training had on session 4 performance shifted towards 
equivalence. Bars depict the relative influence of each day (mean ± SE, derived from 

bootstrap tests). 

Page 35 of 36



Figure 6. A combination of session 2 and session 3 control signals provide the best 
simulation of session 4 performance. A. Predicted session 4 movement curvature when 

initial commands comprised final session 2 control signals. Black outlines show empirical
session 4 performance (as in panels B and C). B. Predicted movement curvature when 
initial commands were an equal combination of final session 2 and session 3 control 

signals. C. Predicted curvature when initial commands comprised final session 3 control 
signals. D. Error between empirical and simulated session 4 performance was minimized 
by using an equal weighting of session 2 and session 3 control signals as initial values on 
session 4. Session 4 performance associated with small letters a-c is shown in panels A-C.
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