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Abstract

■ One of the puzzles of learning to talk or play a musical in-
strument is how we learn which movement produces a partic-
ular sound: an audiomotor map. Existing research has used
mappings that are already well learned such as controlling a
cursor using a computer mouse. By contrast, the acquisition
of novel sensorimotor maps was studied by having participants
learn arm movements to auditory targets. These sounds did
not come from different directions but, like speech, were only
distinguished by their frequencies. It is shown that learning
involves forming not one but two maps: a point map connect-
ing sensory targets with motor commands and an error map
linking sensory errors to motor corrections. Learning a point
map is possible even when targets never repeat. Thus, although

participants make errors, there is no opportunity to correct
them because the target is different on every trial, and therefore
learning cannot be driven by error correction. Furthermore,
when the opportunity for error correction is provided, it is seen
that acquiring error correction is itself a learning process that
changes over time and results in an error map. In principle,
the error map could be derived from the point map, but in-
stead, these two maps are independently acquired and jointly
enable sensorimotor control and learning. A computational
model shows that this dual encoding is optimal and simulations
based on this architecture predict that learning the two maps
results in performance improvements comparable with those
observed empirically. ■

INTRODUCTION

When first learning to talk or to play a musical instru-
ment, a fundamental challenge is to learn which move-
ment to use to produce a particular sound, that is, a
sensorimotor map. There is a substantial understanding
of how existing sensorimotor maps are adjusted in situa-
tions in which these maps are already well learned at the
outset, such as when participants respond to visual rota-
tions during reaching or auditory perturbations during
speech (Huberdeau, Krakauer, & Haith, 2015; Krakauer,
2009; Houde & Jordan, 1998). These perturbations re-
quire participants to make relatively minor adjustments
to previously acquired mappings (Telgen, Parvin, &
Diedrichsen, 2014), which is reflected in the fact that
performance reaches asymptote rapidly. However, such
perturbation responses may not provide insight into
the process by which maps are acquired in the first place.
Here, a paradigm is presented in which participants ac-
quire an entirely novel audiomotor map. This is a chal-
lenging task in which performance improvements are
seen over several days of training. Previous work has
shown that learning is possible under these conditions
(Liu, Mosier, Mussa-Ivaldi, Casadio, & Scheidt, 2011;
Mussa-Ivaldi, Casadio, Danziger, Mosier, & Scheidt,
2011; Radhakrishnan, Baker, & Jackson, 2008; Mosier,
Scheidt, Acosta, & Mussa-Ivaldi, 2005), but it remains un-
clear what is the structure of the acquired maps. Initially,

participants face two problems: Given a target sound,
they do not know where to move to, and when they
make an error, they have no basis on which to correct
it. Monitoring participants during learning allows insight
into how sensorimotor maps are structured to solve these
two problems.
To learn a motor skill, it is necessary to learn the sen-

sory effects of one’s movements. It is also necessary to be
able to correct errors when they occur, and this requires
a different type of knowledge, namely, of a mapping be-
tween sensory errors and motor corrections. In the pres-
ent paradigm, both of these have to be learned. The
former map is essentially a function from sensory output
s to motor commands m (i.e., f(s) = m), which here is
referred to as a “point map,” whereas the latter is a map-
ping between sensory errors Δs and motor corrections
Δm (i.e., f 0(Δs) = Δm), which is called an “error map.”
Knowledge of this latter type is what is required to com-
pute a proportionate correction of an error as is done in
error correction models (Herzfeld, Vaswani, Marko, &
Shadmehr, 2014; Shadmehr, Smith, & Krakauer, 2010;
Thoroughman & Shadmehr, 2000; Ghahramani, Wolpert,
& Jordan, 1997). In principle, the error map could be
computed from the point map, because it is its mathe-
matical derivative. That is, there could be one single
map on which both movement selection and error cor-
rection depend. However, a computational architecture
in which limited informational units are allocated to
either a point map or an error map (Figure 1) suggests that
reaching would be most accurate when informational units1McGill University, 2Haskins Laboratories, New Haven, CT
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are divided (equally) between the two maps, instead of
one. This architecture motivates a set of predictions, in
particular, that two separate maps should exist: a point
map and an error map. Simulations based on this archi-
tecture, which assume that learning involves the addition
of units to the maps (see Model simulations), predict that
point map learning should be observable as reduced error
when participants make reaching movements to random
targets, even if these targets never repeat. Furthermore,
the simulations predict that error map learning should
result in improved convergence onto targets that are
presented repeatedly; in particular, both the rate of con-
vergence and asymptotic performance should improve.
This study tested the hypothesis that participants ac-

quire two separate maps, a point map and an error map,
by monitoring reaching movements to auditory targets.
Auditory feedback was presented at the end of each
movement. Conditions were created in which participants
either could apply error correction or could not. In
a random presentation condition, which assessed the
acquisition of a point map, targets were different on each
trial, thus precluding error correction. To probe learning of

the error map, the same target was presented on multiple
subsequent trials, thus allowing engagement of error-
corrective processes. It was hypothesized that this error-
corrective process itself has to be learned: The formation
of an error map is a learning process. Moreover, error
map learning was hypothesized to be independent from
the acquisition of a point map.

METHODS

Participants and Experimental Tasks

Eighty-eight participants were recruited. All participants
were right-handed (as verified by the Edinburgh Handed-
ness Inventory) and had no or only minimal musical
training. Participants reported no neurological or hearing
impairments. Each session lasted approximately 1.5 hr.
Participants provided written consent, and all procedures
were approved by the McGill University institutional
review board.

Participants made reaching movements to auditory tar-
gets while holding a robot handle. A 2-degree-of-freedom

Figure 1. A computational architecture that demonstrates the optimal design of a sensory–motor controller includes both a point map and an error
map instead of only one of the two. (A) Consider a controller that has access to a point map that is a lookup table of units connecting a particular
movement with a sensory effect and an error map that connects sensory errors with motor corrections (C). Because we assume that the mapping
between movements and sounds is one-on-one, we can, without loss of generality, represent these lookup tables as points on a motor/sensory
space—here, for simplicity, a 1-D interval of movement angles [0,π], which corresponds to those used in this empirical study. (B) When a target is
presented, the point map is queried and returns the nearest neighbor entry. For the point map example above, this leads to a pattern of errors (red line)
and, if the targets are equiprobable, an expected absolute error (green line). Note that the error varies with the distance between the target and
the nearest neighbor. (D) On a given trial, first, an auditory target is presented. The controller selects the point map entry (out of two in this example,
marked in blue) closest to the target and performs the corresponding movement (Movement 1). If the movement is not exactly on target, a nonzero
error occurs, which is a difference vector that is then looked up in the error map (units not shown) resulting in a corrective movement (Movement 2).
Although, byway of simplification, the controller aims to correct an error completely (gain=1), because of the limited resolution of the errormap, a residual
error exists when the trial ends. (E) Example of a combined map that has two point map entries and a two-entry error map reproduced at each point
map location. Note that there is a single error map that is not linked to particular targets but can be applied at any position in the workspace when error
correction is possible. The red trace indicates the residual error for each target location given the above two-movement scheme (a point map movement
and a corrective movement). (F) Adding more elements to either the point or error map increases performance as measured by a reduction in expected
residual error, but if resources are limited, how can available units be best divided between these twomaps? In the example case of 8 units, assuming the units
are placed optimally on themaps, the best coverage of the space is achievedwhen the 8 units are divided equally between the point and errormaps. (G) This is
indeed true in general: The lowest cost (optimal division) is achieved for an equal split of units between a point map and an error map. This leads to the
prediction that two maps encode information more efficiently than one. Although this is a simplified architecture, relaxing its assumptions to make it
more realistic (such as the addition of noise in reaching or map lookup) will not alter the computational argument that dual encoding provides optimal
spatial coverage.
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planar robotic arm (InMotion2; Interactive Motion Tech-
nologies, Watertown, MA) was used (Figure 2A) that
sampled the position of the handle at 400 Hz. First, in
a calibration phase, participants were asked to hold the
robot handle in front of their body midline. The lateral
coordinate of this position was captured and used as
the movement start point throughout the experiment.
A target circle was then defined as a half-circle around
this midpoint, and during the experiment, participants
made movements from the start point to points on this
circle (Figure 2B). This circle was never shown visually,
but participants were shown a schematic drawing of it
before the experiment, and the robot demonstrated
points on this circle (at 0°, 90°, and 180° counterclockwise
from the right) by moving the participants’ hand to them.
Vision of the circle and the arm was blocked. All exper-
iments followed the same schedule on a testing day and
differed only in number of days and the way the auditory
targets were chosen.

Auditory Stimuli

The sounds (target and feedback) consisted of three sine
wave oscillators: one with fixed frequency (F0, 165 Hz)
and the frequency of the other two signals (F1, F2)
linearly decreased or increased, respectively, with the
angle of the movement end point (Figure 2C). The fre-
quency range of the F1 and F2 oscillators correspond
to the first and second formant frequencies of vowel

sounds (Remez, Rubin, Pisoni, & Carrell, 1981). These
particular signals were chosen because they provide a
rich yet learnable stimulus that participants are already
familiar with by virtue of its structural similarity to vowels.
These more complex stimuli limit the benefit to perfor-
mance that might arise because of prior expectations,
which could readily have occurred had auditory stimuli
been used that varied monotonically over the work
space. To normalize the space-to-frequency mapping,
angles were mapped linearly to frequencies in mel space,
which is an interval scale encoding of frequency differ-
ences (Stevens, 1937). To correct for perceived loudness
differences, the amplitude of each oscillator was ad-
justed using equal loudness curves (Robinson & Dadson,
1956) to 75 phons (so that each sound would be per-
ceived to be as loud as a 1-kHz tone of 75 dB). In this
way, equal displacements in the motor space cause a
perceptually equal change in sound frequency and little
or no change in sound intensity. Sounds were presented
over Beyerdynamic (Heilbronn, Germany) DT770M head-
phones. This mapping between positions and sounds
remained the same throughout all experiments. Because
the mapping is one-to-one, without ambiguity, the sounds
will be referred to by the angle they were mapped to on
the interval of angles [0,π] radians. The sounds them-
selves were not localized in space: The same sound was
presented to both ears, hence there were no acoustic
location cues, and only their frequency content contained
information about the position they were mapped to.

Figure 2. Participants make
movements to auditory targets.
Before each trial, a target sound
is presented. Participants then
make a reaching movement
to the presumed location of
the sound. (A) Side view of the
workspace. Participants made
reaching movements from the
center of the workspace to
points on a semicircle (not
visible to participants). When
participants had stopped
moving, auditory feedback
was presented that depended
on the angle between the
starting point and the end of
the movement. The amplitude
of the movement was
inconsequential to the sound.
No acoustic location cues were
present in the sounds because
the same signal was presented
to both ears. (B) Example
movements for one participant.
Square markers indicate the
final hand position, whose angle
relative to the starting point (φ)
determines the feedback sound. For reference, the target circle is indicated in gray but not seen by the participant. (C) The sounds that were
played to participants at the end of each movement consisted of three oscillators whose frequencies depended linearly on the angle at movement
end φ (see gray inlays for a decomposition of two example stimuli that correspond to the movement angles indicated by the arrows). To ensure
perceptual uniformity of the auditory space, we used the mel scale for sound frequency.
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Audiomotor Training

In audiomotor training trials, participants received a target
sound and were instructed to move to the location that
corresponded to the sound. At the start of each trial, the
robot returned the handle to the starting point using a
minimum-jerk trajectory and held it there for 500 msec.
Then, the target sound was presented for 1000 msec,
during which time the forces holding the participant’s
hand in place were gradually decreased, leaving the par-
ticipant free to move when the sound ended. Movement
onset was defined as the moment when handle was more
than 5 cm away from the starting position, and movement
end was when the velocity fell below 5% of peak velocity
for 50 msec. At movement end, the robot held the par-
ticipant hand at its current position using an attractor con-
troller. The sound corresponding to the angle between
the starting point and the end position was presented for
1000 msec. The amplitude of participants’ movement was
inconsequential to the sound. Other than the sound, no
feedback was provided.

Movement Copy

Movement-copy trials served to familiarize the participant
with the size of the target circle (because it was not
shown visually) and to measure baseline motor accuracy
in reaching toward particular directions. During each
trial, the robot first brought the handle back to the start-
ing position. Then, the hand was moved out to a target
position on the target circle in a minimum-jerk trajectory
of 900 msec, held there for 500 msec, and then moved
back. A visual icon “MOVE” appeared that signaled partic-
ipants to move to the indicated target location in a single,
straight, swift movement. No forces were applied by the
robot during the participant’s movement. Movement
onset and end were detected as in the audiomotor trials
above. Target directions were equally spaced at 10% of
the half-circle, including the end points, yielding 11 target
locations presented in random order.

Audiomotor No-Feedback Trials

Audiomotor no-feedback trials were obtained before and
after the audiomotor training sequence. These trials were
identical to training trials except that no feedback sound
was presented. Ten trials were administered before and
after the training phase (Figure 2D).

Auditory Psychophysical Testing

Auditory psychophysical testing was completed away from
the robot with the participant seated in front of a com-
puter. On every trial, a train of four sounds of 200-msec
duration each was presented with a 75-msec pause be-
tween sounds. Three of the sounds were identical, and
one (either the second or third) was different. Partici-

pants’ task was to respond by pressing a button whether
the mismatched sound was the second or third in the
sequence. The three identical sounds were those that
were mapped to the 0.5π angle in our auditory–motor
mapping, and the mismatched sound corresponded to
the angle 0.5π + δx where δx was 1 of 10 logarithmically
spaced values between 0.0015π and 0.09π. Participants
completed 200 trials (10 stimulus levels in each direction ×
10 repetitions) in blocks of 20 with a short break in be-
tween. No feedback was given about the accuracy of the
participants’ response.

To obtain auditory thresholds, psychophysical curves
were fitted to the data offline using maximum likelihood.
The psychophysical curves were sigmoid functions de-
fined by the formula where p is the probability of giving
the correct response, x is the stimulus level (angle that
defines the sound), and erf is the mathematical error
function. The fit parameters are m (curve midpoint),
s (parameter controlling the slope), and λ (lapse rate).
Psychometric curves were discarded when their fit was
poor (R2<.5).

Experiments

Random Continuous Targets (Continuous-1d)

Auditory targets were chosen from a continuous uniform
random distribution on the interval [0,π] (in radians)
with the constraint that the angular distance between
the target on trial n + 1 and the movement end point
of trial n was at least 0.3π radians. The rationale for
this constraint originated from a pilot study observation
that participants were more accurate on trials whose
target was close to their previous movement end point,
which allowed them to achieve better-than-chance perfor-
mance without knowledge of the audiomotor mapping.
The minimum distance requirements prevented partici-
pants from using such a strategy. Eighteen participants
(10 women) were aged 21.4 (±3.6) years. Participants
were tested for one session.

Discrete Targets (Five Targets, 1 Day)

For each participant, a set of five unique targets was se-
lected, and on each trial, one of these five was presented,
with the constraints that (1) the same target could not be
repeated on consecutive trials and (2) the angular dis-
tance between the target on trial n + 1 and the move-
ment end point of trial n was at least 0.3π. The set of
targets was determined randomly as follows: Five angles
were placed equidistant on the interval [0.05π,0.95π]
(including end points) and then jittered with zero-centered
normal noise with an SD of 0.02π. When the absolute value
of the jitter for any of the targets exceeded 0.1π in mag-
nitude, then the noise vector was recomputed. Eighteen
participants (12 women) were aged 22.4 (±2.5) years.
Participants were tested for one session.
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Discrete Targets (Five Targets, 3 Days)

Target placement was identical to the “5-targets-1d”
experiment except that the minimum angular distance
between end points and subsequent targets was set to
0.05π to achieve greater uniformity of the target dis-
tribution. The set of targets was determined as during the
5-targets-1d experiment. Sixteen participants (10 women)
were aged 22.1 (±3.5) years. Participants were tested on
3 days with 2- to 4-day intervals in between.

Repeated Targets (1 Day)

Trials were divided into batches of 16 trials on which the
same target sound was presented repeatedly. Every 16 tri-
als, a new target was selected from a continuous uniform
distribution on the interval [0,π] with the constraint that
the target had to be a minimum distance of 0.2π radians
away from the last trial (previous batch) movement end
point. Twenty-one participants (14 women) were aged
23.6 (±4.2) years. Participants were tested on 1 day. For
analysis, data from the first day of the 3-day experiment
were included because the design was identical.

Repeated Targets (3 Days)

Target selection was identical to that of the 1-day ex-
periment. Fifteen participants (10 women) were aged
23.9 (±3.4) years. Participants were tested on 3 days with
2- to 4-day intervals in between.

Repeated-Targets Analysis

In the experiments involving repeated-target presen-
tation, learning curves were fitted to individual partici-
pants. For a group of trials with the same target, we
averaged the absolute angular error as a function of trial
within batch and fitted a learning curve defined by the
equation e(t) = (a − b)exp(−t/tc) + b, where e(t) rep-
resents the angular error on within-batch trial t and a is
the intercept of the learning curve, b is the asymptote,
and tc is the time constant. To enforce a and b to be non-
negative, we transform them into pseudo-parameters
using the exponential function.

Lag-1 autocorrelation (ACF1) was calculated as the
Pearson correlation between the vector of movement
end points and the vector of movements shifted by one
in chronological order. We skipped the four initial move-
ments to each target because these generally had larger
errors than later trials and might have disproportionate
effects on the correlation.

Statistics

Unless otherwise specified, we computed linear mixed
models statistics with participant as a random factor and
maximal random structure.

RESULTS

Participants made reaching movements to auditory tar-
gets that were presented over headphones (Figure 2).
The same signal was presented to both ears, and there-
fore no acoustic location cues were given; however, the
frequency content of the sounds depended on the angle
of the movement. This situation is directly analogous
to learning to speak, where the position of articulators
(e.g., tongue) changes the frequencies of the produced
sound, not the perceived physical location of the sound
itself. As in learning to speak, the participants have to
learn the appropriate movement direction to produce a
particular combination of frequencies.

Model Simulations

Simulations were run based on the architecture intro-
duced previously (Figure 1) to find predicted indices of
the acquisition of point and error maps, respectively.
Maps were modeled as lookup tables, which encode
input–output pairs without making assumptions about
the overall structure of the maps. The simulations assume
that the learning process is composed of the addition of
units to the point and/or error maps. Learning is assessed
in terms of changes in predicted reaching accuracy. Alter-
native model frameworks (Pouget & Snyder, 2000; Jordan
& Rumelhart, 1992) may be used to account for the data
here, but here, a simple model was opted for that could
account for the data with only minimal assumptions. Details
about the model are included in the supplementary mate-
rials (https://doi.org/10.6084/m9.figshare.5527963.v1).
We simulated “participants” with various numbers of

units in point and error maps, respectively, and inves-
tigated the effects of map density on performance. In a
random target condition (Figure 3A) on each trial, a
new target was selected at random and then its nearest
neighbor was looked up in the model’s point map.
Gaussian noise (σ = 0.05π) was added to both auditory
input and motor output. As point map resolution in-
creases (larger number of entries in a lookup table),
the simulations predict a reduction in error (Figure 3A).
The model presented here is not a model of learning,
because it does not specify in what locations in the map
units are added, but it can be used to extract predicted
changes in performance as a result of increases in map
density. For simplicity, the simulations assumed that units
are added incrementally in random locations (Figure 3A,
green trace). For reference, we also performed separate
simulations for each point map density in isolation, where
map units were put in optimal locations (Figure 3A, purple
trace). Note that, in these latter simulations, units were not
added to the map incrementally in any one simulation, but
separate simulations were run for each map density.
To investigate the effect of error map learning, the point

map was held constant (one unit), whereas the error map
density was varied. Error correction was enabled in these
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simulations by presenting the same target repeatedly for
16 trials. On the first trial of a batch, because the target
is novel, the model performs a lookup in its point map.
On a subsequent trial n in a batch (n > 1), the model
aims to correct a proportion (η = 0.3) of the (signed)
error experienced on the previous trial, by looking up
the closest entry to η × en−1 in its error map (lookup
table) and applying that correction to the previous
movement un−1. Gaussian noise (σ = 0.05π) is added
to movement output and auditory inputs. To the average
absolute error within batches, we fit the learning function
e(t) = (a − b)exp(−t/tc) + b, where e(t) is the error on
trial t within the batch, b is the asymptotic performance
(at the end of the batch), a represents the intercept, and
tc is the time constant. We varied the number of entries
in the error map and observed that, with increasing error
map resolution, convergence to the target is more rapid
and asymptotic performance is improved (Figure 3B). Ab-
solute errors are reported for the model as they are for the
human participants so that both data sets are processed
identically.
In summary, as units are added to the point map

(point map learning), there should be a reduction in
error when reaching to random targets (Figure 3A). As
units are added to the error map (error map learning),
there should be improved convergence when the same
target is repeated for a number of consecutive trials, in
particular, a faster rate of convergence and a lower as-
ymptotic error (Figure 3B). Why would the time constant
of learning curves change? The reason is that, although

on a given trial the model always aimed to correct a given
proportion of the error, it would be less successful in
generating exactly that correction when error map den-
sity is low and more successful when error map density
is high. Similarly, the asymptote of the learning curve de-
creased with increasing error map density because a
more dense error map would allow the encoding of
smaller errors and enable the model to correct for them.

Learning a Point Map

Continuous Targets

To study point map acquisition empirically, a different
target was presented on each trial. When targets are dif-
ferent on subsequent trials, the correction appropriate
for an error on one trial cannot be applied directly to
the next trial because it is a movement to a different
target. Participants made reaching movements toward
auditory targets, corresponding to angular positions
chosen uniformly from the half-circle workspace (because
the audiomotor mapping is one-to-one, we will refer to the
movement angles and corresponding sound positions as
points on the workspace [0,π] without ambiguity). A
decrease in absolute angular error was observed (angular
distance between the auditory target location and the
movement end point) over the course of audiomotor
training (Figure 4A). Before and after learning, participants
completed trials where no auditory feedback was pre-
sented. These trials probed the point map exclusively

Figure 3. Model simulations show that adding units to the point map (np) results in a reduced error in reaching to random targets and adding
units to the error map (ne) results in improved convergence to repeating targets. (A) Random-target simulations reveal that increasing point
map resolution (adding units to the point map) yields a decreased angular error in reaching to random targets. Simulations were performed by
incrementally adding units to the point map in random locations (green trace). For reference, the purple trace indicates model performance
when the same number of units is placed in optimal locations (which are different for different numbers of map units), and random reaching
performance is shown in gray. Error bars indicate SD. (B) Increased error map resolution (adding units to the error map) results in improved
convergence to the target, as measured by a smaller time constant and lower asymptotic performance, whereas the intercept of the learning curve
did not decrease (see inlay barplots). In addition, as error map density increases, the trial-to-trial autocorrelation of movements to the same
target increases. Dots represent the data points, and lines represent the fitted learning curves.
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because error correction could not operate in the absence
of feedback. Performance on no-feedback trials after train-
ing was significantly improved relative to before training
(F(1, 15) = 58.39, p < .00001).

To assess whether this improvement was attributable to
the mapping instead of perceptual or motor learning in iso-
lation, measures of auditory perceptual and motor learning
performance were added as covariates to the above analy-
sis, specifically (1) the auditory psychophysical threshold
(curve midpoint) before versus after learning and (2) the
motor-copy error (trials in which we measured absolute
angular error when participants reproduced movements

indicated by the robot; Figure 4A). Performance on these
tests was not significant as predictors of the audiomotor
error (F(1, 57.9) = 1.00, p = .32, for auditory thresholds,
and F(1, 218.19) = 2.63, p= .11, for motor-copy trials; see
also Supplementary Figure S1, https://doi.org/10.6084/m9.
figshare.5527963.v1). Furthermore, motor-copy angular
absolute error was not different after training relative to
before (F(1, 15) = 0.64, p= .43) nor were auditory psycho-
physical thresholds (F(1, 15) = 3.18, p = .09). That is, evi-
dence for learning was obtained in the audiomotor task
that cannot be explained bymotor learning or auditory per-
ceptual learning in isolation and therefore can be attributed

Figure 4. An audiomotor point map is acquired even when participants make movements to auditory targets that are never repeated. (A) Absolute
angular error between the target and the movement end point is shown to improve as a function of trial (continuous-1d experiment). Dots indicate
means across participants, and the shaded area indicates the SEM. Performance on auditory (yellow) and motor (red) tests remained stable and
are shown for reference, translated into motor coordinates (in radians, mean and SEM; the variability is so small that it appears as a line). (B) Correlations
between the target and the movement angle for a representative participant indicate that, at the outset, there was no prior information about the
mapping (no correlation; top left), whereas after learning, movement directions vary systematically with auditory target location (top right). This was
true for participants overall (main panel; data r-to-z Fisher-transformed; error bars indicate SEM ). (C) To study at what point over the course of training
the movements became different from chance reaching, we took the initial n trials with feedback, for various n, and computed a t test against the
no-feedback pretraining trials. Color coding indicates that movement error reduction reaches significance after eight movements, indicating very rapid
learning. (D) Absolute angular error for various bins of target location (in radians), indicating that participants’ performance deviated from chance error
levels that would be expected if participants would always reach to the center (gray; the theoretically optimal strategy if the mapping was unknown
to them) or if participants would reach randomly (in black).
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to learning of the mapping between movements and
sounds. The same was true for the other experiments re-
ported below (see Supplementary materials A.2; https://
doi.org/10.6084/m9.figshare.5527963.v1).
Did participants really learn the mapping from scratch?

For individual participants, the (Spearman) correlation
between target angle and movement angle was computed
for the no-feedback trials before and after audiomotor
training. The r-to-z-transformed correlation coefficients
were not significantly different from zero before training
(t(15) = −1.23, p = .24), indicating that participants’
initial reaching was at chance level and they had no
knowledge of the mapping. Correlation coefficients were
significantly higher after the audiomotor training relative
to before (F(1, 15) = 43.03, p < .0001; Figure 4B), con-
firming that participants learned the mapping. To gain
insight into the earliest stages of learning of the audio-
motor mapping, initial segments of audiomotor training
trials were compared statistically with the before-training
no-feedback trials using t tests, finding that, after as few
as eight trials, the error on audiomotor trials was better
than the no-feedback chance levels (Bonferroni-corrected
p < .05; Figure 4C). This indicated that rudimentary
knowledge of the mapping was acquired rapidly by par-

ticipants. Investigating how participants’ errors varied
across the workspace, the targets were divided into bins
and the pattern of errors as a function of target bin was
found to be different from those that would be expected
if participants had no knowledge of the audiomotor
mapping (Figure 4D).

In summary, although the same target was never re-
peated, participants remarkably showed the capacity to
learn the mapping, and the learning was already evident
within a handful of trials.

Five-Targets Random Presentation

It is unclear how much detail participants acquired about
the audiomotor mapping. Here, the acquired point map
was probed by having participants reach to a set of five
targets, spaced equally across the workspace with a small
jitter and presented in random order. The no-feedback
trials showed a significant decrease in error after audio-
motor training relative to before (F(1, 322) = 64.33, p <
.0001; Figure 5A). The error for the initial audiomotor
training trials was significantly lower than the preceding no-
feedback trials after nine movements ( p < .05, Bonferroni-
corrected t tests) and onward. During the later trials

Figure 5. The acquired audiomotor point map encodes multiple targets (five or more). (A) Angular error over time (5-targets-1d). (B) Movement
angles as a function of the target presented for all participants combined (targets are numbered in counterclockwise order starting from the
right). Actual locations of the targets varied between participants and are indicated by dots below the histograms. Lines indicate kernel density
estimates. (C) Pairwise comparisons of the reaching end points for the individual targets were all significant (t tests with Bonferroni-corrected
p values: *p < .05, **p < .01, ***p < .001, ****p < .0001).
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(Trial 150 and onward), the endpoints ofmovements toward
the five individual targets were significantly segregated
(F(3.18, 50.82) = 105.23, p < .0001, main effect of target;
Figure 5B). Planned contrasts using Bonferroni-corrected
t tests with pooled SDs revealed that, for all pairs of targets,
the movement end points were significantly different from
one another (Figure 5C). This shows that the point map
acquired by participants in a single day contained suffi-
cient information to encode multiple (at least five) distinct
targets.

Five Targets, 3 Days

To study whether learning was retained and could con-
tinue to improve across days, participants were measured
on 3 testing days with 2–4 intervening nontesting days.

Within-day reaching accuracy improvements on no-
feedback trials differed over the 3 testing days (F(2,
866.00) = 4.52, p = .01). Planned contrasts revealed a
reduction in error after training relative to before on the
first day of training ( p < .001) but not on Day 2 ( p =
.27) or Day 3 ( p = .24; Figure 6A). There was also a re-
duction in before-training errors from Days 1 to 2 ( p <
.001) but not from Days 2 to 3 ( p = 1). In line with the
results of the 5-targets-1d experiment, reaches toward
individual targets were significantly different for the first
day and continued to be so for the subsequent days as
evidenced by a tighter clustering of movements around
actual target locations (Figure 6B). In support of this
observation, the angular absolute error did not differ
between targets (F(4, 14.09) = 1.2, p= .35) but decreased
over days (F(2, 18.10) = 37.85, p < .0001; Figure 6C).

Figure 6. The audiomotor map is retained, and learning continues across days (5-targets-3d experiment). (A) Mean absolute error across trials
on the 3 days. (B) Density estimation of movements to each of the five targets for all participants combined shows that movements become
progressively more clustered around actual target locations (indicated with dots below the horizontal axes). (C) Average absolute angular error
for the individual targets across the 3 days.
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Planned contrasts showed a reduction in error between
Days 1 and 2 ( p < .0001) and between Days 2 and 3 ( p =
.03). In summary, learning is retained across days, and
improvements continue to occur into the third day of
training, revealing that the audiomotor map that is learned
is persistent.

Learning an Error Map

In the next series of experiments, the same target was
repeated multiple times in a row (16 trials). This allowed
participants to correct an error experienced on a given
trial. Each new target sound was selected randomly and
was different from all prior targets. In this process, it was
hypothesized that participants would collect this error-
corrective information and form an error map. We spe-
cifically test the hypothesis that error map formation is
itself a learning process. Evidence for learning an error

map would not simply be convergence to the target
but rather an improved capacity to correct errors across
multiple targets. This improved convergence should be
seen as a faster rate of learning and a better asymptotic
performance.

Targets Presented Repeatedly (1 Day)

Reaching behavior was markedly different (Figure 7A)
from the random presentation experiments (cf. Fig-
ures 4 and 5) with large errors in the beginning of a batch,
which decreased rapidly until reaching an asymptote
(Figure 7C). Error levels reached toward the end of a
batch were much lower than those achieved during
random presentation (cf. Figures 4A and 5A). On the
basis of simulations, it was hypothesized that error map
learning should be accompanied by a reduction in asymp-
totic performance, which is tested here below. However,

Figure 7. When error
correction is made possible,
convergence to targets is
observed, and this convergence
itself changes over time, which
is an evidence for error map
acquisition. (A) Audiomotor
training trials indicate a sharp
decline in error over the course
of repeated presentations of a
single target. (B) However,
point map learning is less when
targets are repeated than when
they are random on every trial
(cf. Figure 4), as shown by
average reduction in angular
absolute error during the
no-feedback trials. (C) Average
errors in groups of five batches.
A sharp initial decline in error
ends in asymptotic performance
that is close to the movement-
copy error (in red). Green
dots indicate average error on
no-feedback trials before and
after audiomotor training.
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point map learning may also have occurred in parallel, with
the addition of each new target, and this point map learn-
ing could potentially have resulted in improvements in
asymptotic performance. To verify that the improvements
observed here are due to error map learning and not point
map learning, we test for improvements in asymptotic
performance while taking the first trial in each batch as a
covariate. To quantify asymptotic performance, the abso-
lute angular error was averaged for the last five repetitions
of a target, and it was found that this error decreased in
later batches (F(1, 446.47) = 11.19, p = .0009), as pre-
dicted by error map learning. This was true even when
accounting for the reduction of error on the first trial to
each new target as a covariate (F(1, 470.96) = 1.07, p =
.30). Hence, the data indicate error map learning that
could not be accounted for by improvements in perfor-
mance because of point map learning.

Point map information was acquired as well during this
condition, but to a lesser extent than seen in the random
condition. The first trial for each new target was essen-
tially a random trial comparable with the random exper-
iments where participants only performed such trials. A
statistical trend for a reduction in error of this first trial
over time was observed (F(1, 25.95) = 3.70, p = .07).
The no-feedback trials, another measure of point map
learning, before and after training showed significant im-
provement (F(1, 605.27) = 12.22, p = .0005; Figure 7A),
but this reduction in error in the no-feedback trials was
significantly smaller than that observed in the “continuous-
1d” experiment (F(1, 930) = 25.28, p < .0001). The dif-
ference in improvement in no-feedback trials in repeated
and random presentations provides evidence against the
possibility that participants learn a single map that gathers
all sensorimotor information, because participants in both
conditions made the same number of movements and
received the same number of auditory feedback trials
(Figure 7B).

In summary, performance improvements obtained dur-
ing repeated presentations of the same target were not
carried over to the point map as probed in no-feedback
trials, which, to the contrary, revealed less learning than
in the random experiments. Crucially, improvements in
convergence were observed, that is, improvements in
error-corrective behavior that could not be explained by
an improvement in the point map, suggesting the exis-
tence of a separate error map that is independent of the
point map.

Targets Presented Repeatedly (3 Days)

Another set of participants performed the repeated target
experiment on each of the 3 days. In support of the idea
that there is error map learning, it was observed that the
error decreased more rapidly on later days, reaching
lower asymptotes (Figure 8B). Learning curves were
fitted to the error as a function of trial within each group
of five batches (to obtain a sufficient signal-to-noise ratio).

The intercept of the learning curves showed a reduction
over time (F(1, 15.41) = 5.79, p= .029), indicative of point
map learning. Importantly, convergence onto the target
was improved, as reflected in a lower asymptote (F(2,
87.70) = 3.94, p = .02) and decreased time constant of
the learning curve (the slope; F(2, 25.62) = 9.23, p =
.001); both of these were computed taking into account
changes in curve intercept (Figure 8B). This improvement
(from Days 1 to 3) could not be explained as a change in
motor-copy error (t= 1.09, p = .31) or auditory threshold
(t = 1.49, p = .17; Figure S1). The improvements in per-
formance observed here empirically with repeated targets
across days are consistent with those observed during
simulations with increasing error map density.
Again, point map information was also acquired as

shown by performance on no-feedback trials. Perfor-
mance in the no-feedback trials improved on all 3 days
after audiomotor training (all ps < .02) relative to before.
In addition, the error on the first trial for each new target
was reduced over time (F(1, 295.69) = 10.52, p = .001).
The improvement in learning curve time constant (and

asymptote) reflected an increased ability for convergence
within the auditory–motor workspace. This was hypoth-
esized to be due to the formation of an error map that
enabled more accurate error correction. To test this idea,
trial-by-trial correlations of the movements (ACF1) were
investigated, which are typically observed in error-based
learning models as well as in the simulations reported
here (Figure 3B). As shown in Figure 8C, the autocorre-
lation increased during the first day and then remained
at nonzero levels during Days 2 and 3. The absence of
autocorrelation at the beginning of the first day suggests
that there was little systematic use of error information to
converge to the target. The autocorrelation then increased
over the course of the first day (t = 1.87, p = .06), sug-
gesting more gradual adjustment of movements based on
errors. This nonzero autocorrelation was then maintained
during the second and third days ( p < .001 and p = .025,
respectively). For comparison, we extracted, for each tar-
get separately, the chronological series of movements in
the 5-targets-3d experiment (ignoring intervening reaches
toward different targets). ACF1 was calculated in win-
dows of 16 movements and then averaged to ensure com-
patibility with the repeated-target 3-day data by equating
biases in short time series autocorrelation (Marriott &
Pope, 1954). If the same learning process would operate
in these experiments, one would expect to see similar
autocorrelations. Contrary to this, a zero ACF1 was found
in the 5-targets-3d experiment (Figure 8C).

Learning a Point Map and an Error
Map Are Independent

The preceding section showed that error map acquisition
cannot be explained by point map learning (Figure 8B).
However, could error map learning contribute to point
map acquisition? If error map learning contributed to
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point map learning, then repeated trials to the same
target should contribute toward the acquisition of the
point map. To test this idea, the error on the first trial
(“random” trial) of every new target was tracked in the
repeated-targets experiment (45 trials) and compared

with participants in the continuous target experiment
who were tested with random trials only (Figure 9A). If
only the first trial in each batch contributes to point map
formation, then both groups should show similar learn-
ing. Indeed, it was found that both groups improve (F(1,

Figure 8. Error map learning
is itself a learning process,
observed as improved
convergence onto the target
across days. (A) Error as a
function of trial across days.
(B) Error as a function of
repeated presentation of the
same target across the 3 days.
The barplot indicates that
the time constant decreases
(rate of convergence onto
the target increases) and the
asymptote decreases, and this
cannot be explained by the
intercept of learning curves
(see barplots). (C) ACF1
calculated for each new target
increases over the course of
the first day (red) and then
remains stable at a small but
nonzero level for the following
days (green and blue). For
random trials, ACF1 remains
at zero (in gray; calculated
over chronologically ordered
series of 16 movements to
the same target in the
5-targets-3d experiment,
omitting intermediate trials
to different targets), suggesting
that a different learning process
operates in the repeated- and
random-target studies.
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29.03) = 9.96, p = .004), but there was no difference
between the groups or between the slopes (F(1, 29.03) =
0.01, p = .94), despite the fact that participants in the
repeated-targets experiment performed 15 times more
movements (and therefore received substantially more
exposure to the auditory–motor workspace). This argues
against the idea that participants learn a single mapping
and instead shows that repeated movements to the same
targets do not contribute to point map learning but rather
that participants are engaged in a different type of learn-
ing contributing to an error map.

One alternative explanation could be that, if partici-
pants in the repeated-targets 3-day experiment would
move to roughly the same direction for each presenta-

tion of the same target, then they would obtain little
additional information about the mapping beyond the
first movement to that target. To test whether this could
explain the above finding, the spatial coverage of the set
of movements (including the repeated-targets trials > 2)
was computed, where more negative values indicate
greater spatial coverage (for details about spatial cover-
age, see Supplementary Section S6, https://doi.org/
10.6084/m9.figshare.5527963.v1). It is seen that the
repeated-target participants’ movements achieved greater
spatial coverage than the randomparticipants’movements,
thus invalidating this potential confound (Figure 9B).

Separate Acquisition of Point and Error Maps

Point map acquisition was shown by improved reaching
toward random targets. Error map formation was shown
by improved convergence across days when targets were
presented repeatedly. In neither version of the task could
improved performance be reduced to motor or percep-
tual learning in isolation, because these remained stable,
and therefore learning was attributable to the formation
of a mapping between them. In principle, the error map
could be computed as the spatial derivative of the point
map. In other words, participants would learn only a
single map. However, summarized below are the obser-
vations that suggest that this is not the case here.
First, repeated movements to the same targets did not

contribute to map learning over and above the first
movement to each new target. That is, performance on

Figure 9. Point and error map learning are independent. (A) Repeated
movements to the same target do no contribute to learning a point
map. Independence of the mappings is indicated by plotting the error
on the first trial of every new target (red; trial selection is illustrated in
the inlay figure where green markers indicate the first trial of every new
target, which is shown in the main panel) against the errors that
occurred when targets were selected randomly and never repeated
(continuous-1d experiment; Figure 4). It is seen that, although
participants who moved repeatedly to the same target showed a much
better asymptotic performance at the end of each batch, the
improvement from the start of one batch to the start of the next was no
different than that observed for participants tested with random targets.
This indicates that the learning process that operates with repetitions
of the same target (error map learning) is independent of the process
by which a point map is acquired. (B) Repeated-target participants
received ample exposure to the audiomotor workspace. Spatial
coverage computes how far any given point in the interval is to the
closest movement; therefore, as the set of movements cover the
space more densely, the distance to the closest point is less (see
supplementary materials, https://doi.org/10.6084/m9.figshare.5527963.
v1). For the repeated-targets experiment, we calculate the spatial
coverage based on all intermediate movements but plot only the first
trial to every new target to allow comparison with the continuous-1d
experiment coverage. The repeated-target participants’ coverage of the
space is greater than that of the continuous-1d participants, indicating
that their identical performance on the random trials (A) cannot be
explained as a lack of spatial coverage. (C) A visual–auditory observation
experiment reveals some learning indicating that a cognitive strategy, if
used at all, could only lead to a limited improvement in performance.
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the first movements to each new target in the repeated-
targets experiment is indistinguishable from performance
on the first 45 trials in the random experiment, despite the
fact that repeated-target participants performed 15 times
more trials than random-target participants. This shows
that error corrections made in the course of repeated
movements to the same target did not contribute to point
map formation.
Second, learning error correction in the course of

repeated movements to one target improves error-
corrective behavior to novel targets; that is, learning
the error-corrective process is not tied to particular loca-
tions in space. Specifically, error map acquisition is shown
by improvements in time constant and asymptotic error
when the same target was presented repeatedly, and
these improvements cannot be explained by improve-
ments in performance on the first trial of each new target
(indicative of point map acquisition).
Third, in the repeated-targets experiments, trial-to-trial

correlations of reaching movements were observed that
would be expected in error-corrective learning and in-
deed were seen in simulations of error map learning,
whereas these correlations were absent in the series of
reaches toward the same target in the random-target pre-
sentation condition.
These observations, taken together, suggest that two

distinct sensorimotor maps are formed. Random-target
presentation favors the formation of a point map, and
in that condition, error map formation is negligible be-
cause there is no direct opportunity for error corrections
to be applied. Repeated presentation of the same target
involves formation of both maps. A point map is formed,
but it receives the equivalent of one new data point for
every new target. The repeated movements to the same
target do not feed information to the point map but in-
stead contribute to the formation of an error map, which
in turn allows, over the course of many new targets, im-
proved convergence.

DISCUSSION

A paradigm is introduced here to study how participants
initially acquire sensorimotor maps. Participants make
arm movements to auditory targets. The sounds do not
come from different physical locations but, like speech
sounds, are distinguished only by their frequency con-
tent. Participants are in much the same situation as an
infant learning to talk: They have to learn from scratch
which movements to make to produce particular sounds
and to learn how to correct errors when they occur.
One principal observation is that learning is possible

even when targets never repeat. This learning is not di-
rectly driven by error correction, because, when targets
were selected randomly, there was no opportunity to
move to the same target again and no opportunity to
correct an error. Instead, simulations (Figure 3) indicate
that the learning observed here could be accounted for

by the acquisition of a mapping whose structure could be
as simple as a lookup table in which information about
movements and their sensory consequences is progres-
sively accumulated.

A second observation is that, when participants are
given the opportunity to correct errors by moving re-
peatedly to the same target, the error correction process
itself has to be learned. This is because, when partici-
pants first come to this task, even if they experience an
error on a given trial, they are unable to use error cor-
rection because, by design, the mapping from sensory
errors to motor corrections is initially unknown. In the
course of the experiment, across many batches, each to
a novel target, participants learn to better correct their
errors, indicating the acquisition of a mapping between
sensory errors and motor corrections (an error map). It
is seen that this learning of the error-corrective process is
not linked to particular targets because, for each novel
target, the learning rate and asymptotic performance
improve.

A final observation is that the point and error maps are
learned independently. Learning a point map does not
contribute to learning an error map and vice versa.

Relation to Previous Work on
Sensorimotor Adaptation

The point map is a function from sensory output s to
motor commands m (i.e., f(s) = m), and the error map
is a mapping between sensory errors Δs and motor cor-
rections Δm (i.e., f 0(Δs) = Δm). Although sensory infor-
mation is needed for the formation of both maps,
learning in the present context proceeds on a trial-to-
trial basis, and both kinds of maps contribute to feed-
forward control, in one case, to produce movements to
novel targets (point map) and, in the other, to produce
movements that are appropriate adjustments to previous
movements to correct for sensory errors (error map).
The error map enables trial-to-trial corrections. It may
also contribute to online control of movements, but in
the present paradigm, such control was not investigated,
and in other work, online control of movement was found
to be partially independent of trial-to-trial control (Yousif
& Diedrichsen, 2012).

In adaptation learning, trial-to-trial errors are thought
to contribute to updating the feedforward controller
(Nakanishi & Schaal, 2004; Wolpert & Ghahramani, 2000;
Kawato, 1999). However, the error-corrective process itself
is fully formed and is not updated during the learning
process. These studies tap into an earlier stage of learning
in which, by design, the needed mappings are initially
unknown. This revealed properties of learning that differ
from those involved in adaptation.

First, in this early stage of learning, the error-corrective
process itself has to be learned, that is, that the mapping
between sensory errors and motor corrections is initially
unknown and then learned. The notion that error correction
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is learned and not a static process is consistent with pre-
vious data. Braun, Aertsen, Wolpert, and Mehring (2009)
train participants using random visuomotor rotations in
batches of eight trials and find that the error-corrective
process is not static because learning a subsequent, novel
rotation is accelerated. Herzfeld and colleagues (2014)
show that the error-corrective process that allows adap-
tation to alternating perturbations (such as visuomotor
rotations or force fields) is influenced by the history of
errors, which could give rise to faster learning similar to
the present observation of accelerated convergence to
novel targets.

A second property of this early stage of learning is that
error correction is not needed to build a feedforward
controller. Specifically, error correction does not produce
improvements in performance when moving to novel
random targets (Figure 9). Moreover, the point map
can be learned in the absence of the opportunity for
error correction, as is the case when the target changes
on each trial. The present work is thus part of a growing
literature documenting motor learning in the absence of
error correction. In reinforcement-based learning, suc-
cess or failure drives learning without the need to know
either the direction or magnitude of error (Izawa &
Shadmehr, 2011; Sutton & Barto, 1998). In use-dependent
learning, performance improvements are observed in the
context of repetition of movements alone (Diedrichsen,
White, Newman, & Lally, 2010; Nudo, Milliken, Jenkins, &
Merzenich, 1996). However, there is little opportunity for
use-dependent learning when the target, and therefore
the movement, is different on every trial (see below for a
discussion of the potential role of reinforcement in the
present learning).

Error-corrective trials do not feed into the point map
but instead contribute to forming an error map, which
is learned independently. Using two maps may allow a
more efficient encoding of space than a single map, as
shown by a computational architecture (Figure 1). In
the context of that architecture, adding a third map (or
more) would seem to yield a yet more efficient coding
of space, but for the sensorimotor apparatus to use such
a third map (a derivative error map), it would have to be
able to compute a trial-to-trial change in error, a capa-
bility for which, to our knowledge, there is no empirical
support. The closest operation the sensorimotor ap-
paratus has been shown to be capable of is to compute
the sign of the change of errors (Herzfeld et al., 2014).
This study in principle does not rule out the existence
of additional maps (in addition to the point and error
maps) but is concerned with showing that there are at
least two maps.

When targets never repeat, learning could in principle
be driven by sensory prediction error: After each move-
ment, the predicted sensory effect of that movement
(the forward model) is updated based on the actual feed
back. The updated sensory prediction is the previous
prediction plus a fraction of the prediction error (dif-

ference between prediction and actual feedback; Synofzik,
Lindner, & Thier, 2008; Tseng, Diedrichsen, Krakauer,
Shadmehr, & Bastian, 2007; Synofzik, Thier, & Lindner, 2006).
However, this account relies on the assumption that pre-
diction errors update a forwardmodel, and this assumption
entails that all information is gathered in a single sensori-
motor map. If only one map is learned that all movements
are fed into, then repeated movements to the same target
should yield better learning than making only one move-
ment to each target, which is contradicted by the present
data (Figure 9). Furthermore, learning dependent on sen-
sory prediction error requires that participants generate
sensory predictions, but the present data suggest that at
least initially they do not, as demonstrated by the absence
of a correlation between targets and movements.
Both point and error map learning display characteris-

tics of generalization. Specifically, in point map learning,
the target on every trial is different, yet participants’ per-
formance improves over the course of training. In error
map learning, each set of movements involves a unique
target, yet the convergence onto novel targets improves
with training. Simulations (Figure 3) indicate that such
generalization behavior would be expected, even if the
map is as simple as a lookup table. This is because, as
units are added with learning and map density is in-
creased, the nearest neighbor to any given target will
be closer and therefore reaching error will be smaller.
Note that the lookup table account assumes the presence
of a distance metric. The returned value is then used to
probe the lookup table. Whether maps indeed represent
instance-based learning (a lookup table) or instead en-
code the structure of the space remains a question for
future research.
The question of whether reinforcement could drive

the learning observed here merits consideration. In a re-
stricted sense where participants repeat previously re-
warded movements, reinforcement could not account
for the learning here. On a given trial, when a participant
produces a movement that is similar to the target sound,
although they could experience it as rewarding, if they
would in future trials attempt to repeat this movement,
it will not necessarily be beneficial because the target
may be different. However, in a more general sense, re-
inforcement paired with a map approximation function
could drive learning. The question is what this map ap-
proximation function would be. One option proposed
here is that it could be as simple as a lookup table.

Adapting Existing Sensorimotor Maps

The acquisition of sensorimotor mappings has been stud-
ied previously, but often in cases where participants
already had either fully formed sensorimotor maps or
prior expectations about the structure of the sensory-
to-motor relationships. For example, in visuomotor adap-
tation, vision of the arm is experimentally displaced as
participants make reaching movements (Krakauer, 2009).
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The newly acquired sensorimotor map can be represented
as the existing sensorimotor mapping plus a correction
term that pertains to the particular experimental per-
turbation (Telgen et al., 2014). Indeed, this is typically
how sensorimotor adaptation is computationally modeled
(Cheng & Sabes, 2006; Ghahramani et al., 1997). The
novelty of the work here is not simply that it pertains to
the auditory (instead of visual) modality. Indeed, during
speaking, people are known to compensate for altered
auditory feedback (Houde & Jordan, 1998). The novelty
of the paradigm is that there is no preexisting sensori-
motor map that gets adjusted. Apart from work on bab-
bling in early infancy, little is known about how these
maps are initially formed.
Acquisition of sensorimotor mappings closer to that

investigated here is reported in studies in which partici-
pants controlled a screen cursor using physical move-
ments with the fingers or hands (Yamamoto, Hoffman,
& Strick, 2006; Mosier et al., 2005; Sailer, Flanagan, &
Johansson, 2005) but through a nontrivial transformation.
The present work builds on these studies by elucidating
the structure of the acquired maps.

Learning Musical Instruments

Learning a musical instrument (Herholz & Zatorre, 2012;
Bangert & Altenmüller, 2003) also requires forming an
audiomotor map, and therefore its neural underpinnings
may be similar to the neural structures that enable senso-
rimotor map learning observed here (Zatorre, Chen, &
Penhune, 2007). A large body of research documents dif-
ferences between musicians and nonmusicians in brain
morphology (Vaquero et al., 2016; Gaser & Schlaug, 2003)
or brain networks documented using resting state scans
(Palomar-García, Zatorre, Ventura-Campos, Bueichekú, &
Ávila, 2017; Feinberg & Setsompop, 2013; Luo et al.,
2012). These differences occur in a distributed network
of areas including auditory cortices, primary motor cortex,
premotor areas, superior temporal gyrus, somatosensory
cortex, and the BG. However, it is unclear whether the
observed differences are specifically due to musical train-
ing or to neuroanatomical factors that predispose one to
become a musician.
A number of studies monitor participants directly as

they learn to play a musical instrument, and these studies
implicate a number of brain areas. Activity in the dorsal
premotor cortex (dPMC) was found to be reduced late
versus early in learning to play a musical melody on a
keyboard (Chen, Rae, & Watkins, 2012); another study
found increased activity in dPMC after nonmusicians had
been trained to associate musical chords with keystrokes
(Bermudez & Zatorre, 2005). Lega and colleagues applied
TMS during a task in which participants learned asso-
ciations between keystrokes and sounds and found that
dPMC is causally involved in this learning (Lega, Stephan,
Zatorre, & Penhune, 2016; for a related paradigm, see
Säfström & Edin, 2006; Wise & Murray, 2000). Other areas

associated with musical training are the posterior supe-
rior temporal gyrus, which after drum training, showed
increased connectivity with the rest of the brain (Amad
et al., 2017).

There are differences between learning to play a musi-
cal instrument and the audiomotor task employed in the
present studies that bear on the interpretation of reported
patterns of neural activity. First, the acquisition docu-
mented in studies of learning to play musical instruments
presumably relies on prior information, because even
nonmusicians have structural expectations about the map-
pings between space and pitch (Rusconi, Kwan, Giordano,
Umiltà, & Butterworth, 2006). Second, learning to play a
musical instrument not only involves the formation of an
audiomotor map but also entails changes to motor and
perceptual function as well (Kraus & Chandrasekaran,
2010). Accordingly, it is not possible based on the current
studies of musical instrument learning to dissociate areas
whose activation specifically reflects map learning.

Summary

Participants acquired novel sensorimotor maps by mak-
ing reaching movements to auditory targets and, in this
process, form two independent mappings: a point map
connecting sensory targets to motor commands and
an error map that links motor corrections to sensory
errors. This study identifies the structure of these maps,
and the future challenge is to determine the learning
rules by which their content is acquired.
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