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Abstract

Reinforcement learning has been used as an experimental model of motor skill acquisition, where at times movements are suc-
cessful and thus reinforced. One fundamental problem is to understand how humans select exploration over exploitation during
learning. The decision could be influenced by factors such as task demands and reward availability. In this study, we applied a
clustering algorithm to examine how a change in the accuracy requirements of a task affected the choice of exploration over ex-
ploitation. Participants made reaching movements to an unseen target using a planar robot arm and received reward after each
successful movement. For one group of participants, the width of the hidden target decreased after every other training block.
For a second group, it remained constant. The clustering algorithm was applied to the kinematic data to characterize motor
learning on a trial-to-trial basis as a sequence of movements, each belonging to one of the identified clusters. By the end of
learning, movement trajectories across all participants converged primarily to a single cluster with the greatest number of suc-
cessful trials. Within this analysis framework, we defined exploration and exploitation as types of behavior in which two succes-
sive trajectories belong to different or similar clusters, respectively. The frequency of each mode of behavior was evaluated over
the course of learning. It was found that by reducing the target width, participants used a greater variety of different clusters
and displayed more exploration than exploitation. Excessive exploration relative to exploitation was found to be detrimental to
subsequent motor learning.

NEW & NOTEWORTHY The choice of exploration versus exploitation is a fundamental problem in learning new motor skills
through reinforcement. In this study, we employed a data-driven approach to characterize movements on a trial-by-trial basis
with an unsupervised clustering algorithm. Using this technique, we found that changes in task demands and, in particular, in
the required accuracy of movements, influenced the ratio of exploration to exploitation. This analysis framework provides an
attractive tool to investigate mechanisms of explorative and exploitative behavior while studying motor learning.

clustering; exploration; human motor learning

INTRODUCTION

When learning a new motor skill, a learner often performs
a series of trial and error movements to gain knowledge of
the task and for action selection (1, 2). Motor skill acquisition
has been modeled using reinforcement learning, where at
times the movements will be successful and thus rewarded
(e.g., see Refs. 3, 4, and 5). Thereafter, one has to exploit and
repeat the same successful movement or vary subsequent
movements to achieve better outcomes, a mode of behav-
ior called exploration. Exploratory behavior provides an
opportunity for the learner to “search” or actively gather

information about the task environment (6, 7) such that
appropriate actions can be developed and repeated. From
a reinforcement learning perspective, motor learning can
be seen as solving an exploration-exploitation dilemma,
that is, to decide whether to explore or exploit in a given
task environment (8). Indeed, reinforcement learning is of-
ten regarded as a decision-making sequence to determine
exploration or exploitation in every action (9).

In the current study, differences in exploration and ex-
ploitation during motor learning were examined using an
unsupervised machine-learning technique called clustering
analysis. With this technique, movement trajectories were
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treated as high-dimensional data and grouped based upon
similarity in movement kinematics, namely, spatial and
temporal features. In this approach, exploration is defined as
situations in which two consecutive movement trajectories
belong to different groups or clusters (10). Conversely, ex-
ploitation is defined as repeating similar movement trajecto-
ries successively. Accordingly, the frequency of exploration
and exploitation modes in a particular learning session can
be computed to produce a performance measure called ex-
ploration-exploitation ratio (EER), specifically, the total
number of explorations divided by the number of exploita-
tions (10). A high value of the exploration-exploitation ratio
refers to a situation in which the participant exhibited many
explorations during learning, whereas a ratio equal to 1.0
indicates a balance between exploration and exploitation.
This measure may shed light onto how the exploration-ex-
ploitation dilemma is resolved over time during motor
learning.

We employed this unsupervised data-driven approach to
address three issues. First, we aimed to characterize explora-
tion and exploitation, and how one type of behavior was
favored over the other. To examine the effectiveness of the
proposed clustering algorithm, the clustering analysis was
initially evaluated using simulated data with a known distri-
bution before proceeding with the experimental (empirical)
data. Second, using the experimental data set, we tested the
effects of a Fixed versus a large-to-small target (L-S) condi-
tion on the choice of exploration and exploitation during
training. An L-S condition was created by narrowing the size
of the target zone within which the movement was consid-
ered successful. The experimental task involved arm reach-
ing movements toward an occluded target whose size and
location were unknown. Binary reward feedback was pro-
vided during training whenever the movement was success-
ful. The reduction in target size was expected to result in a
change in motor behavior as reaching movements that
were originally successful might not be rewarded any lon-
ger. As a consequence, participants in the L-S condition
would presumably search or perform exploration to refine
their movement accuracy. Accordingly, it was hypothesized
that practicing in the L-S condition would lead to more ex-
ploration than exploitation, as compared with practicing
with a fixed-size target zone. Finally, on the assumption that
the variability and exploration benefit motor learning in
reinforcement learning contexts, we checked the idea that
high exploration early in learning was related to better learn-
ing performance later on.

MATERIALS AND METHODS

Simulated Data Set

Clustering algorithm.
Clustering techniques are useful in segregating a large data
set into K different groups or clusters without having any a
priori labels. Observations within the same cluster carry the
highest similarity and are sufficiently distinct from observa-
tions belonging to other groups. In the case of a high-dimen-
sional data set, a model-based clustering technique has been
shown to be robust as it takes into account the probability of
each observation belonging to one of the groups or clusters

(11, 12). In this technique, the data set is assumed to be gener-
ated from a mixture of K Gaussian distributions that are par-
ameterized by a mean and covariance matrix. These model
parameters are estimated through an iterative expectation-
maximization (EM) procedure to maximize the likelihood of
each observation belonging to one of the Gaussian distribu-
tions. In this manner, each distribution represents a group or
cluster, and the label of each observation is subsequently
assigned probabilistically to one of the clusters, such that
similarity of observations within a cluster is maximized (or
the variation is minimized).

In the current study, an efficient model-based clustering
technique called the Fisher-EM clustering algorithm was
used to classify observations (13). In each iteration, the algo-
rithm models the data by projecting them into a new sub-
space such that the emerging clusters maximize the Fisher
information. The output of the algorithm was the data set la-
beled into K-number of clusters. The value of K was then
selected based on the Bayesian information criterion (BIC),
which is proportional to the log-likelihood function and
penalizes the model for excessive parameters. In this way, a
higher BIC value represents a better fit to the data, but the
incremental nature will reach a plateau. All computations
were performed using the FisherEM library v. 1.5.1, with code
written in R v. 3.6.3.

Generating simulation data.
As a means to validate the clustering algorithm and to better
understand its efficacy, we generated a simulated data set
comprising four predefined groups, each consisting of n =
1,500 observations with a certain distribution. Every obser-
vation had t = 120 time points, generated from two functions,
an exponential function and a linear curve, that were con-
catenated temporally as follows:

fk n; tð Þ ¼ ak= 1 þ exp � t� bk
ck

� �� �
; 1 � t � 60

mkt; 61 � t � 120
;

8<
:

where a, b, and c are related to the shape of the exponential
curves, m is the linear slope, and subscript k = 1, 2, . . ., K
denotes the group label. The values of a, b, c, and m of each
group were sampled from a Gaussian distribution with a cer-
tain mean and variability (Table 1). Exponential functions
were used as they resembled the one-dimensional time-posi-
tion data observed in the actual reaching movement. To
inject some complexity, the data set was concatenated with
linear curves with extensive overlap, which results in a graph
as depicted in Fig. 1A. Different colors in the graph represent

Table 1. Means ± standard deviation of Gaussian distri-
butions used to generate each observation in the data
set

k a b c m

1 �10 ± 2 30 ± 3 8 ± 1 �0.1 ± 0.05
2 10 ±0.1 30 ± 2 8 ±2 0.2 ± 0.03
3 �10 ± 0.1 35 ± 2 6 ± 1 0.1 ± 0.05
4 10 ±0.1 35 ± 2 6 ± 1 �0.2 ± 0.03

Parameters a, b, and c determine the shape and curvature of the
logistic curves, whereas m refers to the slope of the linear
functions.
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the k different groups from which the data were generated.
The degree of overlap seen in the upper and lower quadrants
was deliberate, to assess whether the algorithm was able to
identify K = 4 emerging clusters or misclassified the number
of clusters to be onlyK = 2.

Cluster validation with simulation.
The cluster validation procedure consisted of two parts.
First, the level of agreement was assessed between the clus-
ter assignment produced by the Fisher-EM algorithm and
the known ground truth labels. From the generated data set,
we randomly sampled 200 trials four times to construct four
hypothetical cases of behavior. Each behavior had its own
number of clusters and degree of exploration according to
the sampling rules indicated in Table 2. With this, we simu-
lated people who displayed high exploration and those who
did not. At the same time, the ground truth label for each

data point could be known or assigned a priori. To deter-
mine the performance of the algorithm in the simulation
against the ground truth, the Adjusted Rand Index (14) was
used. The index essentially looks into all pairs of observa-
tions and counts both agreement and disagreement (mis-
match) between the emerging clusters and the ground truth
cluster labels. A value of 1.0 indicates that the algorithm
groups the data in the same manner as the ground truth,
whereas a value of zero means that the grouping does not
agree with the ground truth. In the second part, the effective-
ness of the clustering algorithm in quantifying exploration
and exploitation was assessed. Within the clustering frame-
work, one is said to be in exploitation mode in the current
trial n when the movement belongs to the same cluster as in
the previous trial n – 1. Explorationmode, on the other hand,
takes place when there is a change of movement clusters
between the current trial n and trial n – 1. In this simulation,
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Figure 1. A: simulated data generated from a known set of distributions for the purpose of cluster validation and to test the effectiveness of the algorithm.
Altogether, the data comprised K = 4 groups, each having n = 500 time-varying observations. A single observation was produced by an exponential
function that was concatenated temporally with a linear function. B: from the clustering procedure on the simulated data set, the optimum number of
clusters was selected as the first instance at which the Bayesian information criterion (BIC) approached a plateau at K = 4, a value that corresponds to
the original K in the simulated data set. As a comparison, the Akaike information criterion (AIC) was placed alongside the BIC curve showing a compara-
ble pattern. It is seen that there is reduced gain in the values of the criterion beyond this point. C: mean data set of each cluster for K = 4. Although the
end points of the two exponential curves overlapped, they can be assigned to separate clusters if they differ in shape. D: distribution of the difference or
mismatch between the true and estimated exploration-exploitation ratio (EER) for the simulated data set after bootstrapping. The high proportion of val-
ues centered around zero demonstrates that the clustering algorithm was able to produce exploration/exploitation values that are comparable with the
ground truth.
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if the sampled observations originated from all four curves
with equal probability (e.g., 2-4-1-3-2-4-3-1. . .), thenwewould
expect the amount of exploration to be high (case 1 in Table
2). In contrast, low exploration means that the observations
belonged to only one of the clusters most of the time (e.g., 2-
2-2-3-3-2-2-2. . .) (case 3). The ratio between the total number
of exploration and exploitation trials (EER) was calculated
based on the known cluster assignments, giving rise to the
ground truth ratio values (Table 2). The same calculation
was done after running the algorithm to obtain the estimated
exploration-exploitation ratio.

To cover all possible combinations of observations in the
simulated data set, bootstrapping was done 500 times. In
each bootstrap sample, the degree of similarity and the fre-
quency of exploration and exploitation were computed, and
the difference (or mismatch) between the true and estimated
exploration-exploitation ratio were calculated. Finally, the
mean difference in the exploration-exploitation ratio was
calculated with the bootstrap 95% confidence interval (CI).

Experimental Data Set

Data were collected previously from healthy partici-
pants who have given their written informed consent and
were recruited for the L-S task condition (n = 22, 14
females, M age = 22.5 yr old, SD = 3.19) (15) and for the
Fixed condition (n = 30, 6 males, M age = 22.11 yr old, SD =
2.85) (16). All participants were right-handed without prior
physical or neurological conditions. The experiment used a
two degree-of-freedom robotic manipulandum (Interactive
Motion Technologies).

Behavioral tasks.
Participants were seated in front of the robot with their right
hand holding the robot handle at the end-effector, the
shoulder abducted to �70� and the elbow supported by an
air sled. Vision of the arm and the robot handle were blocked
by a semipolarized mirror. On the display screen, a circle (20
mm in diameter) that served as a start position was pre-
sented in front of the body midline. Each participant was
presented with a 1-cm thick white target stripe in the left
part of the workspace, within which there was a hidden rec-
tangular target zone (see Target zone). The center of the

target zone was 15 cm from the center of the start circle. A
thin yellow line ran parallel to the target stripe and indicated
the distance of the handle from the stripe. A small 12 mm di-
ameter yellow circle that was attached to this yellow line cor-
responded to the hand position. This circle was shown
briefly at the beginning of each movement and disappeared
as soon as the robot handle left the start position. Crucially,
no error information associated with the lateral deviation of
the hand from the target was provided (Fig. 2A). Each trial
began with the presentation of a visual cue, and the move-
ment had to terminate within the stripe and be completed
within 500–700 ms. The participants were given verbal feed-
back about movement speed if they were consistently too
slow or too fast, or if the reaching movement consistently
ended outside of the stripe. Once the movement ended, the
robot brought the hand back to the start position.

Participants were neither told the location of the target
center nor the width of the target zone. They were instructed
to reach 45� to the left and were told to learn which reaching
movement was successful. Movements were considered suc-
cessful if the lateral perpendicular deviation at the move-
ment end point was within the span of the target zone;
success was not based on either movement distance or
speed. At the end of each successful trial, performance feed-
back was provided in the form of an animated explosion
along with a “Nice shot!” message and a pleasant tone. The
feedback appeared in an empty space within the field of
view of the participant. No feedback was given for unsuc-
cessful movements. Participants were told to complete as
many successful movements as possible. In total, the partici-
pants did four training blocks of 50 trials each, separated by
a short break between successive blocks. The experiment
began and ended with baseline and final blocks in which no
feedback was given regardingmovement accuracy.

Target zone.
During training, movements that ended within the target
zone were considered successful. The width of the target
zone determined the nature of the task demands in this
study. In the L-S condition, the width changed from one
training block to the next (i.e., every 50 trials), while keeping
the center position fixed. Here, participants were challenged

Table 2. Characteristics of different cases of hypothetical participants showing ground truth values for the total clus-
ters K and the exploration-exploitation ratio, as well as the degree of agreement (Adjusted Rand Index) and the esti-
mated ratio from the clustering analysis

Sampling Rules K Agreement

EER

Ground Truth Estimated Difference

1 Data from fk were uniformly sampled to give a
high level of exploration

4 97.52% 3.06 (2.27, 4.17) 3.05 (2.21, 4.23) 0.01 (�0.23, 0.24)

2 One cluster had a 70% chance of being sampled,
the remaining had 10% chance; moderate
exploration

4 97.28% 0.94 (0.64, 1.28) 0.97 (0.65, 1.37) �0.04 (�0.16, 0.02)

3 Two of the four clusters had 80% and 20%
chance to be sampled; low exploration

2 96.39% 0.48 (0.32, 0.67) 0.51 (0.33, 0.74) �0.03 (�0.13, 0.01)

4 Two of the four clusters had equal chance (50%)
to be sampled; balance between explore vs.
exploit

2 97.69% 0.99 (0.76, 1.31) 1.02 (0.76, 1.38) �0.03 (�0.12, 0.05)

The index assesses the proportion of time the true clusters and the emerging clusters from the algorithm agree. All values are the aver-
age statistics obtained from bootstrapping with 500 repetitions. The range in the brackets is the 95% confidence interval. EER, explora-
tion-exploitation ratio.
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with an increasing level of required movement precision. In
the first training block, the size of the hidden target zone was
set to the lateral range within which 50% of each partici-
pant’s baseline movements ended (baseline SD: 0.89 cm,
averaged across all participants). The width would ensure
that at least half of the movements would be successful. In
the second block, the size was set to half the value between
the first and the last target width. The range of the target
widths across participants was 1.10–13.56 cm for the first
block and 0.80–7.18 cm for the second block. Eventually, a
target width of 0.80 cm was used for the last two training
blocks and was the same for all participants. In contrast, the
target width in the Fixed condition was maintained at 1.00
cm throughout training.

Data preparation.
The time-varying position of the robot handle in two-dimen-
sional space was sampled at 400Hz. For eachmovement tra-
jectory, X and Y positions were time-normalized to 30 time
points and then concatenated to form a row vector of 60 ele-
ments. Time normalization into a smaller sample was done
to maintain an equal number of time points for each
trial, while reducing the computational load. Thereafter, a

complete set of row vectors from all experimental blocks of a
single participant was formed, i.e., each row representing
the movement trajectory for an individual trial. The same
process was repeated for all participants for both task condi-
tions together (ntot), yielding a large matrix comprising ntot�
mtrials rows and 60 columns. Thus, each row in the matrix
represents an observation that consists of 60 highly corre-
lated features derived from the continuousmovement trajec-
tory data. The Fisher-EM algorithm was applied to this large
data set from all participants, where the resulting output was
movement data labeled into K-number of clusters. The anal-
yses were repeated for different values of K and the model
performance was evaluated by the criterion (BIC).

Statistical analyses.
The output of the clustering analysis was a set of movements
that were assigned to different clusters, each representing
distinct spatial and temporal features in one-dimensional
space (X and Y axes). Each participant might display a differ-
ent number of movement clusters while learning. For exam-
ple, movements of one participant might be grouped to only
K = 3 clusters (e.g., cluster number 2, 5, and 6), whereas
another participant might use a total of K = 8 different
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Figure 2. A: task interface of the experiment. Participants were not able to see the cursor or their arm while moving. Instead, a thin yellow line parallel to
the target bar was shown. No information about the lateral position of the hand was available at any point in the session. The width of the hidden target
was manipulated in the large-to-small target (L-S) condition to increase demands on movement accuracy. PD, perpendicular deviation at movement end-
point. B: same as Fig. 1B, but the input to the clustering algorithm now came from the actual behavioral experiments. The optimum number of clusters
was selected at K = 16. Both curves suggest that there is little gain in the Bayesian information criterion (BIC) and Akaike information criterion (AIC) values
beyond this point. C: mean trajectory of each cluster over time. Data of both axes were concatenated together as a vector, where the first 30 data points
are the X positions and the subsequent 30 data points are the Y positions. It can be seen that the mean trajectory of every cluster has its own unique
spatial and temporal features in each axis. The output of the clustering algorithm was movements that were grouped into different clusters according to
kinematic features. In the inset, mean trajectory of each cluster in a two-dimensional space is shown. D: proportion of training trials in each cluster in
blocks 1 and 2 (top), and blocks 3 and 4 (bottom). It can be seen that cluster 9 comprised the greatest number of trials at the end of training (75%), up
from 26% during the earlier blocks of training. Movements in this cluster also received the greatest amount of reward. In both C and D, the cluster num-
bering was ordered in such a way that cluster 1 and cluster 16 refer to movements deviated to the left and right of the target zone, respectively. E: trajec-
tories belonging to two different clusters resulted from the clustering analysis. Similarity and distinction in the curvature in either X or Y axis or both
contributed to the difference in the cluster assignment. The graph also depicts some degree of variation in the extent of similarity within a particular
movement cluster. F: trajectories of cluster 9, showing successful (and thus, rewarded) trials superimposed on unsuccessful movements. All trajectories
in the figure were aligned to the onset of movement.
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clusters. The average number of clusters that the partici-
pants produced in each experimental condition was quanti-
fied. To see if the two conditions exhibited a comparable
number of visited clusters over the course of learning, a non-
parametric Wilcoxon rank-sum test was conducted, with
effect size reported as r. As in the simulated data set, we also
quantified the amount of exploration and exploitation.
When assumptions for normality and homogeneity of var-
iance were not met for the empirical data set, nonparametric
tests were used instead. To evaluate whether different task
demands (i.e., the target width) influenced exploratory
behavior over the course of the four training blocks, the ex-
ploration-exploitation ratio was compared using the Aligned
Rank Transform for nonparametric analysis of variance
(ANOVA) (17), with training block as a within-subject factor
and experimental condition (Fixed vs. L-S) as a between-sub-
ject factor. The same rank-based two-way ANOVA was
employed to evaluate differences in the number of success-
ful trials between the L-S and Fixed training conditions.
Effect sizes for all ANOVA are reported as partial eta-squared
value (g2

p). Training blocks 1 and 2 are referred to as the
“early” learning stage, whereas blocks 3 and 4 are the “late”
learning stage. Relevant post hoc analyses were performed
with Holm–Bonferroni correction for multiple comparisons.
The number of successful trials was also used to evaluate
any relationship between the amount of reward and the ex-
ploration-exploitation ratio. Notably, the effect of explora-
tion at the beginning of learning on the number of
successful trials later in learning was examined. Pearson’s
product-moment coefficient was reported for correlational
analyses with 95% confidence intervals. Statistical differen-
ces were considered significant if P< 0.05.

RESULTS

Simulated Data Set

The goals of the simulation were to assess: 1) whether the
algorithm performed the grouping as expected, and 2)
whether the exploration-exploitation ratio was comparable
with the ground truth ratio. In the graph depicted in Fig. 1B,
it is seen that there is a progressive improvement in the crite-
rion score with more number of clusters, with the curve
approaching a plateau at K = 4. As the data set was generated
from K = 4 known distributions, this suggests that the algo-
rithmwas able to capture this feature of the data. The cluster
validation results are summarized in Table 2. It was found
that the algorithm identified clusters that matched the
ground truth >96% of the time, which was equivalent to
less than 8 mismatched cluster assignments out of 200
observations. In terms of the ratio between exploration
and exploitation, we found overlapping values between
the ground truth and estimated ratios as shown by the dis-
tribution of difference between the two values. A high
proportion of zero difference values can be seen in all
four behavior scenarios indicating good correspondence
between actual and estimated ratios (Fig. 1D). Overall,
these results demonstrate that the clustering algorithm is
sensitive enough to correctly separate the produced data
set into groups, and to estimate explorative and exploita-
tive behaviors, respectively.

Experimental Data Set

Using the clustering algorithm, reaching movements of
both task conditions together were assigned to different clus-
ters. From the clustering analysis, the presence of K emerg-
ing clusters was observed, where K [ [3, 22] potential clusters
were identified within the whole data set. The BIC criterion
was used to select a value of K that best fitted the data.
Figure 2B illustrates the BIC values for different numbers of
emerging clusters, together with the Akaike information cri-
terion (AIC) as a comparison. The value K = 16 was chosen as
it corresponded to the first instance at which the BIC curve
reached a plateau. The same approach was taken when deal-
ing with the simulation data. It can be seen that there was lit-
tle gain in the BIC and AIC values beyond this point. The
variance of each cluster can be obtained from the variance-
covariance matrix of the clustering algorithm. Table 3 shows
the cluster variance for K = 16.

In Fig. 2C, the mean hand movement trajectory of each
cluster is shown over normalized time in each of X and Y
dimensions separately. It can be seen that each movement
cluster has distinct temporal and spatial features that are
reflected in terms of shapes and curvatures. The inset of Fig.
2C illustrates the mean hand path of each cluster in two-
dimensional space, where all trajectories are directed toward
the target stripe at the left side of the workspace. The cluster
numbering is indicated in sequence, where the smaller num-
bers are for movement trajectories nearest to the horizontal
X axis. One notable observation from the inset is that several
meanmovement paths look quite similar. This is indeed pos-
sible as clustering took into consideration kinematic infor-
mation of the whole time-varying trajectory in the X and Y
axes respectively, and not merely the end point location of
the movements. In other words, two different movements
that ended more or less within the vicinity of the target zone
might be grouped into different clusters if they showed dis-
tinct spatial and temporal features (or information) in each
axis.

The mean path of cluster 9 to cluster 12 had one of the
smallest values in terms of the lateral perpendicular devia-
tion at movement end point relative to the center of the tar-
get, namely, 2.60, 3.00, 3.50, and 4.30 mm, respectively.
Cluster 9 comprised the largest number of movements
(50.8%), and also had the most successful trials (57.4%) over
the entire course of training. The distribution of trials
belonging to each cluster within the first and last two blocks
of training is shown in Fig. 2D. It was observed that some
movements deviated toward the left of the target zone dur-
ing the initial part of learning, which contributed to a high
proportion of trials in clusters 2 and 3. The frequency of
these movements decreased with training and in the last
two blocks 75% of the trials belonged to cluster 9, consistent
with the idea that participants produced more successful
movements over the course of training. To illustrate the

Table 3. Variance of each cluster for K = 16 (values �
10�2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5.5 1.2 1.9 2.5 3.3 2.6 1.6 2.6 1.7 5.0 2.3 2.6 2.5 2.2 1.7 1.2
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similarity within the same cluster and differences between
two separate clusters, trajectories belonging to two exem-
plary clusters together with the average trajectory are
reported in Fig. 2E. At the end of learning, all participants
performed reaching movements with trajectories that were
grouped into one stable cluster (cluster 9). Successful trajec-
tories of this cluster are depicted in Fig. 2F, superimposed
on trajectories that are unsuccessful. It can be seen that
even in this cluster there are both successful and unsuc-
cessful trials. Participants might perform reaching move-
ments that were statistically similar but failed to be within
the rewarded target zone and thus deemed unsuccessful.

We examined how reaching movement progressed on a
trial-by-trial basis. The transition between clusters from one
trial to the next can be visualized using a cluster transition
diagram, which displays the cluster transition frequency
from trial n to trial n þ 1, as shown in Fig. 3, A and B. The
color of each box represents the total number of times a par-
ticular transition took place in each experimental condition.
It can be seen that participants in the L-S condition showed
movement transitions to a greater diversity of clusters than
participants in the Fixed condition, as indicated by the
lighter color overall in Fig. 3A. In contrast, the majority of
movement transitions in the Fixed condition (Fig. 3B) were
limited to those between clusters 2 to 4 and cluster 9. The
high frequency of transitions between cluster 2 and cluster 3
were driven primarily by participants who were initially
unable to find the occluded target zone. These erroneous
movements also contributed to the high proportion of trials
in both clusters at the beginning of learning (Fig. 2D).

While learning, individual participants might produce
movements that fall into differing numbers of clusters. We
examined for each participant the number of movement
clusters visited at least once, and whether this observation
was influenced by the difference in the experimental condi-
tions. Out of 16 emerging clusters, participants in the L-S
condition on average visited a greater number of clusters
than those in the Fixed condition (Wilcoxon rank-sum test

with continuity correction,W = 574, P < 0.001, r = 0.63). The
difference is illustrated clearly in Fig. 3C. As each cluster car-
ries certain kinematic features, this finding suggests that
narrowing target width is accompanied by a greater diversity
ofmovement kinematics.

The width of the target zone in the L-S condition
decreased between blocks 1 and 2 and again between blocks 2
and 3, which was equivalent to requiring increased task pre-
cision. In the Fixed condition, on the other hand, the same
target width was maintained throughout training. Although,
early in learning, L-S training resulted in more rewarded tri-
als than Fixed training (presumably as a result of the larger
initial target width), the latter was found to achieve more
rewarded trials late in learning [block � condition interac-
tion, F(3,150) = 31.34, P< 0.001, g2

p = 0.38]. The average num-
ber of rewarded trials (out of 200 trials) across the four
training blocks was 31.86, 28.13, 10.70, and 14.00 for the L-S
condition, and 14.17, 14.80, 17.70, and 17.4 for the Fixed con-
dition. In terms of total rewarded trials between both condi-
tions, the L-S condition had higher number than the Fixed
condition [F(1,50) = 5.51, P = 0.023, g2

p = 0.09]. All partici-
pants with more reward in the first two training blocks also
attained more successful trials late in learning, although this
relationship is weaker for the L-S condition [Fixed: r = 0.61,
P < 0.001, confidence interval (CI: 0.32, 0.80); L-S: r = 0.44,
P = 0.04, CI (0.03, 0.72)].

Figure 4A depicts the cumulative frequency of exploration
and exploitation over time for a representative participant
from the Fixed (top) and L-S (bottom) conditions. The partici-
pant in the Fixed condition initially produced more move-
ments that were classified as exploration than exploitation,
but this choice of behavior flipped by the end of learning,
presumably because of a better ability to locate the hidden
target successfully. This is in contrast with the L-S condition
where exploration was greater than exploitation through to
the end of learning. Figure 4B shows the cumulative fre-
quency of exploration and exploitation averaged over all
participants in each condition. As learning progressed,
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Figure 3. A and B: cluster transition diagram of the large-to-small target (L-S) and Fixed conditions over all training blocks. Each square represents the
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EXPLORATION AND EXPLOITATION DURING MOTOR LEARNING

J Neurophysiol � doi:10.1152/jn.00229.2021 � www.jn.org 347
Downloaded from journals.physiology.org/journal/jn (101.078.081.177) on February 7, 2022.

http://www.jn.org


participants belonging to the Fixed condition showed more
exploitation, whereas in the L-S condition, exploration
remained greater when the target width changed.

To assess how exploration and exploitation differed in the
two experimental conditions during learning, we computed
for each participant the number of movements classified as
exploration versus exploitation. The ratio of the number of
exploration to exploitation, denoted as the exploration-ex-
ploitation ratio, was used to investigate how the two differ-
ent modes of behavior evolved across four training blocks.
There were reliable differences between the two experimen-
tal conditions [F(1,50) = 15.95, P < 0.001, g2

p = 0.24] and
between four training blocks [F(3,150) = 3.64, P = 0.01, g2

p =
0.07]. The variation of exploration-exploitation ratio across
training blocks is different between the two conditions
[block � condition interaction, F(3,150) = 2.83, P = 0.04, g2

p =
0.05]. Specifically, although the Fixed condition shows a
reliable reduction in the ratio across blocks [Kruskal–Wallis
test, H(3) = 19.21, P < 0.001, g2 =0.14], the exploration-

exploitation ratio in the L-S condition remained high
through to the end of training [H(3) = 1.57, P = 0.67, g2 =0.01]
(Fig. 4C). The narrowing of target width presumably required
the participants to maintain a high level of exploration. In
contrast, the lower exploration-exploitation ratio values in
the Fixed condition are consistent with the fact that the
amount of exploitation exceeded exploration (Fig. 4B, Fixed
task).

Participants in the L-S task who had higher exploration-
exploitation ratio values in the first two blocks of training
continued to have higher exploration-exploitation ratio in
the last blocks [r = 0.80, P < 0.001, CI (0.69, 0.88)]. Taking all
participants together, those who had a greater number of
movement clusters during training also displayed higher ex-
ploration-exploitation ratios [r = 0.62, P < 0.001, CI (0.43,
0.76)]. The ratio between exploration and exploitation for
each individual may influence reward performance during
training. One possibility is that participants who initially dis-
played more exploratory behavior might have a greater
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number of rewarded trials late in learning. Alternatively, ex-
cessive exploration may be maladaptive leading to worse
performance overall late in learning. To test these possibil-
ities, the average exploration-exploitation ratio early in
learning (first and second training blocks) and the total
rewarded trials late in learning (third and last training
blocks) were examined across all participants. It was found
that those who had higher exploration-exploitation ratio
early in learning had fewer rewarded trials in the latter stage
of learning [r =�0.43, P = 0.001, CI (�0.63,�0.18)] consistent
with the idea that exploration in large quantities can have
adverse effects on eventual learning.

In past studies, exploration and exploitation have been
quantified using the change in reaching direction contingent
upon the history of past reward. To check our results in rela-
tion to other methods of quantifying exploration or exploita-
tion, additional analyses on our experimental data were
conducted. The probability of exploitation given reward on
the preceding trial versus exploitation given failure were
found to be 62.8% and 57.8%, respectively (Fig. 4D, left). The
probability of exploiting given reward is significantly greater
than the probability of exploiting given failure [paired t test,
t(51) = 3.56, P < 0.001, d = 0.25]. The complement probabil-
ities, namely, the probability of exploration given reward
and given failure, were 37.2% and 42.2%.

In another analysis, which compared the empirical data
and the clustering approach, we assessed the amount of ex-
ploitation as defined by the clustering algorithm with that
observed in the empirical data following a rewarded move-
ment (without any clustering). By definition, exploitation
happens when one repeats the same action, presumably to
maximize what one has gained at the moment (8). We calcu-
lated a measure that fulfills the definition empirically, i.e.,
the proportion of trials in which the current movement is
successful or rewarded, given a rewarded movement on the
preceding trial. We then computed a comparable measure
for the clustering analysis, the proportion of cases in which
two successive movements belong to the same cluster after
the first was rewarded. The right diagram in Fig. 4D shows
that exploitation based on empirical data is significantly
lower than that estimated using the clustering analysis
[62.8% vs. 45.0%, paired t test, t(51) = 4.91, P < 0.001, d =
0.68]. This means that following a rewarded trial, the subse-
quent movement may be similar enough kinematically to
fall into the same cluster but may miss the target zone in the
actual experiment, and hence may not be rewarded. The
clustering analysis thus suggests that the usual way of
measuring exploitation, based on the repetition of success-
ful movements, may underestimate how much repetition
actually occurs.

One approach to quantify the amount of exploration
and exploitation in the empirical data set is to compute
the trial-to-trial change in direction (Dm) as a function of the
preceding reward outcome (success/failure). In this method,
exploration is estimated by the average Dm following an
unsuccessful outcome in the preceding trial. We conducted
this analysis at two different points during the movement.
First, the change in direction was estimated by the trial-to-
trial difference in perpendicular deviation (PD) at movement
end point. We then assessed whether the amount of explora-
tion using this approach was related to the exploration-

exploitation ratio obtained by the clustering method, but no
reliable relationship was observed [r = 0.13, P = 0.34, CI
(�0.142, 0.392)]. In a second analysis, the change in direction
Dm was estimated by the trial-to-trial difference in average
perpendicular deviation measured at midflight, which was
an average value taken over the middle third of the move-
ment. It was found that participants who had a higher mid-
flight variability also had a higher exploration-exploitation
ratio [r = 0.53, P < 0.001, CI (0.29, 0.69)]. This result suggests
that the measure of exploration obtained from the clustering
captures patterns of movement direction at mid-flight rather
than atmovement end point.

In a final analysis, we quantified the average change in
movement direction in terms of the magnitude of shift
between clusters following successful and unsuccessful tri-
als. This provided an ordinal measure of the magnitude of
the change in movement direction since we had sorted the
clusters numerically in ascending order from left to right.
Thus, the larger the magnitude of the shift between clusters,
the greater the change in movement direction. The aim of
this analysis, like that earlier, was to estimate the relative
magnitude of movement change contingent upon the pre-
ceding reward, but in the context of clustering. Our finding
indicates that the average cluster shift after an unsuccessful
trial was greater than the one following a rewarded trial
[paired t test, t(51) = 3.81, P < 0.001, d = 0.28]. This measure
resembles trial-to-trial movement variability (Dm), whose
magnitude was found to be dependent upon the preceding
reward. To summarize, these additional analyses suggest
that the clustering method is able to capture, not only kine-
matic characteristics of each trajectory, but also the effect of
prior trial outcome onmovement during learning.

To assess the robustness and consistency of the main find-
ings for different total numbers of clusters, a sensitivity anal-
ysis was conducted in which the aforementioned analyses
were repeated using the remaining values of K, from 3 to 22.
It was found that participants in the Fixed group performed
significantly smaller number of clusters with a large effect
size for all K > 7. A reliable difference in exploration-exploi-
tation ratio between the Fixed and L-S conditions was found
for all K values, with a medium to large effect size.
Compared with earlier blocks, participants on average
explored less late in learning, but statistically significant dif-
ferences are seen only in some values ofK between 13 and 18.
An interaction effect with a small effect size can be seen for
some values of K. Exploration early in learning is negatively
correlated with reward performance late in learning for all K
> 10. The full outcomes of the sensitivity analyses can be
found in Supplemental Table S1; see https://doi.org/10.6084/
m9.figshare.14618592.v2. Choosing a value of K with a
smaller BIC might result in a loss of sensitivity, whereas a
higher value of K that results in a marginal increase in BIC
does not change themain findings.

DISCUSSION
Reinforcement learning using binary feedback to indicate

success or failure has been used in earlier work as an experi-
mental model of human motor learning, in which we found
neuroplasticity in sensorimotor and reward-related networks
(e.g., see Refs. 5 and 15). In the reinforcement learning
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literature, it has been proposed that the choice of exploration
or exploitation is dependent on the availability of reward,
such that one repeats the same action to maximize the
reward available (i.e., a greedy policy) (8). In behavioral stud-
ies, efforts have been made to understand and characterize
the choice of exploration versus exploitation. Typically,
motor variability is seen as a reflection of exploration and is
thought to be essential for motor learning (18, 19). In one
study, exploration was quantified as an increase in trial-to-
trial changes in deviation measured at movement end fol-
lowing consecutive failures (15). In another study, it was
found that exploration could remain elevated to facilitate
learning in subsequent training blocks (20). Higher amount
of exploration also occurs in conjunction with an addi-
tional task dimension or spatial complexity (21). Such
changes in motor behavior may well involve explicit
awareness to correct for wrong movements based on feed-
back (22). Accounting for motor noise when quantifying
exploration from behavioral experiments is required to
correctly model the behavior (23). However, the relation-
ship between reward feedback and the associated mode of
behavior is uncertain. For example, movements that look
like exploration may arise either to gain better outcomes
or due to the inherent variability in the sensorimotor system.
Likewise, exploration may not always follow an unsuccessful
outcome as the change in direction may be small. Although
some recent work identified reward-related neural signatures
from a person during learning itself (e.g., see Ref. 24), directly
capturing the actual intentions to explore (or exploit) in real-
time remains a challenge.

Cluster-Based Approach

Clustering algorithms are unsupervised machine learning
techniques that are commonly used to classify unknown pat-
terns in the data without a priori assumptions or labels.
These techniques have been adopted in previous studies of
motor control and biomechanics to understand movement
patterns and multijoint coordination (10, 25–28). The term
“pattern” is used in machine learning to mean unique fea-
tures hidden in the data that are revealed through statistical
methods. In the present study, movements were grouped
probabilistically based on discriminating features in move-
ment patterns over time. The word “movement pattern”
means reaching movements with different spatial and tem-
poral features. The algorithm considered not only the end
point location, but the underlying characteristics of the
whole time-course in the X and Y axis. It was found that by
the end of learning, movement trajectories across all partici-
pants converged primarily to a single cluster (cluster 9). This
cluster was also the movement cluster with one of the lowest
average perpendicular deviation (or error) and thus associ-
ated with the greatest number of successful trials.

The clustering algorithm separates movements not only
based on the direction and end location, but also how each
reaching movement was produced over the course of the
trial. Consequently, spatial and temporal variations result in
different curvatures or shapes, which eventually contribute
to discriminating attributes during clustering. Empirically,
such variations are in line with previous theories by Schmidt
(as a qualitative change in motor program) (29) or Kelso (as a

qualitative change in attractor) (30). Indeed, some variations
can still be found between two movements despite being la-
beled as similar. What is more essential is how similarities
and differences are defined. In the case of the model-based
clustering method, it is a statistical difference between two
time-varying data sets.

Broadly speaking, the clustering techniques can be imple-
mented separately using participant-level data or using the
whole data set at once as a group. What distinguishes the
two approaches is the definition of similarities and differen-
ces. By grouping the individual data set separately, the basis
of similarities and differences will be restricted to those from
each participant and thus prevent a quantitative comparison
across participants or between experimental conditions. We
chose to use the latter approach of using the whole data set
at once because it allows us to look at the variation between
experimental conditions in addition to the individual dy-
namics. As a result, variation among movement clusters
reflects differences in the curvature or shape of the trajectory
across all participants. In the same way, trajectories that
carry identical curvature across all participants were
grouped together as the same cluster. This is despite the fact
that some degree of variability in the extent of this similarity
is present (Fig. 2, E and F). Combining all participants into
one data set also allowed us to identify a stable cluster at the
end of learning that is common to all participants (10).

Exploration and Exploitation

How the movement kinematics changed on a trial-to-trial
basis during training can be examined and visualized using
a cluster transition diagram. Not only does the diagram tell
us the frequency of transitions from one specific cluster to
another, it also shows the diversity of movement clusters
adopted by the participants. The clustering approach has the
advantage of probing how exploration is chosen over exploi-
tation over time by computing the ratio between the fre-
quency of exploration and exploitation (EER) within a single
session. Cluster transition may be related to the exploration-
exploitation ratio in a number of ways. In principle, explora-
tion may occur either by displaying more variety in move-
ment kinematics (i.e., greater number of visited clusters), or
by changing between one existing cluster to another (i.e.,
higher frequency of transition). While learning, a participant
could display a lower exploration-exploitation ratio but a
greater number of different clusters. For example, the move-
ments may belong to “1-1-1-2-2-2-2-3-3-3-3-4-4-4-5-5-5-5-6-6-
6-7-7-7. . ..” Another participant might have a higher explora-
tion-exploitation ratio, but perform a smaller variety of
movement clusters, e.g., “1-2-3-2-1-3-2-3-1-2-3-2-1-2-3-2-1-2-3-
1-2. . .,” and so on.We found that there was a reliable relation-
ship between exploration-exploitation ratio and the overall
number of clusters visited, such that people that had a
greater diversity of movement clusters, also had more explo-
ration. Although the result is correlational, this is consistent
with the idea that more clusters visited corresponds to
greater exploration.

Distinguishing active exploration from natural variability
on the basis of behavioral data is challenging, if not impossi-
ble, particularly when movement variability and exploration
overlap. In the context of the clustering analysis, we define
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active exploration as those cases in which the cluster
switches from one trial to the next. It is therefore assumed
that active exploration can be characterized probabilistically
as between-cluster variation which is reflected in the spatial
and temporal (kinematic) features of movements. In con-
trast, variation within the same cluster reflects at least in
part the natural movement variability for a givenmotor task.
However, even within a movement cluster some of this vari-
ation may be quite intentional as a form of minor explora-
tion, which is in line with the recent work by Pacheco et al.
(7). Such variation within a cluster of an individual could be
associated with minor adjustment in parameters within the
same motor program (e.g., see Ref. 29), for instance, in the
face of a change in task environment.

Change in Task Demand

The nature of the task in this study was determined by the
target width. This approach has been followed in previous
reward-based motor learning studies that affected learning
performance. The task manipulation has been carried out in
a number of ways. Notably, the target within which the
movement would be rewarded was changed either in size or
shifted in the position (15, 20, 22, 31–33). In a work by
Cashaback et al., for example, different reaching directions
carried different reward probability and the probability pro-
file across direction could be either steep or more gradual.
Other studies introduced a shift in the target location or
pointing angle, either gradually over time (e.g., in the work
by Uehara et al.) or in a more discrete fashion after a certain
number of trials (e.g., in the work by Pekny et al.). In the cur-
rent study, the target zone for one of the conditions became
narrower between blocks 1 and 2 and also between blocks 2
and 3, keeping the target center stationary. The wider initial
target width required lower precision and enabled partici-
pants to produce a higher number of successful trials. This
manipulation is similar to that in an errorless motor task
where participants learned golf putting with an increasing
distance from the hole, serving to increase the task demand
(34). In contrast, participants in the Fixed condition encoun-
tered a small target width from the onset and produced
fewer successful trials.

By providing larger initial target widths, participants not
only produced more rewarded trials early in training, but
also demonstrated more exploration than exploitation, and
tended to use a greater number of movement clusters.
This is contrary to the general understanding that positive
feedback and reward may promote less exploration than ex-
ploitation. This seemingly contradictory finding might be
explained by considering the definition of exploration and
the number of successful trials. In the initial stages of learn-
ing, participants sampled many possible reaching directions
with higher spatial and temporal variability. However, it has
been suggested that excessive movement variability to
explore different solutions in space can be unfavorable to
motor learning as it adversely affects the ability to retain use-
ful solutions (35). The adverse effects on eventual learning
performance of large initial variability were likely com-
pounded by a reduction in the width of the target zone,
which increased task demands, in particular, when the vari-
ability (SD = 0.89 cm) was larger than the size of the

narrowest target width (0.80 cm) in the L-S group. This may
help explain why participants who performed more “switch-
ing” initially received less reward at the end. Such a situation
provides an example where higher exploration relative to ex-
ploitation becomes less effective when it is accompanied by
more or less the same rewarded outcomes. This seemingly
maladaptive situation in turn impacted subsequent learn-
ing stages where the requirement of movement precision
and accuracy increased. It is noteworthy that exploration
involves gathering of reliable information about the move-
ments which are, not only successful, but also unsuccess-
ful (6). The findings raise a question of whether there
exists an optimum level of difficulty (or in our case the tar-
get size) that allows faster motor skill learning through
“safe” exploration. However, it is likely that a satisfactory
difficulty level may be closely related to individual differ-
ences in learning ability and may have to be continuously
adjusted during learning.

Why does the reach direction change with decreasing tar-
get width between blocks? One possibility is that the switch
in direction appears as a form of exploration in search of the
successful outcomes previously obtained in the preceding
block. Another possibility is that changes in the motor plan
gave rise to distinct clusters due to adaptation to changes in
task demands, which in this case is the narrowing of the tar-
get zone. According to a prevailing theory of motor adapta-
tion (36), adaptation occurs largely due to sensory prediction
error, in which there is an anticipated or predicted sensory
outcome of a movement and a systematic error is introduced
into the perceived movement by, for instance, rotation of
visual feedback or amechanical perturbation to an otherwise
straight movement. The distinction between error-based ad-
aptation and reinforcement-based learning has advanced,
particularly in light of recent studies that showed reinforce-
ment-based mechanisms can occur simultaneously with and
support motor adaptation (3, 4, 37–39). In the context of our
task, we believe that motor learning in response to target
size constriction is primarily driven by reinforcement-based
processes for two reasons. First, participants did not know
the exact location of the target, and thus, no directional in-
formation regarding error is available. More critically, no in-
formation regarding target width was conveyed to the
participants (beyond that related to their success or failure).
This imposes a challenge for adaptation-based learning
because there is no clear sensory target relative to which
error has to be minimized. Indeed, one study observed that
when the sensory error is uncertain or unreliable, partici-
pants depend more on another learning mechanism that is
based on success/failure (4). Second, because the only learn-
ing signal appeared as success/failure, participants had to
reinitiate the search process to be successful and obtain a
reward. This likely happens through trial and error or explo-
ration, which is a hallmark of reinforcement learning (8).

Limitations and Conclusion

This study has some limitations which should be noted.
The width of the target zone, which was the main experi-
mental manipulation in this study, was changed in a single
direction. To fully understand the effect of varying task
demands on motor learning, future work that includes an
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additional condition in which the target size increases is
warranted. For a better comparison, the smallest width for
the narrowing and widening conditions might be the same
as the target width of the fixed group (1.00 cm). Another li-
mitation is the definition of exploration/exploitation that
does not depend on the history of prior reward. The unsuper-
vised clustering approach was employed to understand the
reaching movements using information from the whole tra-
jectory. As such, exploration and exploitationmay somewhat
be different from the traditional view that is dependent very
much on the retrospective rewarded outcomes. Still, our
analyses have shown that this method is sensitive enough to
differentiate between rewarded and unrewarded move-
ments, and to understand movements that will yield the
highest reward, or that are repeated most often at the end of
training.

In summary, we presented an application of machine
learning techniques to harness the wealth of kinematic data
in motor learning studies and complement traditional statis-
tical analyses. Using an unsupervised clustering algorithm,
trajectory data were classified into different clusters and
trial-to-trial transitions were used to denote exploration and
exploitation. The frequency of each mode of behavior over
the learning period was used to estimate how a learner chose
exploration over exploitation. The choice of exploration over
exploitation was found to be influenced by a change in the
task demand, but excessive exploration over exploitation
could be detrimental to motor learning. Motor exploration is
deemed useful for learning but only when different move-
ment leads to different trial outcomes. Overall, this data-
driven analysis provides an attractive method to study
mechanisms of explorative and exploitative behavior during
motor learning.
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