
Biol Cybern (2013) 107:653–667
DOI 10.1007/s00422-013-0565-3

OPINION PAPER

Computational model of motor learning and perceptual change

Satoshi Ito · Mohammad Darainy ·
Minoru Sasaki · David J. Ostry

Received: 14 March 2012 / Accepted: 13 August 2013 / Published online: 30 August 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Motor learning in the context of arm reaching
movements has been frequently investigated using the para-
digm of force-field learning. It has been recently shown that
changes to somatosensory perception are likewise associated
with motor learning. Changes in perceptual function may be
the reason that when the perturbation is removed follow-
ing motor learning, the hand trajectory does not return to a
straight line path even after several dozen trials. To explain
the computational mechanisms that produce these character-
istics, we propose a motor control and learning scheme using
a simplified two-link system in the horizontal plane: We rep-
resent learning as the adjustment of desired joint-angular tra-
jectories so as to achieve the reference trajectory of the hand.
The convergence of the actual hand movement to the refer-
ence trajectory is proved by using a Lyapunov-like lemma,
and the result is confirmed using computer simulations. The
model assumes that changes in the desired hand trajectory
influence the perception of hand position and this in turn
affects movement control. Our computer simulations sup-
port the idea that perceptual change may come as a result of
adjustments to movement planning with motor learning.
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1 Introduction

Motor learning contributes to the important ability to behave
adaptively in various situations. Motor learning has been
modeled in various frameworks such as artificial neural net-
works, optimization, adaptive control, and reinforcement
learning among others (Aström and Wittenmark 1989; Sutton
and Barto 1998; Nguyen-Tuong and Peters 2011). However,
the behaviors of biological system are complex, hierarchal,
yet flexible from the viewpoint of control and learning. Thus,
it is difficult to integrate the variety of phenomena that charac-
terize learning in a single framework and to advance models
that are applicable to the considerable variety of situations
entailed in learning. As a result and understandably, recent
models of learning are frequently restricted to the explanation
of specific cases.

Among the large repertoire of human movements, reaching
movements of the arm have been particularly well studied.
Thanks to the development of the sophisticated measurement
techniques, reaching movements and learning have been
investigated in the context of trajectory generation (Flash
and Hogan 1985; Uno et al. 1989; Todorov and Jordan 1998;
Berret et al. 2011), impedance or stiffness control (Mussa-
Ivaldi et al. 1985; Katayama and Kawato 1993; Tsuji et al.
1995; Darainy et al. 2009), and overall movement control
strategies (Flash 1987; Wolpert et al. 1995; Gomi and Kawato
1996; Gribble et al. 1998; Kistemaker et al. 2007). A vari-
ety of learning models have been proposed for arm reaching
movement: Some studies have postulated an inverse dynam-
ics model of the arm to compute the torques that are needed
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to achieve desired movement trajectories. Such an inverse
model could be acquired using an artificial neural network
approach (Miyamoto et al. 1988; Huang et al. 2008) or
by estimating parameters of the dynamical system (Slotine
and Li 1987; Galicki 2007). Another approach has been to
consider learning in the context of patterns of muscle activity
where issues of redundancy and limb impedance come into
play, and necessitate the introduction of predictive forward
models to deal with time delays (Bhushan and Shadmehr
1999; Kambara et al. 2009; Tee et al. 2010). The calculation
of desired trajectory has also been used for modeling motor
learning (Massone and Bizzi 1989), especially in the context
of environmental uncertainty such as in force-field conditions
(Shadmehr and Mussa-Ivaldi 1994). Finally, optimal control
based on the linear-quadratic-Gaussian method (Todorov and
Jordan 2002; Izawa et al. 2008; Mitrovic et al. 2011) has been
shown to produce simulated hand paths similar to those in
empirical studies without calculating a predefined reference
trajectory on the assumption that, in noisy environments such
as biological systems, smoother trajectories reduce end point
variance.

The present paper proposes a learning model for arm
reaching movement. A novel feature of our model is that
it contains both motor learning and its effect on somatosen-
sory perception. As in Shadmehr and Mussa-Ivaldi (1994),
our motor learning model serves to account for adaptation
under force-field conditions but it is distinguished by having
an online trial-by-trial adaptation scheme in which stabil-
ity is ensured given some basic assumptions (see Sect. 2.2).
The model consists of a feedforward controller that com-
pensates for the dynamics of the multi-joint arm, a feedback
controller that compensates for movement errors resulting
from environmental disturbances and from the modeled tra-
jectory generator. This trajectory generator adaptively pro-
duces a desired trajectory for a given environmental condition
such as a force field. As in Gribble et al. (1998), we model
motor adaptation as a change in the desired trajectory. We
describe this trajectory modification in the present paper by

the weighted sum of basis functions in joint space, in which
the weights are updated on a trial-by-trial basis according to a
learning rule. Our model also includes changes to somatosen-
sory perception following motor learning as described in
Ostry et al. (2010) In particular, it is observed that sensed
limb position is altered in a systematic fashion in relation to
the direction of the learned force field. By incorporating this
adaptive phenomenon in sensory systems, we hope to com-
putationally test the idea that the reason the arm trajectory
does not return to that observed prior to learning even after
washout trials is because of this adaptation in the somatosen-
sory system.

2 Learning and control scheme

2.1 Purpose and basic ideas

The purpose of this paper is to propose a new model of motor
control and learning that explains both human motor learn-
ing and associated perceptual change. Humans adopt var-
ious strategies for motor control and learning: impedance
or stiffness is adjusted for movements early in learning or
for movements in unlearnable environments. In other cases,
motor commands are adjusted in a highly specific fashion so
as to produce desired movements and at the same time antic-
ipate and correct for predictable motion-related forces (such
as interaction torques). In the present paper, we consider the
situation in which central motor commands are adjusted to
achieve a desired movement in the presence of movement-
related loads. For modeling purposes, we assume that factors
such as impedance are fixed to simplify the control problem
without losing its basic characteristics. Figure 1 shows a con-
ceptual block diagram for motor control and learning.

The basic postulates for the proposed model of motor
learning are as follows:

P1 A reference trajectory specifying hand position in the
workspace is created based upon the task requirements.

Fig. 1 Control and adaptation
scheme for human movement
including sensory adaptation
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The purpose of the control scheme is to achieve this ref-
erence trajectory regardless of the presence of load.

P2 Feedback control of movement occurs in joint space. The
assumption is that the reference trajectory in P1 is trans-
formed to joint space to define desired joint-angular tra-
jectories. Desired joint-space trajectories are adjusted to
achieve reference trajectories in force-field conditions.
These assumptions are consistent with the finding that in
the case of dynamics learning, learning occurs in intrinsic
coordinates (Malfait et al. 2002; Shadmehr and Mussa-
Ivaldi 1994).

P3 A feedforward controller is used to compensate for limb
dynamics so as to achieve the desired trajectories. Out-
put torques from both the feedforward and feedback con-
trollers are applied to each joint.

P4 Sensed joint angles and velocities are used to reduce joint
angle error in the feedback controller and to compensate
the nonlinear effects of arm dynamics in the feedforward
controller.

P5 The external loads such as those experienced in force-
field learning result in changes in joint space, i.e., the
difference between desired and actual joint angles.

P6 Based on errors, the feedback controller works to bring
each joint to the desired position. At the same time,
desired trajectories are gradually adjusted to decrease
errors associated with external loads. As desired trajec-
tories change, error is reduced and the system shifts from
feedback to feedforward control (Bhushan and Shadmehr
1999; Slotine and Li 1987).

Note that these postulates are similar in many respects to
those of Shadmehr and Mussa-Ivaldi (1994). Our model dif-
fers in its goal of trying to capture the dynamics of the learn-
ing process. It also differs from the approach proposed by
Todorov and Jordan (2002) in which trajectory planning and
execution occur simultaneously, whereas in the present paper,
the reference trajectory is updated only in a trial-by-trial fash-
ion. As this issue is not central to the present formulation, we
make the simplifying assumption that the reference trajectory
is a calculated one trial at a time.

Figure 1 also depicts with a bold red line the flow of per-
ceptual change due to motor learning. The following are the
postulated characteristics of perceptual change:

P7 The desired trajectory affects sensed limb position and
serves to alter perceptual classification.

P8 This perceptual adaptation also affects the perception of
joint angle through inverse kinematics.

In summary, external loads such as those experienced in
force-field learning result in changes to the desired trajectory,
which in return change the perception of limb position. This
implies that sensory adaptation depends on the modification

of the desired trajectory, in other words, on motor learning
(Ostry et al. 2010).

2.2 Assumptions

We have made the following assumptions to simplify the
computational description of learning and control in reaching
movement.

A1 Arm movement in horizontal plane can be modeled with
2-link dynamics.

A2 All dynamical parameters are known in advance.
A3 Joint angles and velocities are obtained on line.
A4 There are no feedback delays.
A5 Feedback gains and learning rates are constant.
A6 Reference trajectories in the workspace can be achieved

by adjusting joint-angular trajectories.
A7 The reference trajectory of the hand is such that the asso-

ciated desired joint trajectories are bounded and have
bounded first and second derivatives.

In the following subsection, motor learning is first ana-
lyzed from the stability point of view, without perceptual
change (the red line in Fig. 1). In this case, the block
“somatosensory system” is treated as an identity transforma-
tion. Next, the total control scheme is presented, including
perceptual adaptation.

2.3 Mathematical model of motor learning

Human arm motion can be represented as a 2-link system in
the horizontal plane as shown in Fig. 2 (A1). The dynamics
of the arm is described as follows:

M(θ)θ̈ + C(θ , θ̇)θ̇ = J T (θ) f e + τ (1)

Here, θ = [
θ0 θ1

]T
is a joint angle vector and τ = [

τ0 τ1
]T

denotes a torque vector at the corresponding joints, M(θ) is
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Fig. 2 Planar two-joint model of shoulder and elbow movement.
The origin of the workspace is at the right shoulder
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the inertia matrix, C(θ , θ̇)θ̇ gives Coriolis and centrifugal
forces. Descriptions of the matrix M and C are provided in
“Appendix” 1. f e is the external force applied to the hand.
In the present case, the effect of the velocity-dependent force
field is modeled as follows, using a viscosity matrix Dp

f e = Dp

[
ẋe

ẏe

]
(2)

J (θ) is the Jacobian matrix that maps joint velocity to the

hand velocity
[

ẋe ẏe
]T

and T denotes the transpose of
matrix. See “Appendix” 1 for the Jacobian transformation
matrix.

Control input, τ , is defined using the adaptive control
scheme proposed by Slotine and Li (1987).

τ = YL(θ, θ̇ , θ̇r , θ̈r )σ̂ L − Kd so (3)

where

θ̇r = θ̇d + Ka(θd − θ) (4)

θ̈r = θ̈d + Ka(θ̇d − θ̇) (5)

so = θ̇ − θ̇r (6)

θd is the desired joint angle vector, Kd and Ka are diagonal
positive matrices for feedback gains. Note that this formula-
tion avoids the need to directly measure angular acceleration,
θ̈ . The matrix YL (θ , θ̇ , θ̇r , θ̈r ) and the vector σ L together sat-
isfy the equation

M(θ)θ̈ + C(θ , θ̇)θ̇ = YL(θ , θ̇ , θ̇ , θ̈)σ L (7)

“Appendix” 1 provides a detailed description of each element
of the equation. With the assumption that σ̂ L is an estimate
of the unknown dynamic parameter vector σ L , estimates σ̂ L

are updated by the following adaptation rule.

˙̂σ L = −ΓLYL(θ, θ̇ , θ̇r , θ̈r )
T so (8)

whereΓL is a diagonal positive matrix determining the learn-
ing rate.

Here, we assume that all of the dynamical parameters are
known (A2), and hence, the adaption rule in Eq. (8) is not
required. Instead, external velocity-dependent forces have to
be considered. Therefore, we modify the scheme for adaptive
control as follows:

First, instead of estimating dynamical parameters, we uti-
lize the known true parameter values, σ L , in the control law
(3).

Next, we introduce the adjustment of the desired trajec-
tories in joint space. We assume that the goal of the control
scheme is to achieve straight hand trajectories in workspace
(P1), p∗

d . Inverse kinematics are used to transform p∗
d to θ∗

d ,
the desired trajectories in joint space (P2). If f e = 0, θ∗

d
achieves p∗

d in hand space. However, when nonzero f e
occurs in the motor learning task, hand trajectories are per-
turbed and the original controller is prevented from obtaining

p∗
d (P5). In this case, the desired trajectories in joint space θ∗

d
must be adjusted to achieve p∗

d (P6). Here, we assume that
incremental adjustments to the desired joint angle Δθ∗

d are
employed.

θd = θ∗
d +Δθ∗

d (9)

Using this equation, we can rewrite (3) by collectingΔθ∗
d

terms as follows:

τ = YL(θ , θ̇ , θ̇
∗
r , θ̈

∗
r )σ L + τΔ(Δθ∗

d ,Δθ̇
∗
d ,Δθ̈

∗
d)− Kd s

(10)

Here,

θ̇
∗
r = θ̇

∗
d + Ka(θ

∗
d − θ) (11)

s = θ̇ − θ̇
∗
r . (12)

The derivation of (10) is given in “Appendix” 2.
The second term on the right-hand side of Eq. (10) acts

to compensate for the effects of the force field. In order to
describe it, suppose that Δθ∗

d is expanded to the weighted
sum of basis functionsφi (t) (Ito et al. 2003; Chien and Huang
2004; Ito and Kawasaki 2005)

Δθ∗
d =

[
Δθ∗

d0
Δθ∗

d1

]
=

[∑n
i=1 c0iφi (t)∑n
i=1 c1iφi (t)

]
= Yφ(t)σ c (13)

where

Yφ(t) =
[
φ1(t) · · · φn(t) 0 · · · 0

0 · · · 0 φ1(t) · · · φn(t)

]
(14)

σ c = [
c01 · · · c0n c11 · · · c0n

]T
(15)

Substituting τΔ in Eq. (10) with Eq. (13), we obtain

τ = YL(θ , θ̇ , θ̇
∗
r , θ̈

∗
r )σ L + Yψ(t)σ c − Kd s (16)

where

Yψ(t) = M(θ)Ÿφ(t)+ (M(θ)Ka + C(θ , θ̇)+ Kd)Ẏφ(t)

+(C(θ , θ̇)+ Kd)KaYφ(t)

=
[
ψ0,1(t) · · · ψ0,2n(t)
ψ1,1(t) · · · ψ1,2n(t)

]
(17)

See “Appendix” 2 for details.
Here, we assume that the effects of the force field

are completely compensated for or offset by the modified
desired trajectories Δθ∗

d (A6). Mathematically, this means
that −J T (θ) f e can be spanned by the functionsψi, j (t), that
is,

− J T (θ) f e = Yψ(t)σ c (18)

σ c is not known beforehand. But, using its estimates σ̂ c, we
can define a new control law

τ = YL(θ , θ̇ , θ̇
∗
r , θ̈

∗
r )σ L + Yψ(t)σ̂ c − Kd s (19)
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and an adaptation rule of the form of Eq. (8) that dynamically
estimates values for the vector σ̂ c:

˙̂σ c = −Γ Y T
ψ s (20)

where positive definite Γ represents the learning rate. Theo-
rem 1 proves that the hand trajectory converges to its refer-
ence p∗

d .

Theorem 1 For the dynamical system described in Eq. (1)
with an assumed control law defined by Eq. (19) and an adap-
tation rule given in Eq. (20), if Eq. (18) holds for the bounded
functional system ψi, j (t), each joint angle converges to its
desired trajectory θ∗

d , that is, the actual hand trajectory con-
verges to reference trajectory, p∗

d .

Proof From the definition of YL , we get

M(θ)θ̈
∗
r + C(θ , θ̇)θ̇

∗
r = YL(θ, θ̇ , θ̇

∗
r , θ̈

∗
r )σ L (21)

Subtracting this from (1) gives

M(θ)ṡ + C(θ , θ̇)s = J T (θ) f e + τ − YL(θ , θ̇ , θ̇
∗
r , θ̈

∗
r )σ L

(22)

Using Eqs. (18) and (19), we can rewrite this as follows:

M(θ)ṡ + C(θ , θ̇)s = Yψ(t)σ̄ c − Kd s (23)

where

σ̄ c = σ̂ c − σ c (24)

Now, consider the following positive definite function

V = 1

2
sT M(θ)s + 1

2
σ̄ T

c Γ
−1σ̄ c (25)

The derivative of V is

V̇ = sT M(θ)ṡ + 1

2
sT Ṁ(θ)s + ˙̂σ T

c Γ
−1σ̄ c (26)

Substituting M(θ)ṡ from Eq. (23) in Eq. (26) and since
Ṁ − 2C is the skew symmetry matrix that satisfies sT

(Ṁ − 2C)s = 0 for any vector s, we get

V̇ = −sT Kd s + [sT Yψ(t)+ ˙̂σ T
c Γ

−1]σ̄ c. (27)

With the adaptation rule of Eq. (20), the second term of the
right-hand side of Eq. (27) is eliminated and V̇ becomes
positive semi-definite as follows:

V̇ = −sT Kd s (28)

Furthermore, V̈ becomes

V̈ = −2sT Kd ṡ (29)

We can ensure the boundedness of V̈ as described in “Appen-
dix” 3. Therefore, from the Lyapunov-like lemma, V̇ con-
verges to zero, implying s → 0 and thus θ → θ∗

d . Because
θ∗

d is calculated from the hand reference trajectory p∗
d , if the

controller realizes θ∗
d the hand trajectory will follow p∗

d . ��

Note 1 The above theorem does not always ensure σ̄ c → 0,
that is, that estimates of σ c converge to their true values σ c.
If another solution exists such that θ → θ∗

d , Δθ∗
d may con-

verge to this solution instead of the true one. It is known that,
in order for the estimates to approach their true values, per-
sistent excitation is required (Slotine and Li 1991), implying
that a broad sampling of reference trajectories is necessary.

Note 2 The control law (19) can be rewritten as follows:

τ = YL(θ, θ̇ , θ̇
∗
r +Δθ̇

∗
r , θ̈

∗
r +Δθ̈

∗
r )σ L

+[Kd((θ̇
∗
d +Δθ̇

∗
d)− θ̇)+ K p((θ

∗
d +Δθ∗

d)− θ)]
(30)

where K p = Kd Ka . The first term corresponds to the out-
put of the feedforward controller (P3), and the second term
describes the feedback (PD) controller (P2). The only feed-
back inputs to the controllers are joint angles and velocities
(P4).

2.4 Modeling of perceptual change

We wish to focus on the characteristics of the washout phase
and, in particular, on a characteristic of learning that is also
observed empirically, the failure to return to straight move-
ment at the end of washout trials. We consider two possi-
bilities. One, of course, is that the effect is due to the small
number of trials in the washout phase and hence the inability
to return to a straight movement path given the large time con-
stant for adaptation and de-adaptation. A second possibility
is that the persistent error at the end of washout reflects recent
evidence that learning results in changes in somatosensory
function.

Before tackling this question, we consider how we might
introduce somatosensory perceptual change into our model.
Empirically, changes in somatosensory function in associa-
tion with motor learning are reflected in changes in the per-
ception of limb position (Ostry et al. 2010). One possibility
is that the perceptual change may be related to changes in the
desired trajectory over the course of learning. In our model,
desired trajectories are curved in a direction opposite to the
applied force, for example, to the right for counterclock-
wise loads. Thus, it is possible that the direction the hand
is intended to move affects the perception of limb position:
The movement target in this experiment was chosen so as to
lie in the sagittal plane, straight out along the midline of the
body, and thus coincides with the direction of the geometrical
boundary between the right and left side of the workspace.
Learning results in a shift in the perceptual boundary in the
direction of the intended movement (or virtual target), which
is opposite to the direction of the force applied by the robot.

An alternative possibility that the distributional charac-
teristics of experienced movements can account for the pro-
posed perceptual change will be difficult to reconcile with
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Fig. 3 Change in perceptual boundary affects sensed joint angles

the empirically observed pattern of perceptual shift. Whereas
the perceptual shift coincides with the “desired” movement
direction, the area of the workspace that is experienced kine-
matically during training is in the opposite direction, that
is, on the other side of the body midline. Accordingly, it
seems reasonable to assume that the system uses the desired
or reference trajectory as a basis for perceptual change (P7).
Based on this idea, we propose that the process of percep-
tual change occurs in the following manner. Assume that the
orientation or direction of the desired hand trajectory rela-
tive to a straight line from movement start to end is αm . The
associated perceptual boundary orientation is α0(i), which is
updated discretely after each trial as follows:

α0(i + 1) = α0(i)+ ks(αm(i)− α0(i)) (31)

namely on the basis of the difference in orientation between
the desired movement and the current perceptual boundary.
ks is a constant that determines the speed of the perceptual
change and i denotes the trial number. During each trial, α0

remains constant.
For the calculation of αm(i), the velocity-weighted aver-

age of movement direction ξ is computed

αm(i) =
∫ t f

ts
vd

e ξdt
∫ t f

ts
vd

e dt
(32)

where

ξ = atan2(ẋd
e , ẏd

e ) (33)

vd
e =

√
(ẋd

e )
2 + (ẏd

e )
2 (34)

and ẋd
e and ẏd

e represent desired hand velocity. This formu-
lation weights most highly the directions in the trajectory in
which instantaneous desired velocity is high. As the range
of integration, we selected the period of intended movement,
that is, the period over which the reference trajectory has
nonzero velocity, from ts to t f .

To incorporate this perceptual boundary shift into a model
of limb control, we consider the change in the sensed limb
configuration in intrinsic or joint coordinates based on P8. To

describe this change, α and αs are introduced, which, respec-
tively, denote the hand orientation in the real work space and
in sensory space, as shown in Fig. 3. On the assumption that
the distance to the hand remains constant, a change in the ori-
entation of the perceptual boundary, α0, actually corresponds
to a change in αs

αs = α − α0 (35)

In other words, the center of the sensory coordinate system is
rotated by +α0 with respect to the body midline and accord-
ingly hand position is sensed as if it had rotated by −α0. Each
of the sensed joint angles θ s associated with these perceptual
changes is obtained by solving the inverse kinematics. The
control law (19) and the adaptation rule (20) can be rewritten
using θ s instead of θ .

3 Computational studies

3.1 Purpose and conditions

The main purpose of the simulations is to determine whether
the computational model proposed in the previous section
can reproduce characteristics of human motor learning, both
qualitatively or quantitatively, including the fact that hand
trajectories do not return to baseline levels following washout
trials.

A typical human motor learning experiment involving arm
movement has three phases: a null field phase in which the
subject makes reaching movements in the absence of load
while holding the handle of a robotic device (A), a force-
field training phase in which the robot applies forces in a
lateral direction in proportion to the tangential velocity of
the hand (B), and a final null field phase in which the effects
of learning are “washed out” (C). The force field is defined
by the following equation,

f e = D

[
0 1

−1 0

] [
ẋe

ẏe

]
(36)
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where D is the magnitude of the force field in N s/m. As in
experiments with human subjects, reaching movements are
simulated in a repeated manner: on each trial, the hand moves
from start position ps at ts[s] to target position p f at t f [s].
The total trial duration is Ttrial. In each successive trial, all
initial values are the same, except the learning parameter σ̂ c,
which is updated based on the previous trial.

As a first step, the converge of the control algorithm is con-
firmed. Next, the motor learning with perceptual adaptation
is simulated.

3.2 Parameters

We simulated a series of 350 reaching movements in a sin-
gle straight ahead direction: There were 150 movements in
each of the null field and force-field conditions (Phases A
and B, respectively) and 50 additional washout trials, again
under null field conditions (Phase C). The force-field strength
parameter was set to +18 N s/m for the clockwise curl field
and −18 N s/m the counterclockwise field. Namely, D in (36)
was set to 0 in Phase A and Phase C. D was set to −18 N s/m
for the convergence analysis described above in Theorem 1.

The physical parameters of the two-joint arm model
(see Fig. 2) were set to the following values, based on
Shadmehr and Mussa-Ivaldi (1994) and Tee et al. (2010);
m0 = 1.93 kg, m1 = 1.52 kg, 
0 = 0.165 m, 
1 = 0.190 m,
L0 = 0.31 m, L1 = 0.34 m, I0 = 0.0141 kg m2,
I1 = 0.0188 kg m2. The parameters corresponding to
feedback gains were set as Kd = diag(2.5, 2.5)Nm s,
Ka = diag(6, 6) s−1.

The reference trajectories were modeled as fifth-order
polynomials following a minimum jerk trajectory. Movement
start and end positions were set at ps = (−0.20, 0.20 m),
p f = (−0.20, 0.40 m). The duration of the each trial was
set to Ttrial = 5 s. The limb remained at the start position
until ts = 1.2 s and produced a movement to the target that
ended at t f = 2.0 s. The limb remained at the target for the
remainder of the trial.

Gaussian basis functions were used to model the pattern
of movement error over the course of learning.

φ j (t) = exp[−c(t − j ×Δt)2] (37)

Δt = Ttrial/(n − 1) (38)

n is the number of functions; the functions are equally spaced
over the simulated movement time. c changes the width of the
function. Since φ̇(t) and φ̈(t) are bounded, the boundedness
of Yψ(t) is ensured.

For the numerical integration, a fourth-order Runge–Kutta
algorithm is used with a 0.001 s time step.

3.3 Convergence

Satisfying Eq. (18) depends on the number of the basis func-
tions, n. Here, we have examined the convergence of hand
trajectory to its reference from this point of view. Although
the iterative application of the control law and learning rule do
not always ensure convergence (because Theorem 1 assumes
continuity of time), we have obtained stable results from the
simulations. Figure 4 shows simulations that assess conver-
gence using three values for the number of basis functions, n.
Each panel shows simulated hand paths and velocity profiles
over the course of learning (trials 1–200). Panel (a) shows the
result with a small number of functions, n = 3 and c = 2.
Panel (b) gives an intermediate case with n = 26 and c = 5.
Panel (c) shows the result with a large number of functions,
n = 251 and c = 15.

All three simulations show some common features. Early
in learning movements are curved to the left and have veloc-
ity profiles with multiple peaks. When the number of basis
functions is low, the simulated movements remain deviated
from the desired trajectory, indicating that the controller
cannot converge to the reference. In (b), acceptable results
are obtained: with training, the hand path becomes increas-
ingly straight and the velocity profile becomes bell-shaped,
although ripples are observed at the end of movement when
velocity is low. In panel (c), almost perfect learning is accom-
plished; velocity profiles quickly become bell-shaped. The
results indicate that for large n, the proposed control algo-
rithm successfully achieves the reference trajectory.

3.4 Reproducing human behavior

Our model can fully learn the force field if we choose a large
n. This can be seen in Fig. 4c for an n of 251. However,
empirical studies show that subjects do not fully compensate
for the force field in only 150 trials of training. In Ostry et
al. (2010), it can be seen that the perpendicular displacement
(PD) of the hand relative to a straight line from start to end
positions remains deviated to the right in the clockwise force
field and to the left in the counterclockwise force field after
150 training trials (see Fig. 5a). The difference of PD values
between left and rightward force fields is about 20 mm at the
end of the training Phase B. The difference is present even
after the washout Phase C. It reaches about 6 mm after 50
washout trials. To reproduce the Phase B empirical results,
we set n = 13 and c = 6. We used a learning rate of Γ =
diag[3.5 × 10−6, . . . , 3.5 × 10−6] and a perceptual change
rate of ks = 2.0 × 10−4 to fit the Phase C results. These
parameters were used throughout the simulations described
in this section.

Figure 6 shows simulated hand paths under null, force-
field, and washout conditions, for movements in coun-
terclockwise (upper panel) and clockwise force fields
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(a) n=3, c=2

(b) n=26, c=5

(c) n=251, c=15

Fig. 4 Tests for the convergence of simulated hand position and velocity in force-field learning. n represents the number of Gaussian basis functions
used to represent joint deviation during learning. c gives the width of the associated basis functions

(lower panel). Under null field conditions, the reference tra-
jectory, which is given as the straight line, is achieved since
all the dynamic parameters are known. During force-field tri-
als (Phase B), trajectories are curved, but as motor learning
progresses, the observed hand trajectories approach straight
line paths. When the force field is removed (Phase C), the
hand path is curved in a direction opposite to the force field.
Over the course of washout trials, hand paths again approach
a straight movement.

As a measure of learning, we computed on a trial-by-trial
basis the maximal lateral deviation of the hand from a straight
line path. Figure 5b shows values for this measure over the
course of learning. Movements in a counterclockwise force

field are shown with circles; movements in the clockwise are
given with squares. During null field movements in Phase
A, paths are entirely straight. When the force field is intro-
duced at the start of the Phase B, an initial lateral devia-
tion of more than 0.040 m is observed for both force-field
directions. These deviations decrease to +0.0078 m (CW)
and −0.0066 m (CCW) by the end of force-field learning.
Aftereffect movements in Phase C are curved in a direction
opposite to that observed during learning. An initial lateral
deviation of about 0.040 m in aftereffect trials is gradually
reduced during washout, but does not go back to zero by the
end of the Phase C, that is, after 50 washout trials (−0.0021
for CW and 0.0018 m for CCW).

123



Biol Cybern (2013) 107:653–667 661

Fig. 5 Maximum lateral
deviation over the course of
learning

(a)

(b)

We assessed the similarity of the simulation results to the
empirical force-field learning data by fitting, as in David-
son and Wolpert (2004), a discrete form of the exponential
function, c1 + c2(1 − c3)

i to the data shown in Fig. 5a, b,
where c1, c2, and c3 are fitting parameters, and i is the trial
number. We conducted statistical tests for differences in the
estimated slope parameter, c3, in each phase of the exper-
iment and each force-field direction separately. We found
no statistically reliable differences in the estimated learning
rates between functions fit to the real and simulation data
in neither the force-field training nor aftereffect phases of
the experiment (Table 1). This suggests that present com-
putational model provides an adequate fit to the empirical
results.

Figure 7 shows simulated values of the desired hand tra-
jectory derived using forward kinematics from the desired
trajectories of joint angles, that is, θ∗

d + Δθ∗
d , where Δθ∗

d
represents changes in desired joint configuration as a result
of learning. This desired workspace trajectory reflects the
change of the intended movement direction of the hand that
causes the perceptual boundary shift. Simulated changes in
the perceptual boundary, α0, are depicted in Fig. 8b, where

the rate of perceptual change is set to ks = 2.0 × 10−4.
With these values, the perceptual shift reaches −0.0070 rad
for the CW force field and 0.0054 rad for the CCW force
field by the end of Phase B. This corresponds to a shift of
−1.4 mm (CW) and 1.1 mm (CCW) at the target position,
which is 20 cm from the start. The difference between these
values is around 2.5 mm, which is similar to the actual shift
of the perceptual boundary obtained in experimental studies
(Fig. 8a).

3.5 Effect of perceptual change on subsequent movements

In order to assess the effect of perceptual change on arm
reaching movements, we simulated 1,300 movements such
that the initial null and force-field phases of training stayed
the same as before (Fig. 5) and were then followed by 1,000
simulated washout trials (Phase C’). The predicted patterns
of motor learning as assessed by the lateral deviation of the
hand during learning are shown in Fig. 9. The upper panel
(Fig. 9a) shows the simulation with the perceptual change
parameter set to ks = 2.0 × 10−4 (see Eq. (31)). The lower
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Fig. 6 Simulated hand path during force-field learning. The top row shows movements in a counterclockwise force field. The bottom row shows
a clockwise field. Trial numbers are shown in each panel

Table 1 Estimated rate parameters, c3, for force-field learning (Phase
B) and washout (Phase C) for empirical and simulated results

Phase B Phase C

Mean (99 % CI) Mean (99 % CI)

Human (CCW) 0.134 (0.0975 0.1711) 0.140 (0.1092 0.1712)

Simulated (CCW) 0.134 (0.1247 0.1431) 0.174 (0.1619 0.1864)

Human (CW) 0.138 (0.1026 0.1732) 0.213 (0.1561 0.2700)

Simulated (CW) 0.133 (0.1242 0.1418) 0.158 (0.1491 0.1675)

panel (Fig. 9b) presents the case in which the effect of the
perceptual boundary shift on motor learning is assumed to be
zero (ks = 0). It can be seen that in comparison with the case
in which learning results in no change in sensory function
(ks = 0), it takes longer time for the hand trajectories to
become straight again as a result of the sensory adjustment.

Although not shown here, up to 350 movements, the actual
and desired hand path for ks = 0 was almost the same as in
Figs. 6 and 7. The effects of including perceptual change
in the simulations were rather small, around 1 millimeters,
in comparison with the scale of the hand paths shown in these
figures.

The predicted perceptual changes are shown in Fig. 10,
along with changes in αm , the desired movement direction.
According to (31), the perceptual boundary, α0, is updated
on a trial-by-trial basis depending on the difference between
αm and α0. When Phase B starts, αm increases in conjunc-
tion with motor learning. When Phase C begins and the force
field is removed, αm returns to zero. At the same time, during
Phase B, α0 gradually evolves toward αm . However, due to
large time constant, α0 changes slowly. When the Phase C
starts and αm returns to zero, the error that drives the update
of α0 is small in comparison with that in the Phase B, which
results in a slow return to baseline for α0. Accordingly, the
large time constant for α0 dynamics with respect to that of
αm is a reason why the change in α0 is fast in the Phase
B and slow in Phase C. This mechanism explains why the
perceptual boundary shifts persist even after washout tri-
als.

These results are consistent with the idea that trajectories
do not return to straight not only because of the time constant
of motor learning but also because of sensory adjustment, that
is, perceptual change in conjunction with motor learning,
as well as the rate of de-adaptation both contribute to the
incomplete washout that is observed.
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Fig. 7 Desired hand trajectory over the course of learning. Upper panel is for counterclockwise loads. Lower panel is for clockwise loads

Fig. 8 Perceptual change. Red
shows perceptual change in
association with
counterclockwise loads. Blue
indicates perceptual change for
clockwise loads. a Human
empirical data from Ostry et al.
(2010). b Simulated perceptual
change over the course of
learning as represented by the
angle α0

α

(a) (b)

4 Discussion

We have simulated human reaching movement in the pres-
ence of external loads. In addition to providing a computa-
tional mechanism for adaptation to load, our simulations have
focused on two specific characteristics of learning: (i) the
curvature of the hand trajectory does not return to a straight
line path when the force field is removed, even after many

washout trials; (ii) the sensed position of the limb is altered by
motor learning. To explain the mechanism behind these char-
acteristics, we have proposed a control and learning scheme
in which joint angles are selected as the control variables
and motor learning is described in terms of the adjustment
of their desired trajectories. The deviation in joint space of
desired trajectories from the reference trajectory (translated
to joint space using inverse kinematics) is represented as the
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Fig. 9 Predicted hand
deviation during learning with
(top panel) and without (bottom
panel) sensory change. Each
panel shows null trials,
force-field learning, and then an
extended period of washout in
the absence of load

(b) No sensory adjustments

(a) With sensory adjustments 

Fig. 10 The change of α0 in
every 30 trials during 1,300 trial
simulations. Red represents the
results for CCW force field
while blue represents CW force
field. The trial-by-trial changes
in αm are overlaid at the same
graph. a shows a whole
evolutions, and b is a
enlargement of a around α0 = 0

(a) (b)
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weighted sum of Gaussian basis functions whose coefficients
are updated to achieve the hand reference trajectory, which
is determined on the basis of task requirements. The conver-
gence of the hand trajectory to its reference is guaranteed
using a Lyapunov-like lemma and is demonstrated by simu-
lations that estimate the number of the basis functions needed
to replicate empirical adaptation.

In order to incorporate changes to somatosensory percep-
tion, we considered possible effects of learning on sensory
function as a result of changes in desired hand-space trajec-
tories. Empirically, it is seen that the direction of movement
coincides with the perceptual boundary and does so both
before and after learning, that is, following learning, move-
ments follow altered perceptual boundaries. Consistent with
this observation, modeled sensory perception was adjusted
after each trial based on changes in the direction of the desired
trajectory. Computer simulations demonstrated that sensory
adjustments based on this idea have an effect of producing
simulated movements that correspond to the shifted percep-
tual boundary.

The idea that changes to the desired movement trajectory
propagate into sensory function is similar in certain respects
to the notion of efference copy—the finding that there is sen-
sory change, usually sensory suppression, that is observed in
conjunction with voluntary movement (Bernier et al. 2009).
The effects that we see and the postulated changes in our
model may have ties to efference copy but are different in
important respects. First, the modeled perceptual changes
(and those observed empirically) are spatial shifts in percep-
tual function, not perceptual suppression. Second, empiri-
cal demonstrations of efference copy-like phenomenon are
largely linked to ongoing movement. When the movement
ends, perceptual function is restored to former levels. In con-
trast, the perceptual changes observed in association with
motor learning are durable.

We propose a new strategy for motor learning. In our view,
the feedforward controller is used to anticipate and correct
for limb mechanical behavior. Arm dynamics change slowly
and are dependent on factors, such as growth or aging. Per-
sistent use of tools or prostheses can likewise induce changes
in feedforward control. Since these factors are outside of the
scope of the present study, we assume that feedforward con-
trol is unchanged. Adaptation to more transient loads such
those involved in force-field adaptation occurs, in our model,
through changes to desired arm trajectories.

From the modeling point of view, only one reference tra-
jectory was examined in the present paper. However, the
same basic formulation, can be generalized to model move-
ments to other directions and to learning various trajectories
at the same time. Humans also show modest generalization of
learning to new movement directions. Producing a learning
rule that replicates human patterns of generalization would
be a valuable future direction. The possibility that adapta-

tion and de-adaptation are characterized by different time
constants (Davidson and Wolpert 2004) is a further phe-
nomenon in human motor learning appropriate for further
exploration as this would affect predicted characteristics of
sensory change during the washout phase. It would also be
worthwhile to direct our attention to the possible effects of
time delay, redundancy, and the control of arm impedance on
the performance of our model.
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5 Appendix 1: 2-link system dynamics and kinematics

The 2-link dynamics of the arm in the horizontal plane are
described as follows:

M(θ)θ̈ + C(θ , θ̇)θ̇ = τ (39)

Here, M(θ) and C(θ , θ̇) are given as follows:

M(θ) =
[

M11 M12

M21 M22

]
(40)

C(θ , θ̇) =
[

C11 C12

C21 C22

]
(41)

M11 = I0 + I1 + m0

2
0 + m1L2

0 + m1

2
1

+2m1L0
1 cos θ1 (42)

M12 = M21 = I1 + m1

2
1 + m1L0
1 cos θ1 (43)

M22 = I1 + m1

2
1 (44)

C11 = −m1L0
1θ̇1 sin θ1 (45)

C12 = −m1L0
1(θ̇0 + θ̇1) sin θ1 (46)

C21 = m1L0
1θ̇0 sin θ1 (47)

C22 = 0 (48)

As shown in Fig. 2, θi denotes joint angle, Li is link length,

i is the distance to center of mass of the link, mi is mass
of the link, Ii is the moment of inertia about the center of
mass, τi denotes joint torque and i distinguishes the shoulder
(i = 0) and the elbow (i = 1). The operation ˙denotes time
derivative.

Note here that the left side of Eq. (39) can be described
as the product of YL and σ L as shown in (7). In the case of
2-link arm dynamics, they are given as

YL(θ , θ̇ , θ̇r , θ̈r ) =
[
θ̈r0 (θ̈r0 + 2θ̈r1) cos θ1 + θ̇r1(2θ̇0 + θ̇1) sin θ1 θ̈r1

0 2θ̈r0 cos θ1 − θ̇2
r0 sin θ1 θ̈r0+θ̈r1

]

(49)
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σ L = [
σL1 σL2 σL3

]T
(50)

σL1 = I0 + I1 + m0

2
0 + m1L2

0 + m1

2
1 (51)

σL2 = m1L0
1 (52)

σL3 = I1+m1

2
1 (53)

Then, the following equation holds using σ̂ L :

YL(θ, θ̇ , θ̇r , θ̈r )σ̂ L = M̂(θ)θ̈r + Ĉ(θ , θ̇)θ̇r (54)

M̂(θ) and Ĉ(θ, θ̇), the estimates of M(θ) and C(θ , θ̇),
respectively.

On the other hand, the relationship between hand position
and joint angles is given as follows:

xe = L0 cos θ0 + L1 cos(θ0 + θ1) (55)

ye = L0 sin θ0 + L1 sin(θ0 + θ1) (56)

Hand velocity are related to joint velocities by the Jacobian
matrix J (θ) as follows:

ṗ = J (θ)θ̇ (57)

where

p = [
xe ye

]T
(58)

and

J (θ) =
[−L0 sin θ0 − L1 sin(θ0 + θ1) −L1 sin(θ0 + θ1)

L0 cos θ0 + L1 cos(θ0 + θ1) L1 cos(θ0 + θ1)

]

(59)

6 Appendix 2: Calculation of control law

Using (9), θ̇r becomes

θ̇r = θ̇d + Ka(θd − θ)

= θ̇
∗
d +Δθ̇

∗
d + Ka(θ

∗
d +Δθ∗

d − θ)

= θ̇
∗
r +Δθ̇

∗
r (60)

where

Δθ̇
∗
r = Δθ̇

∗
d + KaΔθ∗

d (61)

Assuming that all the dynamical parameters are known, the
control law (3) can be rewritten as follows:

τ = M(θ)θ̈r + C(θ, θ̇)θ̇r − Kd(θ̇ − θ̇r )

= M(θ)θ̈
∗
r + C(θ , θ̇)θ̇

∗
r

+M(θ)Δθ̈
∗
r + (C(θ, θ̇)+ Kd)Δθ̇

∗
r

−Kd(θ̇ − θ̇
∗
r )

= YL(θ , θ̇ , θ̇
∗
r , θ̈

∗
r )σ L

+[M(θ)Δθ̈
∗
r + (C(θ , θ̇)+ Kd)Δθ̇

∗
r ]

−Kd s (62)

It can be seen from Eq. (61) that the second term in Eq. (62)
is a function ofΔθ∗

d , Δθ̇
∗
d , andΔθ̈

∗
d . If we compare Eq. (10)

with Eq. (62), the second term of (10) will be written as
follows using (13)

τΔ(Δθ∗
d ,Δθ̇

∗
d ,Δθ̈

∗
d)

= [M(θ)Δθ̈
∗
r + (C(θ , θ̇)+ Kd)Δθ̇

∗
r ]

= M(θ)(Δθ̈
∗
d + KaΔθ̇

∗
d)

+(C(θ , θ̇)+ Kd)(Δθ̇
∗
d + KaΔθ∗

d)

= M(θ)Δθ̈
∗
d + (M(θ)Ka + C(θ , θ̇)+ Kd)Δθ̇

∗
d

+(C(θ , θ̇)+ Kd)KaΔθ∗
d

= M(θ)Ÿφ(t)σ c + (M(θ)Ka + C(θ , θ̇)+ Kd)Ẏφ(t)σ c

+(C(θ , θ̇)+ Kd)KaYφ(t)σ c

= Yψ(t)σ c (63)

where

Yψ(t) = M(θ)Ÿφ(t)+ (M(θ)Ka + C(θ , θ̇)+ Kd)Ẏφ(t)

+(C(θ , θ̇)+ Kd)KaYφ(t) (64)

This gives us Eq. (16).

7 Appendix 3: Boundedness

Based on assumption A7, θ∗
d , θ̇

∗
d , θ̈

∗
d are bounded. Yψ(t) is

also bounded as assumed in Theorem 1. Furthermore, M(θ)
is bounded since each element contains only constants or
cosine functions.

Because V̇ ≤ 0, V (0) ≥ V > 0, V is bounded, i.e., s and
σ̄ c are bounded. The boundedness s ensures the boundedness
of θ̇ and θ̇

∗
r . The boundedness of θ̇

∗
r means that θ is bounded

(see Eq. (11)). Thus, C(θ , θ̇) is also bounded.
We can ensure the boundedness of ṡ because of Eq. (23)

and the nonsingularity of M(θ).
Because we can obtain the boundedness of s and ṡ, V̈

given by (29) becomes bounded.
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