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As we begin to acquire a new motor skill, we face the dual challenge of determining and refining the somatosensory goals of our
movements and establishing the best motor commands to achieve our ends. The two typically proceed in parallel, and accordingly it is
unclear how much of skill acquisition is a reflection of changes in sensory systems and how much reflects changes in the brain’s motor
areas. Here we have intentionally separated perceptual and motor learning in time so that we can assess functional changes to human
sensory and motor networks as a result of perceptual learning. Our subjects underwent fMRI scans of the resting brain before and after a
somatosensory discrimination task. We identified changes in functional connectivity that were due to the effects of perceptual learning on
movement. For this purpose, we used a neural model of the transmission of sensory signals from perceptual decision making through to
motor action. We used this model in combination with a partial correlation technique to parcel out those changes in connectivity
observed in motor systems that could be attributed to activity in sensory brain regions. We found that, after removing effects that are
linearly correlated with somatosensory activity, perceptual learning results in changes to frontal motor areas that are related to the effects
of this training on motor behavior and learning. This suggests that perceptual learning produces changes to frontal motor areas of the
brain and may thus contribute directly to motor learning.
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Introduction
Perceptual learning may play a significant role in motor learning,
particularly early in learning, where somatosensory goals of
movement are poorly defined. Learning the feel of a good golf
swing or learning to speak in a foreign language requires the
progressive adjustment of motor commands and the develop-
ment of a sensory plan, a trajectory of desired sensory values, that
regulates the generation of movement. However, in situations
such as these where sensory and motor systems are active in tan-
dem, the source of the neural and behavioral changes with learn-
ing is uncertain. Changes could be attributable to motor learning
driving sensory change, to perceptual learning driving move-
ment, or the two in combination. In the present article, we seg-
regate perceptual and motor learning in time to focus on the
neural correlates of perceptual learning in the motor system. We
find that perceptual learning results in changes to motor areas of
the brain. These changes are present after removing effects in

motor areas that are linearly related to those in sensory systems.
Our analysis thus suggests that perceptual learning may produce
changes to motor areas of the brain that may be functionally
independent of those observed in sensory systems.

There are recent studies that indicate an effect of perceptual
training on motor learning. In studies of limb motor control and
speech motor learning, Darainy et al. (2013) and Lametti et al.
(2012) show that brief periods of reinforced perceptual training
have durable effects on the rate and extent of motor learning.
Rosenkranz and Rothwell (2012) find that somatosensory dis-
crimination training increases primary motor cortex excitability
and improves measures of motor learning. Wong et al. (2012)
report that passive movement of the arm increases the extent of
motor learning. Perceptual stimulation and learning thus benefit
movement and motor learning. But to understand the neural
basis of these effects, it is necessary to separate those changes to
motor areas that can be predicted from cortical sensory activity
from those that are independent of activation in sensory areas of
the brain.

Here we test the idea that somatosensory perceptual learning
leads to persistent changes to motor areas of the brain that cannot
be explained by somatosensory changes alone. Subjects under-
went fMRI scans of the resting brain before and after a somato-
sensory perceptual discrimination task that focused on training
subjects to correctly identify the position of their arm in space.
We examined changes in functional connectivity (FC) in the sen-
sorimotor network that varied with subsequent movement and
motor learning. We tested for changes in connectivity that were
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uncorrelated with activity in the somatosensory network. For this
purpose, we used a model of perceptual discrimination learning
in combination with a partial correlation procedure to remove
the effects on observed connectivity patterns of activity in earlier
stages of the somatosensory network. We found that even after
the correlates of activity in somatosensory areas were removed,
perceptual training resulted in changes to connectivity in frontal
motor areas of the brain and cerebellum. Thus, a portion of the
change in motor areas of the brain that occurs in learning skilled
movements, that is, when perceptual and motor learning occur in
tandem, may actually be the product of perceptual learning.

Materials and Methods
Subjects and experimental design. A total of 14 right-handed subjects (9
male, 5 female), 20 – 43 years of age, participated in a combined per-
ceptual training and brain-imaging experiment, which included three

behavioral and two scanning sessions. All subjects were briefed on
the experiment and signed a written consent form. The Institutional
Review Board of McGill University approved all the experimental
procedures.

The behavioral sessions involved a number of different tasks in which
subjects were seated in front of a 2 df robotic arm (In Motion2, Interac-
tive Motion Technologies) and held the handle of the robot with their
right hand. The seat height was adjusted for each subject separately to
have 70° of shoulder abduction. An air sled was used to support the arm,
and seat straps restrained the trunk. The position of the target and the
subject’s hand were projected on a semi-silvered mirror that was
placed just below eye level. The mirror blocked the sight of the arm
and the robot handle. Optical encoders recorded the position of the hand
(0.0055° resolution, Virtual Absolute Encoder, Gurley Precision Instru-
ments). Applied forces were measured using a force–torque sensor
[0.028 N resolution; Gamma-30 –100, ATI Industrial Automation] that
was mounted below the robot handle.

Figure 1. Somatosensory perceptual learning benefits both perceptual and motor behaviors. A, Experimental sequence, fMRI scanning sessions, and average lateral movement deviation in
different phases of the experiment. Shaded area shows SEM. B, The PI improves over the course of somatosensory training (mean over subjects � SEM). Lower PI values indicate decreased
perceptual classification error. C, The perceptual boundary (psychometric function bias, right) and acuity (psychometric function slope, left) change over the course of somatosensory training. Bar
plots show the average performance in the first (block 1) and final (block 5) blocks of perceptual training (mean over subjects � SE). D, Motor learning as reflected in lateral force production in
channel trials early, midway, and late in force-field learning. Lateral applied force profiles are shown in blue averaged across subjects. The red curves show the ideal force profile that subjects would
need to exert to fully compensate for the force-field perturbation. E, Subjects who learned more during perceptual training (as measured by �PI) subsequently exhibited greater amounts of motor
learning (as measured by FI). Each point represents one subject.
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The experimental sequence is shown in Figure 1A. On Day 0, subjects
came to the laboratory and were briefed on the psychophysical procedure
and also performed 100 reaching movements in a null-field condition to
establish a movement baseline. In null-field trials, the robot applied no
force to the subject’s hand. Twenty-four hours later, on Day 1, subjects
came to the Montreal Neurological Institute (MNI) imaging facility. A
first scanning sequence took �30 min. Subjects then moved to the labo-
ratory for somatosensory training (see below). Afterward, they returned
to the imaging facility for a second set of scans that lasted �1 h. Finally,
they returned to the laboratory and completed 50 reaching movements
under null-field conditions followed by 150 trials in a counterclockwise
force field that pushed the hand to the left in proportion to instantaneous
hand velocity (Fig. 1A).

Sensory and motor psychophysical procedures. Subjects made reaching
movements from a start position that was �25 cm from subject’s chest
along the body midline to a target that was 15 cm from the start in the
sagittal plane. Circles represented the movement start and end points.
Subjects were instructed to make straight movements and to finish each
movement in �700 ms. Visual feedback on movement speed was pro-
vided. A small yellow circle was used to indicate the hand position. All
visual feedback (target and hand position) was removed as soon as the
subject left the start position. Feedback reappeared at the end of move-
ment. At the end of the trial, the robot moved the hand back to the start
position, without visual feedback.

The somatosensory training procedure, which took place on the sec-
ond day of the experiment, involved five blocks of 100 trials each, in
which the robot passively moved the arm outward on one of a set of
fan-shaped trajectories that deviated to the right or the left of the body
midline by up to 12°. The sight of the arm was blocked throughout this
part of the experiment. Hence, subjects could only use somatosensory
information to identify movement direction. On each trial, subjects were
required to judge whether the arm had been moved to the right or left
(oral response). In the last three blocks of sensory training, the experi-
menter provided oral feedback regarding the correctness of subject’s
response (by answering yes or no). In the first two blocks, feedback on
judgment accuracy was withheld to provide a baseline measure of per-
ceptual function before the training trials with feedback.

In the perceptual training sequence, the robot passively moved the
subject’s arm outward along 10 straight trajectories with a fan-shaped
distribution that were equally spaced to the right or the left of the midline
(Darainy et al., 2013). The passive movements had bell-shaped velocity
profiles and were 15 cm in length. Lateral deviations of 12°, 8°, 5°, 3°, and
1.5° in both directions relative to midline were used for purposes of
perceptual training. The above angles were tested 6, 8, 10, 12, and 14
times each, again in both directions, in each block of 100 trials. Subjects
were instructed not to resist the action of the robot so as to minimize any
active motor outflow during the sensory training procedure. This was
subsequently verified using the recorded force exerted by subjects to the
handle during the passive movement training (see Results).

The force-field trials involved a counterclockwise load that pushed the
subject’s hand to the left in proportion to hand velocity. The force field is
given in Equation 1, as follows:

� fx

fy
� � � 0 � 15

15 0 ��vx

vy
� , (1)

where x and y are lateral and sagittal directions, respectively, fx and fy are
the force (in newtons) applied by the robot, and vx and vy are hand
velocity (in meters per second) in Cartesian coordinates. The units of the
gain coefficient are newton second per meter.

On five of the force-field learning trials (15, 85, 135, 139, and 143), the
lateral deviation of a subject’s hand was resisted by the robot, so as to
restrict a subject’s movement to a straight line connecting the start and
target points (“channel trials”). The stiffness and viscosity of the channel
walls were set to 5000 N/m and 50 N s/m. The lateral forces that subjects
applied to the channel walls provide a measure of motor learning.

Brain-imaging procedures. All data were acquired using a 3 tesla Sie-
mens Trio MR scanner at the MNI. Whole-brain functional data were
acquired using a T2*-weighted EPI sequence (32-channel phased-array

head coil; resolution, 3 mm isotropic; 47 slices; 64 � 64 matrix; TE, 30
ms; TR, 2500 ms; flip angle, 90°; generalized autocalibrating partially
parallel acquisition with an acceleration factor of 2). The functional im-
ages were superimposed on a T1-weighted anatomical image (resolution,
1 mm isotropic; 192 slices; 256 � 256 matrix).

In the first fMRI session, two 7 min functional scans of the resting
brain were acquired with the eyes closed. High-resolution anatomical
images of the brain were obtained between the two resting-state scans.
The second fMRI session followed the same procedure. After the final
resting-state scan in the second session, subjects completed two addi-
tional 6 min functional scans, each using an event-related passive arm
movement paradigm similar to that used for the somatosensory discrim-
ination training. The passive movement data were used as localizers to
obtain seed voxels for the resting-state functional connectivity analyses.
In the localizer task, subjects closed their eyes and held the handle of a
Plexiglas magnet-compatible device (Hybex Innovations; Fig. 2A) while
lying in the supine position in the fMRI scanner. The experimenter
moved the subject’s right arm forward and backward in a coronal plane.
The shoulder was not restrained, and hence the device produced move-
ment at both joints. The movement amplitude was 12 cm. The arm was
moved at randomly selected angles relative to the body midline that were
drawn from the following set [�30°, �20°, �10°, 10°, 20°, and 30°]. In
total, there were 58 passive movements, each lasting �2 s. The head
motion artifact was minimized by using cushions to stabilize the head.
The mean (�SD) absolute value of head displacement averaged across
subjects and runs was 0.20 � 0.16 mm, estimated using MCFLIRT in
FSL. The maximum displacement was 1.5 mm, which suggests a minimal
motion artifact due to passive movement.

The interval between consecutive trials was randomly varied between 9
and 12 s, during which time the angle for the following trial was set by the
experimenter. The design of the apparatus minimized the movement of
the cone-shaped handle as it was being repositioned between trials. Sub-
jects were instructed to indicate whether their arm was moved rightward
or leftward and respond accordingly with their left index finger, using a
two-button fiber optic response pad (Current Designs), as soon as the
passive movement stopped. The response times were recorded in refer-
ence to the fMRI volume acquisition. The timing of passive movements
was synchronized using visual stimuli that were visible only to the exper-
imenter, and specified the onset and duration of movement with respect
to the fMRI volume acquisition. As we did not have precise control over
the end of passive movements, the timing of each trial in our event-
related analysis lasted up to 0.3 s before the subject’s button press. This
included the time for the passive movement (on average, 2 s) and the
delay time before the response (on average, 0.4 s). Furthermore, we
added the derivative of the event-timing signal to the general linear
model to account for inaccuracy in the timing of the onset and end time
of each movement. Nevertheless, some variability due to inaccurate tim-
ing remains unaccounted for.

Behavioral data analysis. The maximum perpendicular deviation (PD)
of the hand from a line connecting start and end positions was used for
analysis purposes. This measure provided a quantitative estimate of
movement straightness that was used to examine motor performance
and learning. We calculated the average of PD in the final 50 trials of the
first and the second null-field conditions (PDpre and PDpost, respectively)
for each subject separately. We tested for differences in PD between these
null-field values using a repeated-measures ANOVA. Furthermore, to
quantify the motor-related benefits of perceptual training, we defined a
motor index (MI) on a per-subject basis as the change in average PD from
pretraining to post-training null-field conditions, as follows:

MI � PDpre � PDpost. (2)

We also quantified motor learning by measuring the total lateral force in
three channel trials that were recorded late in the training sequence (av-
eraged over trials 135, 139, and 143), divided by the ideal total force that
was needed to fully compensate for the force field. A force index (FI) was
defined as follows:
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FI �

�
0

T

fx�t�dt

�
0

T

15vy�t�dt

, (3)

where fx(t) is the lateral force applied by the
subject, vy(t) is the velocity in the direction of
movement, and 15 is the coefficient relating
applied force to hand velocity (Eq. 1).

We estimated subject’s perception of the
boundary between left and right by using the
method of constant stimuli. A logistic function
was fit to each subject’s entire set of lateral de-
viations and associated binary (right/left) re-
sponses (Ostry et al., 2010). The 50% point of
the fitted psychometric function gave the per-
ceptual boundary. The distance between the
25th and 75th percentiles served as a measure
of perceptual acuity. An aggregate measure of
perceptual classification accuracy, a perceptual
index (PI), was obtained by computing the dif-
ference between the best possible performance
and the actual false-positive and true-positive
values.

PI � �FP2 � �1 � TP�2. (4)

In this equation, FP is the proportion of false-
positive responses, the number of incorrect re-
sponses for rightward deflections divided by
the total number of rightward movements. TP
is the proportion of true-positive responses.
So, 1 � TP is the proportion of misses, the
number of incorrect responses for leftward
deflections divided by the total number of
leftward movements. A value for PI was ob-
tained for each block of perceptual training.
The change in PI from the first to the final
block of perceptual training (�PI 	 PIblock1

� PIblock5) was used as a measure of percep-
tual improvement.

FMRI data analysis. Image preprocessing
was performed using the FSL software package (Beckmann et al., 2003),
using the same preprocessing pipeline as described previously (Vahdat et
al., 2011). We used both seed-based functional connectivity analysis and
independent components analysis (ICA) to study the structural and tem-
poral characteristics of the perceptual learning memory trace.

Partial correlation applied to seed-based functional connectivity analysis.
We conducted a seed-based functional connectivity analysis based on a
model of the perceptual decision-making sequence derived from electro-
physiological work on nonhuman primates (Romo and Salinas, 2003; de
Lafuente and Romo, 2006; Romo and de Lafuente, 2013; Fig. 2B). The
sequence shown in Figure 2B was constructed using propagation delays
through the sensorimotor network (de Lafuente and Romo, 2006;
Hernández et al., 2010). This simple model fits with the idea that there is
an ordering to the transformation of information from a pure sensory
signal to a motor action required in perceptual discrimination. We de-
fined nine regions of interest (ROIs) that we have used in conjunction
with this model based on the somatosensory localizer task performed in
the scanner (Table 1). These regions are as follows: primary somatosen-
sory cortex (left BA1, BA2, BA3b, and right BA1/2), second somatosen-
sory cortex within the parietal operculum (left SII), ventral premotor
cortex (left PMv), dorsal premotor cortex (left PMd), supplementary
motor area (SMA), and primary motor cortex (left M1). The seed loca-
tions within each of these cortical areas were identified using the peaks of
activity from an event-related analysis of the BOLD response during the
passive movement/somatosensory discrimination task, as described ear-

lier. Conducting this somatosensory localizer task in the scanner ensured
that the selected seed voxels corresponded somatotopically to areas acti-
vated by subjects’ arm afferents and the perceptual decision-making task
(Table 1). By including BA1/2 and BA3b, we ensure that we have selected
areas that receive both proprioceptive and cutaneous information in
the context of the present perceptual training task. Area 3a was inten-
tionally excluded from these analyses because of its proximity to BA4;
hence, the difficulty in distinguishing between motor and somatosen-
sory activations.

Figure 2. A, Drawing of MR-compatible device that was used in the scanner to passively move the subject’s arm. Subjects held
the cone-shaped handle of the device (shown to the right), while the experimenter moved the handle located at the left end
toward the subject and back in a randomly selected direction in the horizontal plane. B, A hierarchical model of perceptual
processing in the sensorimotor network. The sequence shown is constructed based upon propagation delays through the senso-
rimotor network during a somatosensory perceptual decision-making task (Romo and de Lafuente, 2013). In partial correlation
analysis, the correlation between a given area and the rest of the brain is calculated by removing the activity of all preceding areas
in the perceptual hierarchy. C, Processing pipeline showing different computational steps in dynamic ICA analysis of resting-state
data.

Table 1. Activation peaks from a somatosensory localizer task performed in the
scanner

ROI Anatomical label

MNI coordinates

z-valuex y z

BA2 Left primary somatosensory cortex BA2 �48 �22 38 7.0
BA3b Left primary somatosensory cortex BA3b �20 �34 66 5
BA1 Left primary somatosensory cortex BA1 �56 �14 42 5.1
BA2/R Right primary somatosensory cortex BA2 50 �28 56 4.8
SII Left secondary somatosensory cortex, OP1 �38 �26 16 6.9
PMv Left ventral premotor cortex, BA6 �42 �10 48 5.2
PMd Left dorsal premotor cortex, BA6 �40 �16 62 5.0
SMA supplementary motor area BA6 0 �10 52 7.8
M1 Left primary motor cortex BA4a �10 �30 74 6.0

The table shows seed coordinates in MNI space (given in millimeters), their anatomical labels, and their z-values
from the event-related analysis.
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We defined a standard spherical mask (radius 	 6 mm) around each
seed in standard space. We resampled this mask first to the T1-weighted
structural image of each subject and from there to the low-resolution
functional space of that subject. For each subject, the average time course
of the BOLD signal within the transformed mask during the resting-state
scans was calculated. The mean BOLD time course of each ROI was used
as a predictor in a per-subject GLM to assess the functional connectivity
of that ROI with every other voxel in the brain.

A simple technique based on the notion of partial correlation (Mar-
relec et al., 2006) was used in conjunction with the model in Figure 2B to
investigate the hierarchy of information processing within the sensori-
motor system following perceptual training. To obtain a brain connec-
tivity map between area Y and the rest of brain when the contributions of
areas X1, X2, �Xn are eliminated (i.e., conditional correlation Corr(Y� X1,
X1, �Xn), we added the time series of the conditioning areas X1, X2, �Xn
as confounds in the subject-level GLM analysis with the time series of Y as
the regressor of interest (orthogonalized with respect to all confound
regressors). This is mathematically equivalent to subtracting and remov-
ing mutual dependencies of the conditioning areas from the connectivity
map of area Y. For each individual, a separate multiple regression analysis
was performed using the time series of nuisance signals described in
Vahdat et al. (2011) (including averages of white matter, CSF, and global
signals) plus the time series of conditioning areas as confound regressors,
with the time series of the ROI as the regressor of interest. This analysis
was conducted separately for the prelearning and postlearning scans.

We performed the conditional functional connectivity analysis for the
four different levels of perceptual processing shown in the model de-
scribed in Figure 2B. Level 1 gives the pattern of connectivity for the
regular seed-based analysis. That is, it assesses connectivity associated
with seeds in primary somatosensory areas. Level 2 uses SII and PMv as
seeds, with the signal correlates of level 1 subtracted out. Level 3 has seeds
in PMd and SMA with the effects of all areas in levels 1 and 2 removed.
Finally, level 4 has M1 as the seed region, with the effects of all areas
earlier in the sequence (BA1, BA2, BA3b, SII, PMv, PMd, SMA) removed.

This analysis produced maps of all voxels that were positively or neg-
atively correlated with the mean time course of an ROI, with the signal
correlates of all the preceding steps in the perceptual processing hierar-
chy removed. The subject-level regression analysis was followed by
between-subjects analyses that were performed using a mixed-effects
model (FLAME) implemented in FSL (Beckmann et al., 2003). As in
Vahdat et al. (2011), we used behavioral factors (MI, PI, and FI) as
regressors to obtain a weighted average of the difference between scans
(post-training compared with pretraining conditions). Thus, instead of
using the binary contrast Scan 2 � Scan 1 as the contrast of interest in the
GLM, we used a graded variable that was based on each subject’s percep-
tual training performance. Corrections for multiple comparisons at the
cluster level were performed using Gaussian random field theory (mini-
mum z 
 2.7; cluster significance, p � 0.05, corrected). To correct for
multiple ROIs, we identified as statistically significant those clusters that
had a probability level of better than p 	 0.05/9 (9 is the number of
ROIs). This between-subjects analysis produced thresholded z-score
maps of activity associated with each ROI.

We then examined the correspondence between changes in the behav-
ioral measures and changes in functional connectivity from pretraining
to post-training conditions. We constructed a vector for each connection
between an ROI and target cluster whose elements were each subject’s
change in functional connectivity (�FC) from pretraining to post-
training sessions. This vector was correlated with a vector of associated
behavioral measures. In the present study, we report only those connec-
tions whose change in FC was reliably correlated with behavior ( p �
0.05).

Temporal dynamics analysis using shared and specific independent com-
ponent analysis. We also used a recently developed ICA method, the
shared and specific independent component analysis (SSICA; Vahdat et
al., 2012), to investigate the temporal dynamics of brain networks that
are preferentially activated during the post-training condition. SSICA is
used to systematically perform between group/condition comparisons in
the ICA framework. This method is particularly useful in resting-state
conditions when there is no temporal constraint imposed by the task

design. SSICA automatically extracts those components that represent a
significant difference in functional connectivity across conditions (the
so-called specific components corresponding to each condition). Here,
we first applied the SSICA on the resting-state dataset to identify those
brain networks that are common to the pretraining and post-training
conditions and those that are specific to either condition. The focus of the
analyses presented below is on those networks that are specific to one
condition or the other, as these reflect the changes in brain networks as a
result of perceptual training. In these analyses, the resting-state BOLD
signal is preprocessed using the following steps: motion correction, high-
pass temporal filtering, slice timing correction, spatial smoothing (6 mm
Gaussian kernel), registration to the MNI standard space, and down-
sampling to 4 mm isotropic space. The dimension of subject-level func-
tional data for each session was reduced from 330 (2 runs � 165 volumes
per run) to 50 as part of SSICA preprocessing. To extract the shared and
specific components across conditions, all the reduced resting-state fMRI
sessions (28 sessions: 14 subjects � 2 conditions per subject) belonging to
both pretraining and post-training conditions were time concatenated
and fed to the SSICA algorithm. We extracted 30 networks using the
SSICA algorithm, and let the algorithm extract up to three specific net-
works per condition. Corrections for multiple comparisons at the cluster
level were performed using Gaussian random field theory as imple-
mented in FSL software (minimum z 
 3; cluster significance, p � 0.05,
corrected).

We then used the z-score spatial map of each extracted specific com-
ponent as regressor in a general linear model to estimate the contribution
of the specific network over time in each subject and each run (Fig. 2C).
In contrast to the regular application of GLM in fMRI, where a spatial
map is estimated from a time series, here a time course is estimated based
on the relative weight of each voxel in the spatial map. This time course
measures the integrity of the specific network (or the strength of func-
tional connectivity within different voxels of this network) at each time
point in different resting-state runs of each subject and can be used as a
measure of within-network functional integration. We acquired two
runs of resting state in each of the pretraining and post-training condi-
tions. The first and the second resting-state runs in the post-training
condition were acquired �30 and 55 min following the end of perceptual
training, respectively. We investigated dynamic changes in the strength
of functional connectivity within the specific network over the course of
the two runs of the pretraining condition and the two runs of the post-
training condition. We used short-time Fourier transform (STFT; with
the standard Hamming window as implemented in MATLAB) to assess
changes in power over the estimated time course, described above, within
the neural activity-related frequency band of the resting-state BOLD
signal (0.009 – 0.08 Hz; Fox and Raichle, 2007). Two-factor ANOVA with
repeated measures was used to perform group-level statistics on the av-
erage power calculated from each run of each subject (factors: time and
training condition). Figure 2C summarizes the computational pipeline
used in this procedure.

Results
We studied the short-term neural correlates of perceptual learning
(within 1 h) by analyzing changes in the functional connectivity
during resting-state periods following perceptual somatosensory
training. In the perceptual training, which was performed outside
the scanner, a robotic device passively moved the arm, which
was hidden from view, outward along one of a set of fan-
shaped paths (for more details, see Materials and Methods).
Subjects were required to judge whether the robot displaced
the hand to the right or the left of the midline, and feedback on
response accuracy was provided. The experimental design is
illustrated in Figure 1A. To assess persistent changes in both
the brain and motor behavior, which are associated with per-
ceptual training, the training was preceded and followed by
resting-state fMRI scanning sessions as well as null-field
reaching movements. A force-field motor learning task fol-
lowed the second set of null-field movements to measure mo-
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tor learning following somatosensory
training in a learning paradigm that uses
joint movements that are similar to
those used during the perceptual training.

We obtained quantitative measures of
perceptual change for subjects in the so-
matosensory discrimination task. The
perceptual index (Eq. 4) decreased over
the course of training, which indicates im-
provements in perceptual classification
accuracy (Fig. 1B; t(13) 	 5.2; p � 0.0002,
the first vs the last block of training). We
observed that, with training, the percep-
tual boundary approached the actual
boundary between left and right, and per-
ceptual acuity increased (Fig. 1C; p �
0.001 in both cases). To rule out the pos-
sibility of active motor outflow during
perceptual training, we examined the
forces that subjects exerted on the robot
handle during training. Measured forces
were low throughout, averaging 0.52 N
(�0.20) orthogonal to the displacement
and 0.68 N (�0.23) in line with the dis-
placement. The measured forces did not
vary in any systematic fashion over the
course of training or with the movement
direction.

During active reaching movements,
the subject was required to move straight
from the start to the end positions. We
assessed the effects of perceptual training
on motor control and learning by measur-
ing the curvature of the hand path (max-
imum lateral deviation of the hand from a
straight-line path; PD) on a trial-by-trial basis. Figure 1A shows
PD values averaged across subjects during null-field and force-
field trials. It can be seen that lateral deflections are significantly
reduced in the post-training null-field movements compared
with the pretraining baseline values (p 	 0.02, average PD over
the last 50 trials of pretraining vs post-training null-field condi-
tions). The straighter hand trajectories during active movements
following somatosensory training reflect the influence of perceptual
training on the motor domain and motor control. Figure 1A also
shows that the force-field initially resulted in a substantial lateral
deviation, which was reduced over the course of motor learning. It is
seen that lateral deviation is eliminated as early as trial 5, but asymp-
totic performance is not achieved until trial 25 or 30.

To better quantify the degree of motor learning, we measured
the amount of lateral force applied during channel trials early
(trial 15), midway (trial 85), and late (averaged over trials 135,
139, and 143) in learning. Figure 1D shows measured force pro-
files in blue averaged across subjects. The red curves in Figure 1D
show the ideal force profile that subjects would need to exert to
fully compensate for the force-field perturbation. The ideal force
profiles were not statistically different in terms of peak force
(F(2,26) 	 2.4, p 
 0.1) or area under the curve (F(2,26) 	 1.5, p 

0.2). As shown, subjects progressively learned to apply force in an
accurate spatial and temporal pattern to compensate for the
newly changed dynamics of the environment. We also examined
the relationship between the amounts of perceptual learning
(change in the perceptual index over the course of somatosensory
training) and motor learning as measured by the force index (Eq.

3). We found that those subjects who learned more during per-
ceptual training, subsequently exhibited greater amounts of mo-
tor learning (r 	 0.64, p 	 0.01; Fig. 1E). A further analysis was
performed of the relationship between motor learning (force in-
dex) and changes in perceptual performance due to perceptual
training as measured by the slope and intercept of the fitted psy-
chometric function. We found no relationship between motor
learning and changes in the intercept (bias, p 
 0.3). In contrast,
motor learning was marginally correlated with improvements in
perceptual acuity (r 	 0.50, p 	 0.06).

As described earlier, we acquired resting-state fMRI scans that
were interleaved with the perceptual training. Resting-state scans
were conducted with the eyes closed. There was no explicit task.
By scanning under resting-state conditions, any changes that we
observe in functional connectivity between sessions can be attrib-
uted to plasticity induced by perceptual learning rather than to
pretraining versus postlearning differences in the performance of
the behavioral task or attentional differences during task perfor-
mance before and after learning. To identify those changes in
the brain functional connectivity that are related to behavioral
improvements (as opposed to nonspecific changes that may be
observed between the two resting-state conditions), various be-
havioral indices were used as a regressor in the seed-based func-
tional connectivity analyses, as described in the Materials and
Methods. In general, the motor control index, measuring im-
provement in the performance accuracy of null-field movements
following perceptual training (Eq. 2, MI), accounted for more of
the variability in functional connectivity changes than the other

Figure 3. Changes in connectivity of primary somatosensory areas in relation to motor performance change. Each row shows
seed regions at the left, and to the right z-map of clusters whose correlation with the seed region increases reliably as a result of
perceptual training. The two panels on the right-hand side of each row give mean measures of connectivity before and after
perceptual training, and the correlation coefficient between �FCs and changes in motor performance (MI). Subjects who experi-
ence greater change in motor behavior show greater changes in connectivity in the resting brain following perceptual training.
z-coordinates of cross sections are reported in MNI space. The value of r represents the Pearson correlation coefficient.
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behavioral factors such as PI (changes in perceptual accuracy; Eq.
4) or FI (degree of force-field learning; Eq. 3). Therefore, we first
report on the results of analysis using MI as a regressor and then
illustrate those with respect to PI and FI.

We first tested the hypothesis that perceptual training not only
changes sensory areas of the brain, but also effects changes within
the motor circuit that cannot be explained by changes in the
somatosensory system. Figures 3, 4, and 5 show, in a sequential
fashion (Fig. 2B, perceptual processing model), those changes in
functional connectivity that are strengthened as a result of per-
ceptual learning and are specifically related to the post-training
improvements in motor performance (MI as the regressor). Fig-
ure 3 shows training-specific changes in the functional connec-
tivity of the ROIs at the first level of perceptual processing
hierarchy, which includes different parts of primary somatosen-
sory cortex. Each row shows seed regions at the left and, to the
right, those clusters whose correlation with the seed region in-
creases reliably as a result of perceptual training. In each case,
initially positive correlations are increased following training.
Subjects who experience a greater change in the motor index
show greater changes in connectivity in the resting brain. In par-
ticular (Fig. 3, top), somatosensory training increases functional
connectivity between BA2 and bilateral primary somatosensory
cortex (SI) (BA1/2), left M1, PMd, and the superior parietal lob-
ule (Table 2). Figure 3 (bottom) shows strengthening of the con-
nections, as a result of somatosensory training, between BA3b
and bilateral primary motor, and dorsal premotor cortices and
right BA1/2. Also, as shown in Figure 6 top row, similar results are
observed using PI as an explanatory variable in a general linear
model contrasting post-training versus pretraining conditions.

Overall, these analyses show that the eleva-
tion of functional connectivity in a net-
work composed of bilateral anterior
parietal and dorsal frontal motor areas is
tightly related to the behavioral improve-
ments in both motor and somatosensory
perceptual domains.

Figure 4 shows the effects of somato-
sensory training on ROIs in the second
level of the perceptual processing hierar-
chy (Fig. 2B), after removal of the BOLD
signal correlates of primary somatosen-
sory cortex. Figure 4 demonstrates training-
dependent changes in functional connectivity
between SII (top row) and PMv (bottom
row), and the rest of the brain that cannot
be explained by activity in primary so-
matosensory cortex. The functional con-
nectivity between SII and bilateral M1 and
SMA, and left PMv is increased by the
effects of somatosensory training. So-
matosensory training is also seen to
strengthen the connection between PMv
as ROI and two clusters, one located in
the left SII and the other one in bilateral
SMA and M1 (Table 2). Note that the
changes in connectivity in the network
composed of SII, PMv, SMA, and M1
are independent of activity in primary
somatosensory areas. The change in
functional connectivity of this network
following perceptual training is tightly
correlated with the behavioral improve-

ments in motor performance (MI measure). Using PI as the
regressor, there is no reliable change in connectivity related to
SII and PMv, when the activity in SI is regressed out.

The above analyses treat SII and PMv at the same level of the
model shown in Figure 2B. In support of this decision, we tried to
separately regress out the effects of SI and SII activation from
PMv. We found that after doing so there were no reliable
learning-related changes in connectivity between PMv and other
areas of the brain. We also tried to regress out the effects of SI and
PMv from SII, which likewise left no reliable changes in con-
nectivity between SII and other brain areas. SII and PMv thus
appear to have similar functions in the perceptual decision-
making sequence.

To investigate whether the changes in frontal motor areas
following perceptual training are a byproduct of changes in so-
matosensory areas or whether perceptual training results in inde-
pendent changes in the motor system, we partialled out activity
from the first and second levels of the perceptual processing
stream while examining changes in the frontal motor areas. Fig-
ure 5 (top) shows training-dependent changes in functional con-
nectivity with a seed in SMA, when activity attributable to SI, SII,
and PMv is removed. One observes an increase in connectivity
between SMA and clusters in bilateral dorsal primary and premo-
tor cortices, as well as with right cerebellar cortex Crus I and
lobule VI (Table 2). The absolute value of the correlation is in-
creased by the effects of training in both clusters (an increase in
positive correlation with the cortical cluster and an increase
in negative correlation with the cerebellar cluster). The increase
in negative correlation between the frontal motor areas and the
cerebellar cortex is consistent with previous reports of resting-

Figure 4. Changes in partial correlation of seed regions at the second level of the perceptual processing sequence (SII and PMv)
in relation to motor performance change. In the partial correlation analysis, the effects of signals recorded from the primary
somatosensory areas are removed. Display conventions are as in Figure 3.
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state and task-based networks following
motor learning (Penhune and Doyon,
2005; Ma et al., 2010; Vahdat et al., 2011),
and also with the inhibitory influence of
cerebellar cortex on the frontal motor ar-
eas of the brain. Somatosensory training
likewise strengthens the connection be-
tween the left and right M1, when the
effects of all the somatosensory and
nonprimary motor areas were removed
(Fig. 5, bottom row). Of note, the modifi-
cations in connectivity within frontal
motor areas following somatosensory
training are specifically correlated with
behavioral measures of how accurately
subjects move their limb (MI), but not
how accurately they perceive their limb
movements (PI).

There are also brain areas that show a
decrease in the strength of connectivity
following perceptual training. Specifi-
cally, PI was the only behavioral measure
that was correlated with a decrease in con-
nectivity post-training. Figure 6 (middle
and bottom rows) shows those areas
whose functional connectivity with pri-
mary sensorimotor seed regions de-
creased following perceptual training.
These areas, color coded in blue, include
posterior cingulate cortex and precuneus,
which are parts of the so-called default
mode network (Buckner et al., 2008). In
each case, it can be seen that an initially
negative correlation approaches zero fol-
lowing training (Table 3). Thus, it is seen that perceptual learning
serves to disengage primary sensorimotor areas of the resting
brain from the posterior parts of the default mode network. No-
tably, the disengagement is observed at an average time of �1 h
following sensory training when the resting-state scans were con-
ducted. Consolidation of perceptual learning is presumably de-
pendent on the separation of specific sensorimotor pathways
from the noninvolved default-mode areas of the brain.

We also investigated whether changes in functional connec-
tivity following perceptual training can predict the subsequent
degree of force-field motor learning. Figure 7 shows those
changes in functional connectivity that are correlated with the FI
measure (force compensation at the end of learning) using the
partial functional connectivity analysis described earlier. Left M1
was the only seed region that showed reliable post-training change in
connectivity correlated with FI. Two clusters were identified; one
cluster comprised bilateral primary motor cortices whose connec-
tivity significantly increased following perceptual training in re-
lation to the degree of force-field learning (r 	 0.69, p 	 0.006;
Fig. 6, top row). A second cluster was located in the left putamen,
which showed a significant change in correlation, from positive
to negative values, with the M1 seed following training (Table 4).
The magnitude of changes in functional connectivity was mar-
ginally correlated with the FI measure (r 	 0.50, p 	 0.06; Fig. 6,
bottom row).

We assessed the possibility that the changes we have observed
in cortical motor areas following perceptual training might be
related to activity in sensorimotor areas that we have not included
in the hierarchical model shown in Figure 2B. In particular, we

tested for the effects of seeds in the left sensorimotor thalamus
(MNI coordinates: x 	 �16, y 	 �26, z 	 6), left putamen (�26,
�8, 2), left superior parietal lobule (BA7; �10, �78, 48), and
right cerebellar cortex (24, �46, �26), after removal of the BOLD
signal correlates of primary somatosensory cortex. The seed re-
gions for these tests were obtained from the peak of activity in
that area during localizer scans that were run at the end of the
scanning sequence. None of these areas showed changes in con-
nectivity that were correlated with any of the behavioral measures
used in this study. Thus, changes in the sensorimotor network
following perceptual learning are primarily associated with those
areas shown in Figure 2B.

To investigate the temporal pattern of the off-line changes
that occur within the hour following the end of perceptual train-
ing, we used a data-driven approach called shared and specific
independent component analysis (Vahdat et al., 2012) in combi-
nation with temporal GLM and STFT analysis, as described in the
Materials and Methods (Fig. 2C). This method allows the extrac-
tion and classification of brain networks that are significantly
more activated during pretraining or post-training conditions
(called specific networks). This analysis resulted in two networks
that were specific to the post-training scans, that is, following
perceptual training. There were no networks that were specific to
the pretraining scans alone (Fig. 8A,D). The first specific net-
work, associated with perceptual training, includes left PMd, M1,
SI, and the posterior parietal cortex (Fig. 8A; Table 5). The
strength of functional connectivity within this network, as as-
sessed by the average power, is significantly increased from pre-
training to post-training resting-state conditions (F(1,13) 	 39.3,

Figure 5. Perceptual learning increases functional connectivity within the motor areas of the brain. Changes in connectivity
vary systemically with motor performance change, regardless of activity in the somatosensory brain areas. Display conventions are
as in Figure 3. The two panels on the right-hand side of the top row correspond to the change in connectivity between SMA and the
cluster in the precentral gyrus.
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p � 0.00005). The second specific network corresponding to
post-training includes bilateral SII, SI, and PMv areas (Fig. 8D;
Table 5) also increases in power in post-training scans (F(1,13) 	
11.7, p � 0.005).

Having acquired two resting-state fMRI scans per condition
allowed us to further examine how the power of the specific net-
works changes over the hour following the end of training. Figure
8, B and E, gives the temporal profile of the power of these specific

Table 2. Summary of results using the MI as a regressor to predict functional connectivity

ROI Pcorr z-value

MNI coordinates z-value

Anatomical labelx y z Pretraining post-training

BA2 0.0000 4.5 �48 �40 54 3.3 5.1 L anterior intraparietal sulcus
4.2 �60 �12 40 4.2 6.3 L postcentral gyrus, BA1

0.02 4.2 �42 �8 60 3.0 5.0 L precentral gyrus, BA6
4.3 50 �26 44 3.7 5.7 R postcentral gyrus, BA2

BA3b 0.0000 5.6 6 �26 76 4.7 7.1 L precentral gyrus, BA4
4.5 �2 �28 68 5.3 7.4 R precentral gyrus, BA4
5.0 24 �40 68 8.8 9.9 R postcentral gyrus, BA1/2

SII 0.0002 4.9 �6 �4 50 0.9 4.0 SMA, BA6
0.0003 4.5 12 �24 76 2.0 3.4 R precentral gyrus, BA4
0.02 4.1 �40 �20 42 1.3 4.3 L precentral gyrus, BA4

3.2 �60 �4 30 �1.0 2.2 L PMv, BA6
PMv 0.0000 4.4 2 0 56 4.4 7.2 SMA, BA6

0.007 3.9 18 �16 66 1.7 4.9 R precentral gyrus, BA6
4.4 �46 �18 18 0.3 3.7 L SII, parietal operculum OP1

SMA 0.0000 4.3 12 �30 62 3.4 5.8 R precentral gyrus, BA4
4.0 38 �12 68 0.1 3.2 R precentral gyrus, BA6

0.0001 4.0 �14 �14 62 5.6 8.3 L precentral gyrus, BA6
5.0 26 �58 �24 0.9 �3.1 R Cerebellum, Crus I
3.3 28 �72 �24 1.2 �2.7 R Cerebellum, lobule VI

M1 0.002 4.3 18 �30 60 3.9 6.9 R precentral gyrus, BA4
4.1 10 �24 74 6.7 8.1 R precentral gyrus, BA6
4.0 �6 �28 60 5.4 7.5 L precentral gyrus, BA4

The table shows clusters whose correlation with the corresponding ROI increased reliably with perceptual training. Pcorr , Corrected cluster-level p value related to the regressor of interest (MI); R, right; L, left. The associated z-score for the
peak is shown in the z-value column. z-values pertaining and post-training give z-scores at the location of maximum activation based on values averaged over subjects in pretraining and post-training conditions respectively.

Figure 6. Changes in connectivity in relation to perceptual change. Perceptual learning disengages primary sensorimotor regions from posterior parts of the default mode network during
resting-state periods following the completion of training. Red and blue color bars indicate, respectively, increase and decrease in the magnitude of connectivity following training. Display
conventions are as in Figure 3.
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networks at different time points averaged over subjects (see Ma-
terials and Methods). As shown, the power of both networks
(which represent the strength of functional connectivity within
each network) is consistently higher in the post-training resting-
state runs (blue curves) compared with the pretraining runs (red
curves). An ANOVA, applied to the first specific network com-
prising dorsal frontal motor and parietal areas, showed that the
change in power between the first and second scanning runs, was
dependent on whether it was measured before or after the per-
ceptual training (significant interaction, F(1,13) 	 4.6, p 	 0.05;
Fig. 8C). Post hoc analysis revealed significantly more power in
this network during the second run of post-training compared
with the first run (t(df 	 13) 	 3.5, p � 0.005). Of note is the
observation that the power in this network peaks at �50 min
following the end of perceptual training, suggesting ongoing neu-
ral processing during this period. There was no reliable change
between the two pretraining runs (p 
 0.2; Fig. 8C, red curves). A
second ANOVA on the second specific network found no reliable
interaction between the two scanning runs and pretraining versus
post-training conditions (p 
 0.3; Fig. 8F, blue curves).

Discussion
The present findings show that perceptual training induces plas-
ticity in the human motor system that cannot be explained by
activity in the somatosensory network. Perceptual training is seen
to change the characteristics of subsequent movements and to
improve somatosensory perceptual judgments. We have used a
neural model of perceptual processing in conjunction with a par-
tial correlation technique to parcel out changes in connectivity
associated with each of the levels of this model. Changes in brain
networks associated with perceptual training are seen at all stages
of the somatosensory processing hierarchy. At each step of the
processing sequence, plasticity is linked to different behavioral
outcomes. When the bottom-up effects of somatosensory inputs
are removed, there still remain changes in connectivity in frontal
motor areas that are linked to perceptual learning.

Overall, we have observed that perceptual learning results in
changes in functional connectivity between primary somatosen-
sory cortex and frontal motor areas (M1 and PMd bilaterally).
When the effects of activity in SI were removed, we found that

Table 3. Summary of results using the PI as a regresssor to predict functional connectivity

ROI Pcorr z-value

MNI coordinates z-value

Anatomical labelx y z Pretraining Post-training

BA3b 0.0000 4.6 �2 �22 46 6.6 8.8 L primary motor cortex, BA4
0.006 3.9 �12 �20 62 5.8 7.5 L precentral gyrus, BA6
0.001 3.6 �4 �52 68 �0.1 3.5 L superior parietal lobule, BA7

4.1 18 �18 70 6.3 7.9 R precentral gyrus, BA6
BA2 0.0000 4.7 0 �62 30 �4.3 �0.6 Precuneus cortex
M1 0.0001 4.7 8 �54 20 �3.1 1.8 Precuneus cortex

3.5 �6 �48 14 �2.3 1.0 Posterior cingulate gyrus

Details are as in Table 2.

Figure 7. Changes in connectivity as a result of perceptual learning in relation to the degree of subsequent motor learning. M1 is the only seed region that showed a significant change in
functional connectivity in association with the FI measure. This figure shows the result of partial correlation analysis after the removal of all the previous areas in the perceptual-processing sequence.
Display conventions are as in Figure 3.

Table 4. Summary of results using the FI as a regresssor to predict functional connectivity

ROI Pcorr z-value

MNI coordinates z-value

Anatomical labelx y z Pretraining Post-training

M1 0.0000 4.8 �2 �26 62 5.0 7.4 L precentral gyrus, BA4a
0.009 4.2 10 �28 72 7.1 8.6 R precentral gyrus, BA4a

4.2 �30 �12 �4 2.8 �2.3 L putamen

Details are as in Table 2.
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seeds placed separately in SII and PMv resulted in reliable
changes in connectivity with SMA and M1, and with one another.
When the contributions of activity in SI, SII, and PMv were also
removed, there still remained reliable changes in connectivity
related to perceptual learning in the links between SMA and M1,
PMd and cerebellar cortex, and also bilaterally in M1. In effect, we
see that there are distinct perceptual learning-related changes in
connectivity at all of the modeled stages of the somatosensory
decision-making sequence. In motor areas, in particular, there

are changes to connectivity patterns that are related to activity in
the somatosensory network, and, additionally, there are also
changes that are uncorrelated with somatosensory activity. This
may reflect different mechanisms underlying plasticity in motor
areas following perceptual training, as suggested by correlations
with behavioral measures that were related to sensory (PI) versus
motor learning (FI) variables.

Much of what we know about motor learning has come from
studies that have examined how subjects adapt to altered sensory

Figure 8. Resting-state networks specific to the postlearning scans and their temporal power profile before and after perceptual learning. A and D show z-score spatial maps of two specific
components corresponding to the postlearning condition, using the SSICA analysis. B and E show the temporal profile of the power of networks shown in A and D at different time points averaged
over subjects before (red) and after (blue) perceptual learning. C and F show the mean power of networks shown in A and D in each of the two resting-state runs performed before (red) and after
(blue) perceptual learning averaged over subjects. Power magnitudes are given in decibels. Shaded area represents the SEM.
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feedback. Typically, visual or somatosensory information is al-
tered as subjects make movements to generally well defined sen-
sory targets. But outside of the laboratory, the sensory targets of
movements, and in particular those associated with somatic
function, are themselves inexact and must be refined with learn-
ing and practice. In the present study, we have intentionally sep-
arated perceptual and motor learning to better understand the
somatosensory changes that accompany motor learning and to
determine the extent to which changes in motor areas of the brain
are produced by perceptual learning alone.

Our behavioral data indicate that somatosensory judgments
are rapidly modified with feedback, that perceptual acuity in-
creases with training, and that movements are rapidly realigned
to reflect this perceptual learning. In our neuroimaging analyses,
we have based the identification of networks on a model of the
perceptual decision-making process that is derived from work on
nonhuman primates. We are thus able to identify functional con-
nections that are not linearly related to activity earlier in the
sequence. Without this kind of correction, it would be difficult to
determine whether or not the activations in a given area (or con-
nectivity between areas) can be explained by patterns elsewhere
in the brain or whether they might have a distinct functional role.
While our analysis does not preclude the possibility of a nonlin-
ear dependence of motor areas on activity in sensory regions, it
does eliminate the simplest version of this idea, that motor areas
are simply mirroring the activity in sensory regions. The results of
this analysis lend support to the idea that perceptual learning is
actually changing motor areas of the brain. However, it should be
noted that the present analyses were conducted on the basis of
low-frequency BOLD signal fluctuations under resting-state con-
ditions. This does not rule out the possibility of higher-frequency
dependencies in electrophysiological activity patterns in the sen-
sorimotor network.

The connectivity analyses reported in the present article are
tied to behavioral measures of learning. That is, the connectivity
analyses identify correlations in the hemodynamic response that
are directly related to the changes in movement following percep-
tual learning. By linking the connectivity analyses to behavioral
measures of learning, we rule out the possibility that any observed
effects are due to nonspecific changes that occur between the two
resting-state scans. In the present analyses, changes in connectiv-
ity that are associated with earlier stages of the sensory-processing
model are related to both motor and perceptual variables (MI
and PI). At later stages, changes to connectivity measures are
linked only to improvements in motor performance and learning
(MI and FI). This suggests that changes in the voluntary control
of movement that are associated with perceptual training arise

from a distributed pattern of plasticity throughout the entire sen-
sorimotor network.

Aspects of the time course of changes to the sensorimotor
network were obtained by using ICA to assess the strength of
networks over the course of the pretraining and post-training
scans. Using a technique that extracts components that are shared
between pretraining and post-training scans and those that are
specific to each (Vahdat et al., 2012), we identified two networks
that are specific to the post-training scan, one consisting of SII
and PMv, and the other of left sensorimotor cortex, BA7, and
PMd. The latter network showed a progressive increase in power
over the course of the scanning sequence. Of note is the observa-
tion that there is a local maximum for power at �50 min follow-
ing the end of perceptual training, suggesting ongoing neural
processing during this period.

Some differences between the ICA and seed-based analyses
should be noted. In particular, whereas the seed-based analyses
detected changes in connectivity that were related to behavioral
measures, ICA identified changes in connectivity from pretrain-
ing to post-training regardless of behavioral factors. Moreover, in
the seed-based analyses, but not ICA, a partial correlation proce-
dure was used to account for activity in somatosensory areas.
Nevertheless, the two techniques resulted in comparable net-
works. In particular, the networks reported in Figures 3 (BA2)
and 4 match those obtained in Figures 8, A and D, respectively.

The present findings complement those of similarly con-
structed behavioral studies that assess the effects of perceptual
training on force-field adaptation (Darainy et al., 2013). In the
Darainy et al., 2013 study, we tested different aspects of percep-
tual training and its effect on motor performance, perception,
and learning. It was found that, compared with control subjects
that received no perceptual training, a protocol identical to that
used here resulted in increases in the rate and the extent of motor
learning regardless of whether the shift in the perceptual bound-
ary served to increase or decrease the magnitude of sensory error.
Somatosensory perceptual acuity was the primary variable asso-
ciated with improvements in motor learning following training.
Thus, as in the present study, these findings suggest that changes
to movement during sensorimotor adaptation may in part be the
result of perceptual learning.

A number of previous studies have examined the effects of
somatosensory stimulation on human motor function. Several
studies have assessed brain activity following somatosensory
training using passive movement of the upper limb (Carel et al.,
2000; Kaelin-Lang et al., 2005; Macé et al., 2008). Some studies
have observed no changes in motor performance or motor areas
of the brain, or no change in corticomotor neural excitability
following periods of passive training (Lotze et al., 2003; Kaelin-
Lang et al., 2005). Others have documented changes to sensori-
motor areas (Pleger et al., 2003), and changes in corticospinal
excitability in both healthy (Carel et al., 2000; Lewis and Byblow,
2004; Macé et al., 2008) and patient populations (Nelles et al.,
2001; Lindberg et al., 2004; Dechaumont-Palacin et al., 2008).
Other forms of somatosensory stimulation, such as peripheral
nerve stimulation (Conforto et al., 2002; Charlton et al., 2003),
muscle tendon vibration (Forner-Cordero et al., 2008), and
paired associative stimulation (Stefan et al., 2000; Stefan et al.,
2002), have resulted in enhanced corticospinal excitability and
changes in corticomotor representations.

Other researchers have used neuroimaging procedures and
magnetic brain stimulation to study the effects of passive move-
ment training on sensorimotor brain networks. The neuroimag-
ing studies have identified changes associated with passive

Table 5. Summary of activation peaks related to two resting-state networks
specific to the postlearning condition identified using the SSICA algorithm

Network
index

p value
(post � pre) z-value

MNI coordinates

Anatomical labelx y z

1 0.0000 4.9 �26 �10 68 L precentral gyrus, BA6
4.4 �42 �38 60 L postcentral gyrus, BA2
4.0 �40 �22 60 L precentral gyrus, BA4
3.3 �26 �50 68 L superior parietal lobule, BA7

2 0.004 9.7 �58 �6 24 L postcentral gyrus, BA3b
8.3 �60 �6 12 L SII, parietal operculum OP4
8.1 �58 �4 30 L PMv, BA6
7.3 �52 �8 34 L precentral gyrus, BA4

p values (post � pre), the result of statistical tests comparing the strength of functional connectivity within each
network from pretraining to post-training resting-state scans; L, left. z-values give the z-scores of the activation
peaks in the spatial map of each specific network.
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movements in primary sensorimotor cortex (including both M1
and SI) and SMA in healthy individuals (Carel et al., 2000), and in
SMA, prefrontal cortex, contralesional inferior parietal lobule,
second somatosensory cortex, and ventral premotor areas in pa-
tients with subcortical stroke (Dechaumont-Palacin et al., 2008).
Stroke patients also show increased activity with passive move-
ment training bilaterally in premotor areas, inferior parietal cor-
tex, and contralateral precentral gyrus (Nelles et al., 2001). In
related studies using transcranial magnetic stimulation, passive
wrist movement enlarged the map of the cortical representation
of forearm muscles (Lewis and Byblow, 2004; Macé et al., 2008).
As a group, these studies document plasticity in both sensory and
motor cortices as a result of passive movement training and, in
conjunction with the present finding, point to the involvement of
motor areas of the brain in perceptual learning. The present work
extends these findings by linking changes in sensorimotor net-
works to behavioral measures of learning, by using measures of
connectivity in the resting brain to control for confounds arising
from differences in task execution between scans, and by explic-
itly identifying changes in motor-related networks when the ef-
fects of activity in somatosensory networks are parceled out.

Overall, we find that perceptual learning results in a contin-
uum of changes in connectivity in all levels of the sensorimotor
network. This includes changes in motor areas of the brain that
are independent of activity in the somatosensory network. In the
study by Vahdat et al. (2011), we found that the perceptual
changes that occur in association with motor learning likewise
recruit a network involving PMv, SII, and SMA. Together with
the results of the present study, these demonstrations suggest that
in naturalistic situations where somatosensory and motor learn-
ing co-occur, a portion of the change in motor areas of the brain
that occurs in learning skilled movements is actually a byproduct
of perceptual learning.
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