
Abstract A significant problem in motor control is how
information about movement error is used to modify con-
trol signals to achieve desired performance. A potential
source of movement error and one that is readily control-
lable experimentally relates to limb dynamics and associ-
ated movement-dependent loads. In this paper, we have
used a position control model to examine changes to con-
trol signals for arm movements in the context of move-
ment-dependent loads. In the model, based on the equilib-
rium-point hypothesis, equilibrium shifts are adjusted di-
rectly in proportion to the positional error between de-
sired and actual movements. The model is used to simu-
late multi-joint movements in the presence of both “inter-
nal” loads due to joint interaction torques, and externally
applied loads resulting from velocity-dependent force
fields. In both cases it is shown that the model can
achieve close correspondence to empirical data using a
simple linear adaptation procedure. An important feature
of the model is that it achieves compensation for loads
during movement without the need for either coordinate
transformations between positional error and associated
corrective forces, or inverse dynamics calculations.
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Introduction

Several recent studies have explored the ability of subjects
to modify the control of reaching so as to produce normal
movements in the presence of motion-dependent loads.
This ability has been demonstrated both for external loads

such as artificial force fields (Lackner and Dizio 1994;
Shadmehr and Mussa-Ivaldi 1994; Conditt et al 1997) and
“internal” loads such as joint interaction torques in multi-
joint movements (Koshland et al. 1991; Sainburg et al.
1993; Almeida et al. 1995; Cooke and Virji-Babul 1995;
Ghez and Sainburg 1995; Sainburg et al. 1995; Virji-
Babul and Cooke 1995; Gribble and Ostry 1999). In order
to achieve this adaptation, the nervous system must pre-
sumably specify appropriate time-varying motor com-
mands that specifically counteract loads. To date many of
the models that have been proposed to account for this
kind of motor adaptation have postulated that neural con-
trol signals directly specify the forces required for move-
ment. In the present paper we explore how a position con-
trol model based on the equilibrium-point hypothesis may
achieve similar compensation for loads during multi-joint
arm movement (also see Flash and Gurevich 1997).

In direct force programming formulations – termed
“force control” in the present paper – movement produc-
tion typically involves the explicit specification of the
time-varying forces and torques required to produce
movement of the limb. In the context of these models it
has been proposed that the signals for force control are
derived by inverse dynamics calculations (Kawato et al.
1987; Uno et al. 1989; Kawato et al. 1990; Schweighofer
et al. 1998). Alternate formulations suggest that control
signals are positional in nature and movements arise as a
consequence of shifts in a neurally specified equilibrium
position of the limb [Feldman 1986; Feldman et al. 1990;
Flanagan et al. 1993; Gribble et al. 1998; see McIntyre
and Bizzi (1993); Bizzi et al. (1982) for other approach-
es to equilibrium-point control]. In equilibrium-point
control schemes, muscle forces and joint torques are not
explicitly computed but rather arise as a consequence of
the moving equilibrium position and the mechanical
properties of muscles and reflexes. This direct dynamics
approach has seemed attractive; however, opponents of
this formulation have argued for the need to explicitly
specify forces in order to compensate for loads.

Experimental evidence in favor of positional control
has been provided by empirical studies in which pertur-
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bations are delivered to the limb both in postural tasks
and during movement. Mussa-Ivaldi et al. (1985) report
that after applying perturbations in statics, forces are
generated which act to return the limb to the original
posture (also see Flash and Mussa-Ivaldi 1990). Similar-
ly, Won and Hogan (1995) have shown that when the
limb is perturbed during reaching movements, restoring
forces act to return the limb to the unperturbed trajecto-
ry. This positional stability during movement is consis-
tent with the idea that shifts in a centrally specified equi-
librium position underlie voluntary arm movement. Evi-
dence for positional control is also provided by unload-
ing experiments which suggest that control signals speci-
fy a threshold length or joint angle for force develop-
ment, and that changes to this threshold may underlie
voluntary changes in limb position (Feldman 1966; also
see Feldman and Orlovsky 1972).

In the present paper we show that a model based on
the equilibrium-point hypothesis may compensate for
movement-dependent loads by modifying the form of
time-varying equilibrium shifts using a simple iterative
procedure. Examples of this formulation are presented in
the context of both external loads imposed by artificial
force fields, and changes in joint interaction torques as-
sociated with multi-joint reaching movements. Using a
procedure in which positional control signals are adjust-
ed in direct proportion to positional movement error, we
demonstrate that equilibrium-point models can achieve
adaptation comparable to that previously attributed to di-
rect force control models, without the need for inverse
dynamics calculations.

Materials and methods

Arm model

A model of two-joint planar arm motion is used to simulate shoul-
der and elbow rotation in a horizontal plane [see Gribble et al.
(1998) for a full description]. Six muscles are modeled – single-
joint elbow and shoulder flexors and extensors, and a double-joint
flexor and extensor spanning both joints. Musculo-skeletal geome-
try is estimated from anatomical sources (An et al. 1981, 1989;
Winters and Woo 1990). Muscle force generating ability varies
with estimates of physiological cross-sectional area (Winters and
Woo 1990). Equations of motion relating accelerations to joint
torques were obtained using Lagrangian methods.

The muscle model used in the simulations is a variant of the
Zajac (1989) formulation and includes excitation and contraction
dynamics and passive muscle stiffness (Fig. 1C). Control signals
are based on the λ version of the equilibrium-point hypothesis. In
the model, muscle force depends on the difference between a
muscle's actual length and a centrally specified threshold length
for motoneurone activation, λ, as well as on length- and velocity-
dependent afferent feedback and reflex delays. Simulated move-
ments are produced by continuous, time-varying shifts in joint
equilibrium angles. These joint-level equilibrium shifts, analo-
gous to the R command in previous versions of the model (Feld-
man et al. 1990; Flanagan et al. 1990) involve coordinated chang-
es in the values of individual muscle λs. In addition a co-contrac-
tion command analogous to the C command can independently
change impedance at a given position or during movement. A full
description of the procedure relating equilibrium shifts to individ-
ual muscle λs, and other aspects of the model may be found in
Gribble et al. (1998).

Muscle model parameters related to limb stiffness and damp-
ing have been set in order to match empirical estimates of limb
impedance in statics (Bennett 1993; Tsuji et al. 1995; Gomi and
Kawato 1996). Muscle model parameters have been scaled so that
stiffness at the shoulder and elbow have values of 12 Nm/rad and
6 Nm/rad in statics, and maximum values of 40 Nm/rad and
20 Nm/rad during movement. Viscosity in statics is 0.7 Nms/rad at
the shoulder and 0.4 Nms/rad at the elbow, and the numerical val-
ues of viscosity during movement are 5–7% of maximum joint
stiffness [see Gribble et al. (1998) for further details].

Simulations

A model is described for adjusting the time-varying form of equi-
librium control signals in order to compensate for loads. In this
formulation adjustments to control signals are based on a direct
measure of movement error – the difference between desired and
actual joint angles. Movement error is in the same coordinate
space and shares the same units as simulated control signals (equi-
librium joint angles). An advantage of this approach over inverse
dynamics formulations is that it eliminates the need for inverse
dynamics calculations to specify the compensatory forces (see
Discussion). This model is also consistent with the idea that the
equilibrium shift is gradual (Bizzi et al. 1984), and is similar in
form to the actual movement (Won and Hogan 1995).

In the present formulation, control signals necessary to pro-
duce a desired movement are adjusted in the following way. Fig-
ure 1A shows an example using single-joint movement. An initial
estimate of the control signal (dashed line, first row) corresponds
to the time-varying joint angle associated with the desired move-
ment (alternating dots and dashes), time-advanced by d ms, which
corresponds approximately to transmission delays and muscle ac-
tivation dynamics [see Zajac (1989) and Partridge and Benton
(1981) for examples]. In the present simulations, a value of
120 ms for d was used (see below for sensitivity analyses). This
initial command results in a simulated movement (solid line) that
is different than the desired movement. It should be noted that the
initial control signal is based entirely on the desired kinematics –
no calculation of the required joint torques is involved.

The difference between the desired and actual movement (solid
line, second row) is likewise time-advanced by d ms (dashed line)
and then added to the previous control signal. In this way informa-
tion about movement error is directly incorporated into a new
command. The solid line shown in the third row gives the new
control signal and the dashed line shows the original command.
The simulation is repeated using the new control signal (fourth
row, dashed line) and results in a predicted movement (solid line)
that is closer to the desired trajectory (dots and dashes).

This may be summarized as follows:

1. An initial time-varying joint equilibrium angle R(t) takes the
form of the desired movement Mdes. This initial command is
time-advanced by d ms (see below): R(t)=Mdes(t+d).

2. A simulated movement Mobs(t) is produced using control signal
R(t).

3. The values of the time-varying joint angles associated with
Mobs(t) are subtracted from those associated with Mdes(t) to ob-
tain time-varying movement error Merr(t): Merr(t)=Mdes(t)–Mobs(t).

4. Merr is advanced in time and added to the control signal R(t) to
get a new control signal: R′(t)=R(t)+Merr(t+d). Movement is
then simulated using the new control signal, and the algorithm
is repeated.

Figure 1B shows the effects of carrying out several iterations of
this procedure. The simulated movement is a two-joint reaching
motion involving shoulder flexion and elbow extension. Panel 1
shows performance of the model before any adjustments are car-
ried out. As above, an initial estimate of the control signals
(dashed lines) corresponds to the desired joint angles (dots and
dashes) time-advanced by d ms. The resulting simulated move-
ments are shown with solid lines. After a single iteration using the
model described above (panel 2), predicted movement more close-
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ly matches the desired movement. With successive iterations (pan-
els 3–5) movement error is further reduced.

The model described above was used to assess the form of
control signals needed to compensate for two classes of move-
ment-dependent loads. First, reaching movements performed in a
velocity-dependent force field are simulated. Second, two-joint
reaching movements are simulated in which the direction of joint
interaction torques at the shoulder and elbow are varied.

Results

Figure 2 gives simulations of planar reaching movements
performed in a velocity-dependent force field comparable
to that described by Bhushan and Shadmehr (1999). Figure
2A shows simulated movements in the absence of external
forces. Eight movements, 10 cm in length, are simulated
from a single central position. Dashed lines indicate simu-
lated control signals and solid lines give predicted move-
ments of the hand. The desired movement in each case is a

straight line minimum-jerk trajectory in Cartesian space
(dots and dashes) (Flash and Hogan 1985). Movement du-
ration is 500 ms which is comparable to that reported in
Bhushan and Shadmehr (1999). Two iterations of the mod-
el described above were used to generate the control sig-
nals. Note that in the absence of loads, the simulated con-
trol signals are in all cases relatively straight and similar in
form to the desired movement. The co-contraction com-
mand was constant throughout the simulated movements.
The magnitude of the co-contraction command was associ-
ated with maximum joint stiffness of 38 Nm/rad at the
shoulder and 19 Nm/rad at the elbow during movement
[see Gribble et al. (1998) and text below].

Figure 2B shows predicted movements performed in a
velocity-dependent force field using the same control
signals as in Fig. 2A. The simulated force field was such
that at any point in time forces at the hand were orthogo-
nal to the instantaneous direction of hand motion and

Fig. 1A–C Procedure for modi-
fying equilibrium shifts in the
presence of loads. A The steps
involved in adjusting the form
of the neurally specified equilib-
rium shift (dashed line) to
match simulated movement
(solid line) to a desired motion
of the limb (dots and dashes).
The positional error between de-
sired and actual movements
(second row) is time-advanced
(dashed line) and then added to
the previous control signal
(third row, dashed line) to give a
new control signal (third row,
solid line). This new control sig-
nal results in a movement which
better approximates the desired
movement (bottom row). See
text for details. B The effect of
repeating the procedure 5 times.
C The muscle mechanical mod-
el used to generate the simulat-
ed movements [see Gribble et
al. (1998) for details]
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varied in magnitude with movement velocity (Bhushan
and Shadmehr 1999). It can be seen that large deviations
in predicted movement (solid lines) occur relative to the
desired movement (dots and dashes). Performance of the
model under these conditions is similar to that observed
by Bhushan and Shadmehr (1999) when subjects were
first exposed to the force field prior to learning.

Figure 2C gives predicted movements after the proce-
dure described above is used to modify control signals to
bring the predicted movement into correspondence with
the desired movement. Four to five iterations per condi-
tion were required to achieve this level of correspon-
dence. It may be noted that the adjusted control signals
(dashed lines) are almost mirror images of the unadapted
trajectories (solid lines) in Fig. 2B. This reflects the
changes in control signals required to offset the effects
of the force field on the limb.

Finally, Fig. 2D shows the predicted after-effect asso-
ciated with suddenly removing the force field. In empiri-
cal studies the rationale for examining the form of move-
ment after removal of the force field is to understand the
way in which control signals have been modified during
learning. It has been proposed that the form of the move-
ment following removal of the field reflects the form of
the control signal needed to generate movements in the
presence of the velocity-dependent load (Shadmehr and
Mussa-Ivaldi 1994). In Fig. 2D it can be seen that the
simulated movements (solid lines) following removal of
the force field are indeed similar to the form of the equi-
librium trajectory (dashed lines) needed to produce
straight movements in the presence of the load.

It may be noted, particularly in Fig. 2C, that oscilla-
tion occurs at the end of the simulated movement. This

may arise due to factors such as underdamping, or alter-
natively it may reflect instability in the learning algo-
rithm. In order to rule out the possibility that instability
may result after further iterations, we repeated these sim-
ulations using 100 iterations of the adaptation procedure.
It was found that the system remains entirely stable even
after 100 iterations – the predicted movements are virtu-
ally identical to the desired movements, and the simulat-
ed equilibrium shifts are smooth, continuous functions. It
may also be noted that while the simulations presented
here provide a qualitative approximation to the experi-
mental data, no attempt has been made to precisely
match the many features of arm movement described in
the Bhushan and Shadmehr (1999) formulation.

Figure 3 shows simulations of multi-joint reaching
movements taken from Gribble and Ostry (1999). In that
study, by varying the magnitude and direction of joint ro-
tations, we manipulated naturally occurring loads that ei-
ther assist or oppose movement. We showed that predic-
tive changes in electromyographic activity are observed
in shoulder and elbow muscles that vary with the torques
at each joint which arise due to motion of the other joint
(“interaction torques”). The aim of the simulations
shown in Fig. 3 is to explore the extent to which the po-
sitional control scheme presented here can account for
these predictive adjustments for loads due to multi-joint
dynamics, and more generally, whether equilibrium-

Fig. 2A–D Simulated reaching movements in a velocity-depen-
dent force field. A Simulated hand trajectories (solid lines), de-
sired trajectory (dots and dashes) and simulated equilibrium shifts
(dashed lines) in a null field. B The effect of using the control sig-
nals given in A for simulated movements in a velocity-dependent
force field (see text). C The results of using the adaptation proce-
dure described in the text to modify the equilibrium shifts so as to
produce straight hand movements in the force field. The modified
equilibrium shifts are again shown with dashed lines. D The after-
effect associated with using the (adapted) control signals shown in
C after sudden removal of the force field

Fig. 3A–H Modeled control signals for multi-joint pointing
movements. In order to explore the control of interaction torques,
the velocity and direction of joint motion are varied. All panels
show shoulder angle as the upper trace at the beginning of move-
ment. A–D Movements in which elbow motion is held constant
but the direction of shoulder motion (and hence the direction of
the interaction torque at the elbow) is reversed. E, F Movements
in which shoulder motion is constant and the direction of elbow
movement (and the direction of the interaction torque at the shoul-
der) is varied. Two movement speeds are shown: slower (A, B, E,
F) and faster movements (C, D, G, H). Simulated co-contraction
levels vary directly with peak movement velocity (see Gribble et
al. 1998). Two iterations of the adaptation procedure were used for
all movements shown here



point control can produce rapid, multi-joint movements
using relatively simple and monotonic equilibrium shifts.

The movements shown in Fig. 3 were chosen to sys-
tematically vary the direction of joint interaction torques
at the shoulder and elbow (torque at one joint due to
motion at the other joint, including both velocity- and
acceleration-dependent terms). Two kinds of move-
ments are presented – movements in which elbow kine-
matics are held constant and the direction of shoulder
motion is varied (Fig. 3A–D), and movements in which
shoulder kinematics are constant and elbow direction is
varied (Fig. 3E–H). Thus in Fig. 3A–D, the torque at the
elbow due to shoulder motion is varied, whereas in
Fig. 3E–H, the torque at the shoulder due to elbow mo-
tion is varied. The simulations are repeated for slower
movements (Fig. 3A, B, E, F) and more rapid move-
ments (Fig. 3C, D, G, H). As movement speed increas-
es, the magnitudes of interaction torques likewise in-
crease. Empirical data from one subject are shown with
dots and dashes, simulated movements are shown with
solid lines and control signals derived using the model
described above are given with dashed lines. The flex-
ion direction is downward. Two iterations using the
model described above were used to generate the simu-
lated control signals. Note that unlike in Fig. 2, in which
we present both the control signals in the absence and
presence of external load, in Fig. 3 we show only simu-
lations after control signals have been adjusted to com-
pensate for loads.

In all cases it can be seen that the simulated move-
ments match the empirical data closely. The control sig-
nals are basically monotonic with some overshoot at 
the end of the simulated equilibrium shifts. Gomi and
Kawato (1996) have claimed that in order to offset forc-
es due to dynamics the form of equilibrium control sig-
nals for multi-joint movement must have a “complex”
non-monotonic time-varying form. In contrast the pres-
ent simulations suggest that appropriate changes to rela-
tively simple equilibrium shifts are sufficient to predict
empirical movement patterns for both slow and fast
multi-joint movement involving interaction torques. The
ability to predict movements using relatively simple
equilibrium shifts is due to a number of muscle mechani-
cal and reflex properties which are included in the model
presented here, but are absent from the Gomi and 
Kawato (1996) formulation [see Gribble et al. (1998) for
further details]. Some small differences can be seen in
the form of simulated control signals for movements in
which the joints rotate in the same direction compared to
those in which the joints rotate in opposite directions
(Fig. 3A versus B, C versus D, E versus F, and G versus
H). Presumably these differences reflect the changes in
control needed to offset inertial and dynamical effects
such as interaction torques (Gribble and Ostry 1999).

In these simulations, the modeled co-contraction com-
mand was constant throughout the simulated movement.
The magnitude of the command varied directly with
movement velocity. This scaling of the co-contraction
command in proportion to movement speed was based on

findings reported by Gribble et al. (1998) relating co-con-
traction to empirical measures of joint stiffness during
movement (Bennett 1993). Specifically, it was found that
when simulated co-contraction varied in proportion to
movement speed, simulated joint stiffness matched val-
ues observed empirically for single-joint movement. It
should be noted that the magnitude of the co-contraction
command was scaled in proportion to movement velocity
alone. Co-contraction values were not adjusted to com-
pensate for the interaction torques involved in the simu-
lated movements. Co-contraction values used in these
simulations correspond to maximum shoulder joint stiff-
ness levels in the range of 20 Nm/rad in statics and
60 Nm/rad during rapid movements (Gribble et al. 1998).

Elsewhere it has been suggested that high stiffness
values are required in order to produce multi-joint move-
ment using equilibrium control models (Gomi and 
Kawato 1996). The modeled stiffness of the limb in the
present simulations matches that observed empirically
for both single- and multi-joint movement (Bennett
1993; Gomi and Kawato 1996). High stiffness is not re-
quired to use equilibrium control in this formulation.

In the present study co-contraction levels were
matched to values obtained in Gribble et al. (1998).
When co-contraction levels were lower than those need-
ed to match stiffness in empirical studies (Bennett 1993;
Gomi and Kawato 1996; Gribble et al. 1998) the derived
control signal tended to overshoot the target and dis-
played terminal oscillation about the final position.
When co-contraction levels were higher than those in-
ferred from empirical studies, the equilibrium shift came
closer to replicating the form of the desired trajectory.
See sensitivity analyses below for further details.

Sensitivity analyses were carried out to assess the de-
pendence of model performance on the number of itera-
tions in the adaptation procedure, the simulated co-con-
traction level and the time parameter, d. Simulations of
the empirical data shown in Fig. 3 were used for these
analyses. Figure 4A shows the effects of increasing the
number of iterations (the number of times the control
signal is adjusted in the model described above). As the
number of iterations increases, the root mean square dif-
ference between the empirical and simulated move-
ments decreases. Larger numbers of iterations result in
smaller and smaller decreases in fitting error. Figure 4B
shows the relationship between the number of iterations
and the complexity of the simulated equilibrium shifts
(assessed by the root mean squared jerk). As the number
of iterations increases, the complexity of the control sig-
nal likewise increases in a monotonic fashion. Root
mean squared jerk was chosen as a measure of complex-
ity – in particular, of the non-monotonicity of the equi-
librium shift – since jerk is inversely related to the
smoothness of a time-varying function (Flash and Ho-
gan 1985).

Figure 4C, D gives the dependence of model perfor-
mance on the simulated co-contraction level. Figure 4C
shows that the root mean squared difference between
simulated and empirical movements decreases with high-
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Discussion

Models of motor control can be generally classified as
either force or position controllers. Force control models
may require coordinate transformations and inversions to
derive control signals appropriate to desired movements,
but as a result they can readily reproduce a wide variety
of motor behaviors including movements in complex
load environments. In contrast, equilibrium-point posi-
tion controllers avoid the need for inverse dynamics cal-
culations and simplify movement planning; however, re-
ports of their applicability to more complex force envi-
ronments have been limited (Flash and Gurevich 1997).
In the present paper we have shown that an equilibrium-
point model can produce arm movements in the presence
of external and self-generated loads. We have shown that
using a simple iterative model, equilibrium control sig-
nals may be adjusted based on position error to produce
arm movements in the presence of loads.

An implication of the present results is that some in-
formation about limb dynamics and external loads is in-
corporated into control signals in order to carry out 
the adjustments that offset these loads. It has been sug-
gested that this sort of predictive compensation may be
based on “internal models” of the motor system. It has
been proposed that the internal model is used both to
compute the motor commands needed to produce specif-
ic movements (the “inverse model”, e.g., Uno et al.
1989; Atkeson 1989; Kawato et al. 1990) and to antici-
pate the consequences of particular control signals (the
“forward model”, e.g., Jordan and Rumelhart 1992; 
Wolpert et al. 1995). The present model focuses on the
determination of commands to produce specific move-
ments, but avoids the explicit inversions proposed in oth-
er formulations. However, this is not incompatible with
the more general notion of internal models, and in partic-
ular, with the notion that the nervous system learns to ad-
just control signals in a predictive manner to compensate
for movement-dependent loads.

In this paper we propose a model of how sensory in-
formation is used to correct for movement errors. This
may be distinguished from the related yet separate issue
of generalization in motor learning. There is substantial
evidence showing that subjects use information gained in
learning to perform individual movements to generalize
to novel situations (Shadmehr and Mussa-Ivaldi 1994;
Lackner and Dizio 1994; Gandolfo et al. 1996; Conditt et
al. 1997; Goodbody and Wolpert 1998; Conditt and
Mussa-Ivaldi 1999). The model presented here is not a
model of generalization but comprises one of its essen-
tial components. Generalization is presumably based on
the kinds of information obtained in the acquisition of
individual movements. The model proposed here may be
incorporated in any model of generalization that involves
a learned mapping between control signals and desired
states (Jordan and Wolpert 2000).

There are a number of advantages of the present mod-
el. First, as noted above, there is no need for inverse dy-
namics calculations in order to specify the control sig-
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er levels of simulated co-contraction. Two iterations of
the model were used for the simulations shown in
Fig. 4C. Figure 4D gives the relationship between co-
contraction level and the number of iterations required to
reach a fixed level of accuracy. As the co-contraction
level increases, a tendency towards fewer iterations is
observed. It may be noted, however, that the dependence
of the number of iterations on the co-contraction level is
relatively weak.

Figure 4E, F shows the relationship between model
performance and d, the amount by which the error signal
is time-advanced prior to summation with the control
signal. The relation between the root mean squared fit-
ting error (Fig. 4E) and d is a u-shaped function – as d
increases, the error decreases to a minimum in the range
of 120 ms, and then increases with larger values of d.
The complexity of the simulated equilibrium shift (root
mean squared jerk) shows a weaker dependence on d
(Fig. 4F), however, the general form of the relationship
is similar to that seen in Fig. 4E above.

Fig. 4A–F Sensitivity analyses. Analyses were based on all
movements shown in Fig. 3. The relationship between the number
of iterations in the adaptation procedure and the fitting error (A)
and the complexity of the resulting equilibrium shift (B) is shown.
C The dependence of the fitting error on the level of simulated co-
contraction. D The dependence of the number of iterations re-
quired to reach a fixed level of movement accuracy on the level of
simulated co-contraction. The dependence of the fitting error (E)
and the complexity of the equilibrium shift (F) on the value of d,
the amount by which the error signal is time-advanced prior to
summation with the control signal (see text)



nals required for a given movement. In the model, time-
varying muscle forces and joint torques arise as a conse-
quence of the shifting equilibrium, muscle properties and
reflexes, and are not explicitly computed. In contrast, in
force controllers, errors in position must be transformed
into appropriate changes in force. Moreover, an advan-
tage of equilibrium-point models such as the one used in
the present paper is that, consistent with empirical find-
ings both in statics and during movement, mechanical
stability is generally preserved. Force control models do
not necessarily provide similar assurances of stability.
Some recent force-based models have included addition-
al servo-control mechanisms to provide stability (e.g.,
Shadmehr and Mussa-Ivaldi 1994; Bhushan and Shad-
mehr 1999), however, elements of these models are lin-
ear, whereas the muscle mechanical properties and re-
flexes that contribute to stability in the human arm are
known to be nonlinear in form (e.g., Houk and Rymer
1981; Zajac 1989).

A further characteristic of the present model is that
the proposed error signal may be directly available to the
nervous system. For example, information from muscle
spindle afferents may be combined at a cortical level
with signals related to desired movement to make adjust-
ments to control signals. The present model assumes that
by means of this proprioceptive afferent mechanism, the
nervous system develops a representation of the changes
to control signals needed to offset movement-dependent
loads. However the present model differs from other re-
lated proposals in that a fast-time simulation (a “forward
model”) is not used to adjust central commands (Jordan
and Rumelhart 1992; Wolpert et al. 1995; Bhushan and
Shadmehr 1999).

The algorithm presented here may be compared to
and contrasted with recent models based on feedback er-
ror learning and reinforcement learning. Feedback error
learning uses a feedback controller (such as a linear ser-
vo controller) to guide the learning of a concomitant
feedforward controller (an inverse model) (Kawato et al.
1987, 1990; Kawato and Gomi 1992). Specifically, a
feedback motor command which is proportional to ob-
served movement error is used during ongoing move-
ment control as an error signal to train an inverse model
of limb dynamics. In contrast, in models of reinforce-
ment learning, force control laws are formed using sim-
ple learning mechanisms based on a scalar reward signal
rather than a complete trajectory [see Sutton and Barto
(1998) for review]. However, no “internal model” is re-
quired. A disadvantage of reinforcement learning algo-
rithms is that they take a long time to converge. In feed-
back error learning and reinforcement learning, infor-
mation about movement error is used, albeit in a more
indirect manner than in the algorithm presented here, to
modify control signals for movement. Moreover, in con-
trast to the present model, force-based algorithms for
feedback error learning and reinforcement learning typi-
cally assume that descending neural control signals ex-
plicitly specify time-varying muscle forces or joint
torques.

An equilibrium-point control model that provides
compensation for loads has also been described by Flash
and Gurevich (1997). In their formulation, adaptation to
loads involves the modification of both limb stiffness
and the time-varying form of the equilibrium trajectory.
Their model assumes that in order to compensate for a
given load, the form of the equilibrium shift is modified
in proportion to the ratio of the load force to the stiffness
of the limb. As in the model described in the present pa-
per, no coordinate transformations between movement
error and muscle forces are required to generate changes
in the control signal since the ratio of load force to limb
stiffness has units of position, as does the equilibrium
control signal itself. Their model differs from the one
presented here to the extent that a representation of ex-
ternal joint torques and joint stiffness is required in order
to make changes to control signals. In the present model
positional error alone is used to adjust control signals.

The issue of force versus position control has been re-
cently linked to the issue of the complexity of the time-
varying control signal. For example, Gomi and Kawato
(1996) reject the equilibrium-point hypothesis on the ba-
sis of a postulated “complex” non-monotonic equilibri-
um shift (but see Gribble et al. 1998). One of the aspects
of the original formulation of the λ version of the equi-
librium point hypothesis was indeed that movements
may be produced by using simple constant rate equilibri-
um shifts and that muscle mechanical properties and re-
flexes tend to dominate forces arising from dynamics.
While this may be generally true for slow movements,
recent data has pointed to the need for more complex
control signals to compensate for and anticipate dynamic
loads (Flanagan and Wing 1997; Gribble and Ostry
1999). Although this may be inconsistent with the notion
of simple equilibrium shifts, it is incorrect to assume that
this is evidence for force control and cause for the rejec-
tion of position control models in general (Gomi and 
Kawato 1996). Indeed the present results show that equi-
librium models can readily achieve compensation for dy-
namic loads using a simple procedure for modifying the
form of equilibrium shifts.

Isometric force adjustment tasks may also be imple-
mented using the present model (Feldman et al. 1990). In
order to produce a given set of forces, for example to
generate an isometric force against an object, the control
signal must specify a virtual position within or beyond
the object such that the difference between the actual
limb position at the point of object contact and the virtu-
al position leads to the desired force. Force adjustment
tasks using the model thus require the adjustment of a
positional control signal to produce a desired force. In
this context information concerning the relation between
positions and forces is needed.

A potential concern with permitting increased com-
plexity of positional control signals in the context of an
equilibrium point model is the extent to which the result-
ing formulation can be falsified. The version of the equi-
librium-point model presented here and elsewhere (Feld-
man 1986; Feldman et al. 1990; Gribble et al. 1998)
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makes testable predictions about several aspects of the
mechanism underlying movement control. For example,
it proposes that agonist and antagonist activation are
linked through “reciprocal” central commands. The
model also makes specific predictions about the relative
levels of central and afferent contributions to muscle ac-
tivation during movement. Moreover, the present formu-
lation can provide explicit predictions about the time-
varying form of muscle activity associated with adapted
control signals.

The model presented here relies on the assumption
that information about the control signal, the desired tra-
jectory and the actual trajectory is available to the ner-
vous system following a movement in order that adjust-
ments may be carried out on the basis of positional error.
Whereas the specific mechanisms underlying the reten-
tion of information needed for adaptation are unknown,
there is evidence from psychophysical and imaging stud-
ies of force-field learning that mechanisms exist for rep-
resenting and storing this kind of information (Brashers-
Krug and Shadmehr 1996; Shadmehr and Brashers-Krug
1997; Shadmehr and Holcomb 1997). Control signals as-
sociated with force-field learning are initially stored in a
labile form that has a time course in the range of 4–6 h.
Following consolidation, a more permanent representa-
tion may be maintained for several months.

In the present formulation it has been possible to re-
produce empirically observed movement patterns on the
assumption that the magnitude of the co-contraction
command is held constant over the course of a given
movement. However, consistent with empirical data, we
have assumed that the magnitude of the co-contraction
command is scaled in proportion to movement speed
(Bennett 1993). Likewise, in modeling studies in order
to reproduce empirically observed patterns of limb stiff-
ness the magnitude of the co-contraction command must
be scaled in proportion to movement speed (Gribble et
al. 1998).

In the simulations presented here, the adaptation pro-
cedure was halted after a fixed number of iterations. Oth-
er stopping rules may be used as well. For example, if
simulations are based on empirically recorded move-
ments, the procedure may be halted once movement ac-
curacy falls within a range associated with the empirical-
ly measured variability. We have repeated the simula-
tions shown in Fig. 3 using a stopping rule based on
±3 SDs about the average trajectory. In all cases, two or
three iterations were required to generate simulated
movements that fell within this range.

In principle one may continue to iterate the procedure
to achieve any desired level of movement accuracy.
However, as illustrated in Figs. 1B and 4, as the number
of iterations increases, smaller and smaller reductions in
fitting error are associated with increases in the com-
plexity of the modeled control signal. To guard against
over-fitting, empirically based criteria such as described
above may be used to limit the number of iterations.
More generally, information about movement errors may
be provided by sensory feedback and used in conjunction
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with the accuracy requirements of the task in order deter-
mine the need for further adaptation.

As a first approximation, we have assumed that in the
process of modifying control signals, the positional error
signal may be directly added to the previous control sig-
nal using a gain of 1.0. As a consequence the model
achieves compensation for loads using a small number of
iterations. However, as is true of other models of adapta-
tion, the gain of the error signal remains a free parameter
that may be estimated on the basis of empirical data. The
time course of compensation in the model may thus be
increased by using smaller multiples of the error signal.

Although we have demonstrated that the algorithm
presented here successfully adapts for loads in the con-
text of the present human arm model, presumably the
stability of the algorithm in systems with other dynam-
ics, or when coupled to other loads, may vary. The
generalizability of the algorithm to other mechanical en-
vironments thus remains to be established.
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