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Abstract 
Although the reasons for the success of computer 
simulations of psychology are often difficult to identify, it is 
possible to make some progress through systematic 
experimentation. Reasons for the success of cascade-
correlation models of cognitive development are identified 
in two case studies. Cascade-correlation is a generative 
neural network model that constructs its own topology as it 
recruits hidden units. Capturing correct stage sequences in 
the integration of velocity, time, and distance cues requires a 
system that grows in computational power while it learns. 
Static networks are either too weak or too powerful to 
capture the full range of stages. Simulating the variation and 
stages in acquisition of the semantics of English personal 
pronouns requires sensitivity to differing amounts of 
addressed and non-addressed speech. Just as with children, 
networks benefit from the opportunity to hear personal 
pronouns used in exchanges between o ther speakers. Other 
simulations suggest that it is important for neural networks 
to be able to abstract regularities from the environment in 
order to achieve rulelike behavior and to compute unit 
activations in a continuous manner to simulate perceptual 
effects.  

 

Why Models Work 

This paper is directed towards the issue of why a particular 
class of computational models captures phenomena in 
human cognitive development. With a number of 
colleagues, we have applied a generative connectionist 
algorithm called cascade-correlation to several domains in 
cognitive development (Shultz et al. 1995). 
 The issue of why a model works is complicated. The 
success of a complex model of several phenomena may 
depend on multiple factors, some domain-general and 
others domain-specific. The paper begins with an overview 
of the cascade-correlation algorithm. Then it examines 
some of the reasons for the success of cascade-correlation 
models in two developmental domains: integration of 
velocity, time, and distance cues, and pronoun acquisition. 
In these cases, it is possible to identify some of the reasons 
for the success of models through systematic 
experimentation, in which key features of the models are 

varied across different conditions. This is followed by a 
more general characterization of cognitive developmental 
phenomena captured by cascade-correlation networks and 
the likely reasons for their capture.  
 

The Cascade-correlation Algorithm 
Like other generative neural network algorithms, cascade-
correlation builds its own network topology by recruiting 
new hidden units as it needs them to solve a problem 
(Fahlman & Lebiere 1990). It starts with a minimal 
network of input units and output units. During training, 
the algorithm adds hidden units one-by-one, installing each 
new hidden unit on a new layer of the network. From a 
developmental point of view, the importance of generative 
connectionist algorithms like cascade-correlation is that 
they are able to simulate underlying developmental 
changes that are either qualitative or quantitative.  
 There are two alternating, recurrent phases in cascade-
correlation learning: an output phase in which connection 
weights entering output units are adjusted in order to 
reduce the network's error, and an input phase in which 
new hidden units are selected and installed in the network. 
During the output phase, connection weights going into 
output units are adjusted according to a gradient descent 
procedure known as quickprop (Fahlman 1988). Quickprop 
modifies each connection weight to lower the error at the 
network's output units. Error is computed as the sum of 
squared differences between the output activations the 
network should be producing and those it is actually 
producing. Both first and second derivative information 
from the error function are used to compute connection 
weight changes. Weight changes are proportional to the 
negative of the slope and inversely proportional to the 
estimated curvature of the error function. This allows 
connection weight changes to be decisive and effective.  
 When error is no longer decreasing or the problem has 
not been solved in some specified number of passes 
through the training examples (epochs), there is a shift to 
the input phase. In the input phase, a pool of candidate 
hidden units receives trainable input from the input units 



and any existing hidden units. The candidate hidden units 
are not yet connected to the output units. The purpose of 
the input phase is to recruit a hidden unit whose activations 
correlate highly with errors at the output units. Connection 
weights into the candidate units are adjusted using 
quickprop to increase correlations between activations on 
the candidate units and the network's current error. When 
the correlations are no longer increasing or a set number of 
epochs has occurred, the candidate hidden unit whose 
activations have come to correlate best with the network's 
current error is selected for installation. Selected hidden 
units are installed into the network in a cascade, such that 
each new hidden unit receives input from the input units 
and from any previous hidden units. After installation of a 
new hidden unit, the algorithm reverts back to the output 
phase.  
 Thus, cascade-correlation searches not only connection 
weight space, but also the space of network topologies. 
The algorithm efficiently finds a network topology and a 
set of connection weights to solve the problem it is being 
trained on.  
 Although a variety of unit activation functions are 
available in cascade-correlation, our simulations typically 
use sigmoid activation functions for both hidden and 
output units. Occasionally, when the task is to predict 
quantitative output values, we use linear activation 
functions for output units.  
 Now we examine two case studies of cascade-correlation 
simulations in some detail, with the aim of explaining key 
features of their success.  
 

Integration of Velocity, Time, and Distance 
Cues 

In classical physics, velocity is defined as the ratio of 
distance traveled to the time of the journey: velocity = 
distance / time. Thus, distance = velocity x time, and time 
= distance / velocity. Some of the best evidence on 
children's acquisition of these relations was collected by 
Wilkening (1981), who asked children to predict one 
dimension (e.g., time) from knowledge of the other two 
(e.g., velocity and distance). For example, three levels of 
velocity information were represented by the locomotion 
of a turtle, a guinea pig, and a cat. These three animals 
were described as fleeing from a barking dog, and the child 
was asked to imagine these animals running while the dog 
barked. The child's task was to infer how far an animal 
would run given the length of time the dog barked, an 
example of inferring distance from velocity and time cues.  
 Cascade-correlation networks learning similar tasks 
typically progress through an identity stage (e.g., velocity 
= distance), followed by an additive stage (e.g., velocity = 
distance - time), and finally the correct multiplicative stage 
(e.g., velocity = distance / time) (Buckingham & Shultz 
1994). Many of these stages have been found with children 
(Wilkening 1981 1982), and others remain as predictions 
for future psychological research. As with the children in 
Wilkening's (1981) experiment, the networks learned to 

predict the value of one dimension from knowledge of 
values on the other two dimensions.  
 Figure 1 shows rule diagnosis in a representative 
cascade-correlation network learning all three inference 
tasks. Rule diagnosis is based on correlations between 
network outputs and various algebraic rules like those 
observed in children, calculated every fifth epoch during 
training. To characterize network performance, an 
algebraic rule had to correlate positively with network 
responses, account for more than one-half of the variance 
in network responses, and account for more variance than 
any other rules did. For velocity and time inferences, this 
network exhibited an identity rule, followed by a 
difference rule, followed in turn by the correct ratio rule. 
Results were similar for distance inferences, except that 
there was no identity rule. There is no reason a network 
should favor either velocity or time information in making 
distance inferences because both velocity and time vary 
proportionally with distance. Virtually all of the cascade-
correlation networks we ran showed these orderly stage 
progressions.  
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Figure 1. Diagnosis of velocity, time, and distance rules in 
a cascade-correlation network.  
 
 
 Such rule progressions are natural for cascade-
correlation networks. The shift from linear to nonlinear 
solutions occurs because of the continued recruitment of 
hidden units. Linear rules include identity (e.g., time = 
distance), sum (e.g., distance = velocity + time), and 
difference (e.g., velocity = distance - time) rules, whereas 
nonlinear rules include product (e.g., distance = velocity * 
time) and ratio (e.g., time = distance / velocity) rules.  
 Because the sum and difference rules of the second stage 
are each linear, it is difficult to see at first glance why they 
require a hidden unit. The reason is that networks without a 
hidden unit are unable to simultaneously encode the 
relations among the three dimensions for all three 
inference types. In distance inferences, distance varies 



directly with both velocity and time. However, in velocity 
inferences, distance and time vary inversely; and, in time 
inferences, distance and velocity vary inversely. Networks 
without hidden units are unable to encode these different 
relations without a hidden unit. The first hidden unit that is 
recruited differentiates distance information from velocity 
and time information by learning weights with one sign 
from the former input and opposite signs from the latter 
inputs. This enables the network to consolidate the 
different directions of relations across the different 
inference types.  
 In contrast to generative networks, static back-
propagation networks seem unable to capture these stage 
sequences (Buckingham & Shultz 1995). If a static back-
propagation network has too few hidden units, it fails to 
reach the correct multiplicative rules. An example is shown 
in Figure 2 of a network with one hidden unit that fails to 
reach any multiplicative stages and most additive stages. If 
a static back-propagation network has too many hidden 
units, it fails to capture the intermediate additive stages on 
velocity and time inferences. Figure 3 shows an example 
of a network with two hidden units that fails to capture 
additive velocity and time stages.  
 Extensive exploration of a variety of network topologies 
and variation in critical learning parameters led us to 
conclude that there seems to be no pre-designed static 
back-propagation network topology that can capture all 
three types of stages on these tasks. Even the use of cross-
connections that bypass hidden layers, another standard 
feature of cascade-correlation, failed to improve the stage 
performance of back-propagation networks. If one hidden 
unit provides too little power, and two hidden units provide 
too much power, there is no number of hidden units 
capable of providing the right amount of computational 
power. Thus, it can be concluded that the ability to grow in 
computational power is essential in simulating stages in the 
integration of velocity, time, and distance cues.  
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Figure 2. Diagnosis  of velocity, time, and distance rules in  
a static network with one hidden unit.  
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Figure 3. Diagnosis of velocity, time, and distance rules in  
a static network with two hidden units.  
 

Acquisition of Personal Pronouns 
Cascade-correlation networks have also been successfully 
applied to the acquisition of the English personal 
pronouns, me and you. Many children acquire these 
pronouns without notable errors, whereas other children 
show persistent reversal errors in which they refer to 
themselves as you and to others as me. Psycholinguistic 
research has shown that the presence of such reversal 
errors is related to the lack of opportunity to overhear 
speech that is not addressed directly to the child (Oshima-
Takane 1988). Some of this research involved experiments 
with the so-called me/you game (Oshima-Takane 1988). 
During such a game, a mother might address her child, 
point to herself, and say me. This is an example of speech 
addressed directly to the child, what we call addressee 
speech. Alternatively, the mother might address the father, 
point to the father, and say you. This is an example of 
speech overheard by the child, but not addressed to the 
child, what we call non-addressee speech. Some families 
were assigned to play the me/you game with only 
addressee speech, whereas other families played with 
mostly non-addressee speech. A critical question involves 
the child's productive use of these personal pronouns. 
What does the child say as he or she joins in the game, 
when pointing to a parent or to the self?  
 Results indicated that 19-month-olds who were about to 
learn personal pronouns profited more in pronoun 
production from overheard, non-addressee speech than 
from speech directly addressed to them. In fact, only those 
children who had opportunities to hear pronouns in non-
addressee speech could produce pronouns without errors. 
Listening to non-addressed speech provides experience 
with shifting speech roles that is essential to learning the 
semantics of personal pronouns (Oshima-Takane 1988).  
 This research was extended to a naturalistic study in 
which second-borns were found to acquire these pronouns 
earlier than first-borns, even though these children did not 



differ on other language measures such as mean length of 
utterance (Oshima-Takane, Goodz, & Derevensky 1996). 
Presumably, second-born children have relatively more 
opportunities to hear pronouns used in speech that is not 
addressed to them, during conversations between a parent 
and older sibling. 
 All of these regularities were simulated with cascade-
correlation networks (Shultz, Buckingham, & Oshima-
Takane 1994; Oshima-Takane, Takane, & Shultz 1996). 
The networks were trained to predict the correct pronoun 
as output given input information on the speaker, 
addressee, and referent. These networks were trained in 
two phases, mimicking the me/you game. In the first 
phase, the network was exposed to speech uttered by 
parents or other adults. This first phase of training was 
biased in favor of different amounts of addressed or non-
addressed speech. Two particularly interesting conditions 
reconstructed the language environments of first- and 
second-born children, respectively. We reasoned that first-
borns hear a preponderance of addressee speech from a 
single caretaker and bit of non-addressee speech in the 
evening when the parents are together. We implemented 
this with a ratio of addressee to non-addressee speech of 
9:1. Second-borns, in contrast, are likely to hear both 
addressee and non-addressee speech in about equal 
measures all day long, as they listen to conversations 
between the caretaker and their older sibling and are often 
addressed by those two speakers. We implemented this 
with a ratio of addressee to non-addressee speech of 1:1.  
 In the second phase, it was the network's turn to speak, 
taking the role of a child playing the me/you game. The 
question was how long the network would take to learn 
correct pronoun use when addressing others, as a function 
of the amount of addressee or non-addressee speech it had 
experienced during the first phase of training.  
 Results for part of one simulation are shown in Figure 4 
in terms of mean epochs to learn each of the two phases 
under first- and second-born environments. Of most 
interest is the fact that networks learning phase 1 under 
second-born conditions, in which addressee and non-
addressee utterances were present in equal measure, had a 
much easier time with the child speaking patterns of phase 
2 than did the networks that learned phase 1 under first-
born conditions, in which there was a preponderance of 
addressee speech. Indeed, all of the so-called second-born 
networks showed immediate, error free generalization to 
the child speaking patterns of phase 2 under the conditions 
represented here. In contrast, all of the so-called first-born 
networks required substantial phase 2 training to reach the 
same level of pronoun competence.   
 Both groups of networks succeeded in learning the rules 
underlying correct pronoun use, namely that a first person 
pronoun refers to the person using it and a second person 
pronoun refers to the person who is addressed when it is 
used. Moreover, the networks were sensitive to the type of 
speech in the training patterns, such that acquisition was 
error-free in the case of equal amounts of addressed and 
non-addressed speech, or characterized by persistent 
reversal errors in the case of a predominance of directly 

addressed speech. Errorless generalization was particularly 
evident when networks could overhear speech involving a 
number of other people, say an aunt and uncle in addition 
to the parents, as was true of the conditions represented in 
Figure 4 (Oshima-Takane, Takane, & Shultz 1996).  
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Figure 4. Mean number of epochs to learn pronoun 
patterns in each of two phases where the first phase 
(Others only) implements the language environments of 
either first- or second-born children.  
 

Other Simulated Phenomena and Source of 
Simulation Power 

The foregoing case studies demonstrate two important 
sources of power in cascade-correlation simulations: 
gradual increases in computational resources, and 
sensitivity to environmental bias. In this section, we 
provide a more general characterization of simulation 
power in cascade-correlation network models.  
 Generally speaking, cascade-correlation models succeed 
in capturing rulelike performance, stage transitions, stage 
sequences, and a variety of perceptual effects associated 
with cognitive development in children. Although rules 
characterizing human performance are not coded explicitly 
in neural networks, the networks come to behave as if they 
were following such rules. This rulelike performance 
derives from the ability of neural networks to extract 
statistical regularities from the learning environment. In 
some cases, as for example with personal pronouns, these 
rules are firm enough to achieve errorless generalization to 
novel patterns. Furthermore, networks show the capacity 
for integrating rulelike behavior and performance on 
exceptions in a smooth homogeneous fashion (Plunkett & 
Marchman 1991). The rules for integrating velocity, time, 



and distance cues and those for use of personal pronouns 
are learned and represented by networks in this implicit 
way.  
 Transitions between stages are accomplished in cascade-
correlation networks by quantitative connection weight 
adjustments and qualitative changes in network topology 
due to hidden unit recruitment. Among the desirable 
psychological properties of these transitions are their 
tentative nature (indicated by partially overlapping rule 
diagnoses in Figure 1) and occasional stage skipping and 
regression to early stages (not shown here). All of these 
properties reflect the dynamic, chaotic quality of 
connectionist networks. Due to the randomness of starting 
configurations of connection weights and the 
unpredictability of precise trajectories through weight 
space and topology space, emerging network behaviors are 
not rigid.  
 Stages in children's cognitive development typically 
occur in particular sequences. The ability of cascade-
correlation networks to capture correct stage sequences is 
due to a variety of factors. In the case of performance on 
the often simulated balance scale, it is critical for a 
network to be in a particular region of connection weight 
space early in its developmental history and to recruit a 
small number of hidden units (Shultz, Mareschal, & 
Schmidt 1994; Shultz et al. 1995). For the balance scale 
task, some number of weights are placed at various 
distances on the left and right of a fulcrum of a rigid beam, 
and the child is asked to predict which way the beam will 
tip when supporting blocks are removed. Children progress 
through four rulelike stages on the balance scale: (1) use 
weight information alone, (2) use mainly weight 
information, but use distance information when the 
weights on each side are equal, (3) use both weight and 
distance information equally, but resort to guessing when 
weight and distance cues give conflicting predictions, and 
(4) predict correctly no matter what the arrangement of 
weights (Siegler 1981).  
 One way for networks to enter that particular critical 
region of connection weight space early in learning is to 
learn about balance scales in a environment that is biased 
in favor of equal distance problems -- problems in which 
weights are placed at equal distances to the left and right of 
the fulcrum (McClelland 1995). From such an 
environment, the network learns that the amount of weight 
is a much more important predictor of balance scale results 
than is distance from the fulcrum. This ensures that the 
network progresses through early stages that emphasize 
use of weight information.  
 Network stages in the seriation (ordering) of different 
sized objects result from a modularization of the seriation 
task into selecting versus moving an item and slight 
environmental biases in favor of smaller, less disordered 
arrays (Mareschal & Shultz 1993). Seriation stages in 
children involve a progression through four rulelike stages: 
(1) random moves, (2) partial sorts, (3) complete, but error 
prone, sorts, and (4) complete systematic sorts with very 
few errors (Inhelder & Piaget 1969). With the foregoing 
architectural and environmental constraints, cascade-

correlation networks progress through these four stages as 
well.  
 Cognitive developmental phenomena are often 
accomp anied by a variety of perceptual effects. An 
example is the item size effect in seriation, wherein 
performance improves as size differences between items 
increases. Such perceptual effects can be expected 
whenever two or more quantitative values are mapped onto 
a qualitative comparison. Such perceptual effects are 
pervasive in cognitive developmental research, but no past 
theoretical account integrates them with the cognitive 
features of the task. In neural networks, these perceptual 
effects are a natural result of the continuous nature of 
network computations. Larger differences in inputs 
produce clearer activation patterns on hidden units and 
more decisive qualitative decisions on output units. When 
quantitative inputs are reduced to qualitative decisions, 
some information is inevitably lost. The larger the relevant 
quantitative differences are, the more accurate the 
qualitative judgments will be.  
 

Conclusions  

As with children, development in cascade-correlation 
networks can be attributed to a combination of intrinsic 
and extrinsic factors. In particular, as illustrated by the two 
cases featured here, it is critical that networks grow in 
computational power and that they are sensitive to 
environmental biases. The importance of network growth 
was established by simulation experiments in which 
generative networks were compared to static networks. 
Generative cascade-correlation networks captured the 
correct sequence of psychological stages, but static 
networks did not. The importance of environmental bias 
was established by simulation experiments in which the 
relative frequencies of various types of training patterns 
were varied in correspondence with variation in children's 
naturalistic environments. Cascade-correlation networks 
responded to  these environmental variations in the same 
way that children do. It is also important that networks are 
able to abstract regularities from the environment to 
achieve rulelike behavior and compute unit activations in a 
continuous manner to simulate perceptual effects.  
 

Acknowledgments 

This research was supported by grants from the Natural 
Sciences and Engineering Research Council of Canada.  

References 

Buckingham, D., & Shultz, T. R. 1994. A connectionist 
model of the development of velocity, time, and distance 
concepts. Proceedings of the Sixteenth Annual Conference 
of the Cognitive Science Society, 72-77. Hillsdale, NJ: 
Erlbaum.  



Buckingham, D., & Shultz, T. R. 1995. Computational 
power and realistic cognitive development. Technical 
Report No. 1995, McGill Papers in Cognitive Science, 
McGill University, Montr�al.  

Fahlman, S. E. 1988. Faster-learning variations on back-
propagation: An empirical study. In D. S. Touretzky, G. E. 
Hinton, and T. J. Sejnowski (Eds.), Proceedings of the 
1988 Connectionist Models Summer School, 38-51. Los 
Altos, CA: Morgan Kaufmann.  

Fahlman, S. E., & Lebiere, C. 1990. The cascade-
correlation learning architecture. In D. S. Touretzky (Ed.), 
Advances in Neural Information Processing Systems 2, 
524-532. Los Altos, CA: Morgan Kaufmann. 

Inhelder, B., & Piaget, J. 1969. The early growth of logic 
in the child. New York: Norton.  

Mareschal, D., & Shultz, T R. 1993. A connectionist 
model of the development of seriation. Proceedings of the 
Fifteenth Annual Conference of the Cognitive Science 
Society, 676-681. Hillsdale, NJ: Erlbaum.  

McClelland, J. L. 1995. A connectionist perspective on 
learning and development.  In T. J. Simon & G. S. Halford 
eds., Developing cognitive competence: New approaches 
to process modeling, 157-204. Hillsdale, NJ: Erlbaum.  

Oshima-Takane, Y. 1988. Children learn from speech not 
addressed to them: The case of personal pronouns. Journal 
of Child Language 15: 95-108.  

Oshima-Takane, Y., Goodz, E., & Derevensky, J. L. 1996. 
Birth order effects on early language development: Do 
second born children learn from overheard speech? Child 
Development 67.  

Oshima-Takane, Y., Takane, Y, & Shultz, T. R. 1996. The 
learning of first and second person pronouns in English: 
Network models and analysis. Submitted for publication.  

Plunkett, K, & Marchman, V. 1991. U-shaped learning and 
frequency effects in a multi-layered perceptron: 
Implications for child language acquisition. Cognition 38: 
43-102.  

Shultz, T. R., Buckingham, D., & Oshima-Takane, Y. 
1994. A connectionist model of the learning of personal 
pronouns in English. In S. J. Hanson, T. Petsche, M. 
Kearns, & R. L. Rivest eds., Computational learning 
theory and natural learning systems, Vol. 2: Intersection 
between theory and experiment, 347-362. Cambridge, MA: 
MIT Press.  

Shultz, T R., Mareschal, D., & Schmidt, W. C. 1994. 
Modeling cognitive development on balance scale 
phenomena. Machine Learning 16: 57-86.  

Shultz, T. R., Schmidt, W. C., Buckingham, D., & 
Mareschal, D. 1995. Modeling cognitive development with 

a generative connectionist algorithm. In T. J. Simon & G. 
S. Halford eds., Developing cognitive competence: New 
approaches to process modeling, 205-261. Hillsdale, NJ: 
Erlbaum.  

Siegler, R. S. 1981. Developmental sequences between and 
within concepts. Monographs of the Society for Research 
in Child Development 46 (Whole No. 189).  

Wilkening, F. 1981. Integrating velocity, time, and 
distance information: A developmental study. Cognitive 
Psychology 13: 231-247.  

Wilkening, F. 1982. Children's knowledge about time, 
distance, and velocity interrelations. In W. J. Friedman ed., 
The developmental psychology of time , 87-112. NY: 
Academic Press.  


