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Abstract 
 
Connectionist simulations of children's acquisition of velocity 
(v), time (t), and distance (d) concepts were conducted using a 
generative algorithm, cascade-correlation (Fahlman & 
Lebiere, 1990). Diagnosis of network rules were consistent 
with the developmental course of children’s concepts 
(Wilkening, 1981, 1982) and predicted some new stages as 
well. Networks integrated the defining dimensions of the 
concepts first by identity rules (e.g., v  = d), then additive rules 
(e.g., v  = d-t), and finally multiplicative rules (e.g., v  = d/t). 
Psychological effects of differential memory demands were 
also simulated. It is argued that cascade-corre lation 
implements an explicit mechanism of developmental change 
involving incremental learning and qualitative increases in 
representational power.  
 
 

Introduction 
In classical physics, velocity is defined as v = d/t, time as 
t = d/v, and distance as d = vt. A number of developmental 
psychologists, beginning with Piaget (1969, 1970), have 
assessed the development of these three interrelated 
concepts in children. Much of the psychological research 
has been criticized for presenting children with problems 
that could be solved non-inferentially, by merely ignoring 
irrelevant information and perceiving the information that is 
being asked about (Levin, 1977; Wilkening, 1981). For 
example, when asked to compare the velocity of two toy 
trains, the child can ignore time and distance information 
and report on the perceived velocities. 

Wilkening (1981) designed more valid tasks in which 
children were asked to infer velocity, time, or distance given 
information about the two defining dimensions. For 
example, in a distance-inference task, children were shown 
an apparatus that had, at one end of a footbridge, a dog and 
several other animals. The children were told that the other 
animals would run along the bridge as soon as the dog 
began to bark and would stop when the barking ceased. The 
task involved determining how far each animal would run. 
Thus, the children were given the characteristic velocity of 
the animals and the time they ran (the duration of barking), 
and asked to infer the distance they would run. 

Wilkening studied the performance of three age groups: 
5-year-olds, 10-year-olds, and adults. The findings included 
the following: (1) In the distance-inference task, all age 

groups used the correct multiplication rule, d = vt; (2) in a 
time-inference task, 10-year-olds and adults employed the 
correct division rule, t = d/v, whereas 5-year-olds used a 
subtraction rule, t = d-v; (3) in a velocity-inference task, the 
two older age groups used a subtraction rule, v = d-t, and 
the 5-year-olds used an identity rule, v = d.  

Wilkening hesitated to draw strong conclusions 
concerning the concurrent development of the three 
concepts since it appeared that the tasks had differing 
memory demands. For example, in the distance-inference 
task, subjects of all age groups used an eye-movement 
strategy in which they followed the imaginary course of the 
animal as it ran across the footbridge. In terms of the time-
inference task, Wilkening pointed out that information about 
both defining dimensions was available at the time of 
judgment. However, in the velocity-inference task, the 
subjects had to retrieve the time information from memory. 

In a follow-up study, Wilkening (1982) attempted to 
increase the memory demands of the distance task by 
presenting time information (barking) before velocity 
information (animal identity) and lessen the memory 
demands of the velocity task by visually presenting the time 
information. The modifications partially supported his 
hypothesis in that 5-year-olds were observed to use an 
additive rule (d = t+v) in the distance task. However, the 
results of the velocity task remained unchanged. Thus, it 
remains to be seen if the mastery of time before velocity 
concepts is an accurate description of the developmental 
course or a memory artifact of Wilkening's tasks.  

Cascade-correlation 
Here we report on connectionist simulations of the 
acquisition of velocity, time, and distance concepts in an 
attempt to gain some explanatory insight into these 
psychological results. Our simulations employ cascade-
correlation (Fahlman & Lebiere, 1990), a generative 
connectionist algorithm that begins with a minimal network 
topology determined solely by the number of input and 
output units. The input units, including an obligatory bias 
unit, are connected directly to the output layer. Thus, the 
initial network topology is like that of a perceptron. 
Training is carried out in a two-phase cycle. In the output 
training phase, the weights from input units and any 
installed hidden units are adjusted using first-order and an 
approximation of second-order error derivatives to minimize 
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the total sum of squared error. When the error stops 
decreasing, the input training phase begins. Weights from 
input units to a pool of candidate hidden units are adjusted 
in order to maximize the correlation between candidate 
hidden units and the output error. The hidden unit with the 
activation that is most correlated with the output error is 
then installed into the network and the output training phase 
recommences. 

Cascade-correlation has been used successfully to model 
children's performance on other developmental tasks 
including the balance scale (Shultz & Schmidt, 1991; 
Shultz, Mareschal, & Schmidt, in press), seriation 
(Mareschal & Shultz, 1993), the effects of potency and 
resistance on the magnitude of a physical effect (Shultz et 
al., in press), and personal pronouns (Shultz, Buckingham, 
& Oshima-Takane, in press). Several of these simulations 
involved rule-based stages, even though rules are not 
explicitly represented in the networks. For the domain of 
velocity, time, and distance, it was expected that the 
increasing non-linear computational power of a network that 
recruits hidden units as needed might provide insights into 
how children progress from simple identity rules to more 
complex multiplicative rule-like performance. 

Simulations 
The task of the networks was the same as for Wilkening's 
subjects. The networks had to predict, as output, the value of 
one dimension (e.g., velocity) given information about the 
other dimensions (e.g., distance and time). The initial 
network topology consisted of three input banks, one each 
for distance, time, and velocity information, connected to a 
single linear output unit. A linear output unit was used 
because it was the most natural way of producing a 
quantitative output similar to the responses made by 
subjects in Wilkening’s experiments.  

Input and Output Coding 
Inference patterns were encoded as follows. Two input 
banks received dimensional values ranging from 1 to 5. The 
third bank received an input of 0 indicating that it was the 
dimension to be predicted. Each input bank had five input 
units for a total of 15 input units. A dimensional value n was 
encoded by assigning an activation of 1 to the nth input unit 
of the bank and 0 to all other units in the bank. We call this 
nth encoding. Thus, for a given inference pattern, one input 
bank would receive activations of 0 on all of its five input 
units indicating it was unknown. One unit of each of the 
other two input banks received an activation of 1. The 
remaining units in these banks received activations of 0. 
Notice that in nth encoding, the inputs initially possess 
cardinality but not ordinality (McClelland, in press); the 
network must learn the ordinal relations among the input 
values as it learns the velocity, time, and distance problems.  

Target values for the output unit were calculated using the 
three Newtonian equations (v = d/t, t = d/v, and d = vt) 
respectively. In addition, distance target values were scaled 
by dividing by five so that the range would be identical to 
the target values of time and velocity inference patterns. 
Twenty-five instances of each of the three inference 

problem types were obtained by crossing the five levels of 
velocity, time, and distance for a total of 75 inference 
patterns. 

Two sets of simulations are reported. The accurate 
memory condition simulations represent a situation in which 
memory demands across the three concepts are equal and 
minimal. The limited memory condition explores the effects 
of inaccurate memory for time information in velocity-
inference tasks. Here, it was assumed that the likelihood of 
correct recall followed a normal distribution in that values 
closer to the actual time value would be more likely to be 
recalled than distant values. At each epoch of training, the 
time dimension of a given velocity inference problem was 
altered so that in general there was a 34%, 13%, 2%, and 
less than 1% probability that the time input value "recalled" 
by the network would be 1, 2, 3, or 4 integers away 
respectively from the actual value. In the remaining 
instances, the actual value was used as input. 

An additional constraint was that the modified time input 
fall within the same range (1 to 5) used in the training set. 
Without such a restriction, networks in the limited memory 
condition would require more input units than those in the 
accurate memory condition. Therefore, if the selection of an 
integer either above or below the actual value was possible, 
a random choice was made among the two equally distant 
values. For example, if the actual input value was 3 there 
was a 34% chance that the network would receive 2 or 4 as 
input and a 13% chance that it would receive 1 or 5. 
Otherwise, 3 was used. If the input value was 5, then the 
chance of a 4, 3, 2, or 1 being "recalled" was 34%, 13%, 
2%,  and 1% respectively. 

Only the time dimension inputs of velocity inference 
patterns were selected according to the criteria above. 
Target values were unaffected by this process. They were 
determined by dividing the distance dimensional value by 
the true time dimensional value.  

Training and Rule Diagnosis 

At each epoch of training, all 75 inference problems were 
presented to the network. Thirty networks in each condition 
were trained for a maximum of 1500 epochs. Every fifth 
epoch, the networks were diagnosed for rule use.  

To compare network results with human performance, we 
diagnosed rules that best captured network performance on 
each problem type. We computed correlations between the 
network's responses and those predicted by various 
plausible rules such as identity (v = d, or v = t), addition 
(v = d+t, or v = d-t), or multiplication (v = dt, v = t/d, or 
v = d/t) rules. To capture consistent network performance, a 
given rule had to correlate positively with network 
responses, account for more than 50% of the variance in 
network responses (i.e., r2  > .50), and account for more 
variance than other plausible rules. 

Results 

Accurate Memory Condition 

A stage by epoch plot of a typical network in the accurate 
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memory1 condition is shown in Figure 1. All 30 networks 
exhibited a qualitatively similar developmental course. As 
can be seen, time and velocity identity stages (t = d and 
v = d) emerged early in training prior to the recruitment of a 
hidden unit. The mean epochs of onset and length of the 
identity stages are reported in the left half of Table 1. On 
average, these identity stages began together typically after 
5 or 10 epochs of training and lasted for approximately 55 
epochs. To assess how well particular rules captured 
network performance, we computed the mean across 
networks of the maximum r2 value attained during each 
stage. During the identity stages, the mean was over 90% 
for both the time and the velocity identity rules, suggesting 
that both were good predictors of time and velocity 
inferences respectively. During this same period, the 
networks' responses to distance inference patterns were not 
captured by any of the rules that were tested. 

Following the recruitment of the first hidden unit, 
distance, time, and velocity inferences were captured by the 
__________  

1 A preliminary report of the accurate memory condition is 
presented in Shultz et al. (in press). 

additive rules d = t+v, t = d-v, and v = d-t respectively. The 
mean epochs of onset and the length of these additive  
stages are reported in the left half of Table 2. Although all 
three began at approximately the 65th or 70th epoch, the 
distance additive stage lasted almost 90 epochs more on 
average than either of the other two stages. On average a 
maximum of over 80% of the variance in the three types of 
inferences was accounted for by the additive rules. 

 
Table 2: Mean Epoch of Onset and Length 

of Additive Stages. 
 

 
Multiplicative stages of time (t = d/v) and velocity 

(v = d/t) inferences began after 150 epochs of training 
following the recruitment of the second hidden unit. On 
average, the multiplicative stage of distance inferences 
(d = vt) began approximately 100 epochs later following the 
recruitment of the third or fourth hidden unit. The mean 
epochs of onset of the multiplicative stages are reported in 
the left half of Table 3. All three defining mu ltiplicative 
rules of the stages eventually reached a maximum r2 of 
1.00. This occurred earlier for time and velocity inference 
patterns than for distance inferences.  
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Figure 1: Stages achieved by one network in accurate 
memory condition, plotted every 10 epochs. 

 

 
Table 1: Mean Epoch of Onset and Length 

of Identity Stages. 
 

 Condition 
 Accurate Memory Limited Memory 

Stage M SD M SD 
t=d     

onset 6.67 2.40 7.50 2.54 
length 55.60 5.40 147.23 15.01 

v=d     
onset 6.67 2.40 10.33 4.54 
length 55.43 4.53 204.40 76.25 

n  = 30 
Note. d = distance; t = time; v = velocity. 
 

 Condition 
 Accurate Memory Limited Memory 

Stage M SD M SD 
d=t+v     
onset 70.93 3.83 155.86* 5.10 
length 164.77 78.40 317.46 159.70 
t=d-v     
onset 67.77 4.85 163.57 15.26 
length 77.90 7.87 156.13 46.19 
v=d-t     
onset 67.77 4.48 224.62** 79.87 
length 77.93 7.04 437.17*** 330.06 

n  = 30; * n  = 28; ** n = 29; *** n = 18 
Note. d = distance; t = time; v = velocity. 
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Figure 2: Stages achieved by one network in limited 
memory condition, plotted every 10 epochs. 
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Limited Memory Condition 

Eleven of the networks in the limited memory condition 
demonstrated a qualitatively similar developmental course 
to that depicted in Figure 2; all but one of the remaining 
networks followed a similar course except that the 
multiplicative stage of velocity inferences was eventually 
attained.  

As in the accurate memory condition, for all 30 networks 
the time and velocity identity stages emerged early in 
training at approximately the same epoch, prior to the 
recruitment of a hidden unit. However, unlike in the 
accurate memory condition, the identity stage of velocity 
inferences lasted almost 60 epochs longer on average. The 
mean epochs of onset of the identity stages are reported in 
the right half of Table 1. Again the identity rules were good 
approximations of the predictions, accounting for an 
average maximum of over 90% of the variance. 

For the majority of networks, the additive stages of 
distance and time inferences emerged soon after the 
recruitment of the first hidden unit. On average, the additive 
stage of velocity inferences emerged approximately 60 
epochs later. Occasionally two hidden units were recruited 
prior to the onset of the velocity additive stage. Two 
networks skipped the additive distance stage and one 
skipped the velocity stage. The mean epochs of onset and 
the length of these additive stages are reported in the right 
half of Table 2. The mean length of the velocity additive 
stage reported in Table 2 is based on 18 networks since 11 
networks did not progress beyond this stage and one, as 
mentioned, skipped the additive stage. Distance inferences 
based on the additive rule typically lasted longer than 
additive time inferences whereas additive velocity 
inferences were the most persistent. As in the accurate 
memory condition, a maximum of over 80% of the variance 
in the three types of inferences was accounted for by the 
additive rules.  

The most striking difference between the accurate 
memory and limited memory conditions was that 11 limited 
memory networks did not progress to the multiplicative 
stage of velocity inferences. The network in Figure 2 depicts 
this result. All 30 networks progressed to the multiplicative 
stage of time and distance inferences. On average, the 
multiplicative stage of time inferences emerged after a 
second hidden unit was installed, about 190 epochs before 
the multiplicative stage of distance inferences. The distance 

multiplicative stage followed the recruitment of 3 or 4 
hidden units. Of the 19 networks that progressed to the 
velocity multiplicative stage, on average they did so 
approximately 190 epochs after the distance multiplicative 
stage had been attained. The mean epochs of onset of the 
multiplicative stages are reported in the right half of 
Table 3. The defining multiplicative rules of the distance 
and time stages eventually reached a maximum r2 of over 
0.98. In contrast, for those networks that attained the 
velocity multiplicative stage, the defining rule reached a 
maximum r2 of approximately 85%.  

Hinton Analysis 

It was apparent that hidden unit recruitment was necessary 
for the onset of additive and multiplicative stages given the 
abrupt transition to stages following the installation of a 
hidden unit.  

In order to explicate the role of hidden units, Hinton 
diagrams of the incoming weights were drawn following the 
recruitment of hidden units. A representative example, taken 
from one network in the accurate memory condition, is 
shown in Figure 3. The two rows in the diagram represent 
the weights from the sending units to the output unit and 
first hidden unit respectively. The size of the weight 
corresponds to the size of the square; the color indicates the 
sign of the weight (white and black indicate positive and 
negative respectively). As can be seen, the weights from the 
time and velocity input banks (squares 6-10 and 11-15 
respectively) to the hidden unit are of the same sign and 
opposite in sign to the weights from the distance input bank 
(squares 1-5). Thus, when a distance inference pattern was 
presented, the time and velocity inputs augmented each 
other. This gave rise to predictions that were correlated with 
the additive rule d = t+v. In contrast, when a time or 
velocity inference pattern was presented, the distance input 
would be counteracted by the velocity or time input. This 
gave rise to time and velocity inferences that correlated best 
with performance in which one dimension was subtracted 
from the other (e.g., t = d-v). Because of network 
complexities, Hinton analysis of the second and third hidden 
units were less revealing. However, given the relatively 
abrupt transition after the installation of these hidden units 
to multiplicative stages, the need for increased non-linearity 
seems evident.  

Discussion 
Simulation results for the most part matched those of 
Wilkening (1981, 1982) with humans. For distance 
inferences, there was a progression from an additive rule to 
the correct multiplication rule. For time and velocity 
inferences, networks began with an identity rule, progressed 
to an additive rule, and then finished with the correct 
multiplicative rule. Wilkening's human subjects did the 
same, except that they showed no identity rule for time 
inferences and failed to reach the correct multiplicative rule 
for velocity inferences.  

The results of the limited memory condition suggest that 
memory demands may have been a factor in Wilkening's 
studies. By increasing the memory demands of the velocity 

Table 3: Mean Epoch of Onset  
of Multiplicative Stages. 

 
 Condition 
 Accurate Memory Limited Memory 

Stage M SD M SD 
d=vt 248.97 83.94 519.80 214.29 
t=d/v 150.60 8.26 330.93 50.94 
v=d/t 150.27 8.52 711.32*  403.45 

n  = 30; * n  = 19 
Note. d = distance; t = time; v = velocity. 
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task, velocity was delayed such that it was possible for a network to be making velocity inferences based on the 

identity rule and time inferences based on additive rules. 
Later when time inferences were based on the multiplicative 
rule, velocity inferences were typically additive. Finally, a 
number of limited memory networks did not attain the 
multiplicative stage of velocity inferences. Many of those 
that did regressed to the additive stage, some permanently. 

The simulations suggest that, when all else is held 
constant, the developmental course is more consistent across 
concepts than Wilkening's results indicated. Identity stages 
emerge early for both time and velocity concepts followed 
by the additive stages of all three concepts and then the 
onset of multiplicative concepts for velocity and time prior 
to the eventual attainment of the distance multiplicative 
stage. We propose that the mechanisms of weight 
adjustment and hidden unit recruitment compounded with a 
learning environment in which all three concepts are being 
acquired constrains network development along these lines. 

Identity stages emerge due to a combination of the limited 
processing ability of the initial perceptron-like architecture 
and the fact that one network is performing all three 
inference tasks. The initial network is not able to encode 
both the inverse relationship between time (velocity) and 
distance when making velocity (time) inferences and the 
direct relationship between time and velocity when making 
distance inferences. The algorithm is unable to find a set of 
weights for a perceptron to accommodate both roles of the 
time and velocity input. Therefore, the relationship of time 
(or velocity) information to the output error of distance and 
velocity (or time) inferences is obscured. In contrast, the 
relationship of the distance information to the output error is 
more clear since the role of distance is the same in either 
time or velocity inference problems. When the algorithm 
attempts to reduce the error across all three problem types, 
weight adjustment may be primarily influenced by the 
relationship of distance input to the error. When presented 
with a time (velocity) inference pattern, distance 
information has more influence than velocity (time) 
information. In contrast, when presented with a distance 
inference pattern, neither time nor velocity information has 
greater influence and the weights fail to encode the direct 
relationship between time and velocity information. Thus, 
identity stages emerge for time and velocity inference 
problems. However, neither identity, additive, nor 
multiplicative rules are able to capture the role of time and 
velocity with respect to distance inference problems during 
this period. 

A similar argument could be put forward with respect to 
children. Early on, the child is confused about the 
inconsistent effects of time and velocity and focuses 
attention on the more consistent distance information when 
making velocity or time inferences. With respect to distance 
inferences, the child is at a loss as to how to solve the 
problem and may choose time or velocity depending on 
their salience. 

Additive stages of each concept typically emerged after 
the installation of the first hidden unit. The network used 
this hidden unit to differentiate distance from time and 
velocity information by assigning one sign to the weights 
from the distance inputs and the opposite sign to weights 
from time and velocity inputs. Thus, the first hidden unit is 
able to encode the dual nature of time and velocity, at least 
in a simplistic manner, and as a result, the additive stages 
emerge. 

The additive stages of all three concepts eventually were 
replaced by multiplicative stages. Typically, the time and 
velocity multiplicative stages emerged first followed by the 
distance multiplicative stage. One reason why the distance 
additive stage may have lasted longer than either the time or 
velocity additive stages was that a larger proportion of error 
was reduced during the distance additive stage than in the 
other two. This in turn delayed the onset of the distance 
multiplicative stage. Thus, the distance additive rule would 
seem to be a very good approximation of distance inference 
patterns. It may be that for people, use of an additive rule 
persists as a heuristic approach that is generally good 
enough. 

Thus, cascade-correlation provides an explicit mechanism 
of transition in network performance -- weight adjustment 
and hidden unit recruitment. In human developmental terms 
we believe this to be akin to incremental learning in 
combination with increasingly non-linear representational 
abilities. 

The simulation results, together with Wilkening's studies, 
make several predictions. First, the results suggest that if 5-
year-olds can integrate distance and velocity and time and 
velocity information in an additive manner to infer time and 
distance respectively, they should be able to integrate 
distance and time information additively to make velocity 
inferences if the memory demands are minimized. 

Second, whereas Wilkening's observation that 5-year-olds 
use a velocity identity rule is likely related to extraneous 

  
Figure 3: Hinton diagram of incoming weights after the recruitment of the first hidden unit for one network. 
Numbers refer to weights from bias (0), distance (1-5), time (6-10), velocity (11-15) and hidden (16) units. 
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task demands, the simulations predict that children younger 
than five years of age make velocity inferences by focusing 
on distance information because of processing limitations. 
Moreover, although Wilkening did not find evidence of a 
time identity rule, our simulations suggest that younger 
children would use such a rule to make time inferences. 
Finally, these same-aged children would be expected to 
solve distance inference problems based on either time or 
velocity information depending on which is more salient. 
Therefore, future research should include younger children 
and manipulate the salience of velocity and time 
information in the distance inference task. 

Third, if the task demands of velocity inferences were 
reduced, it is predicted that 10-year-olds would make 
velocity inferences by integrating the dimensions with the 
correct multiplicative rule. Therefore, the inability of 
Wilkening's subjects to correctly integrate time and distance 
information is again likely due to extra memory demands.  

Finally, the simulations suggest that the distance 
multiplicative stage emerges after both time and velocity 
multiplicative stages. Since Wilkening did not study 10-
year-olds' performance when an eye-movement strategy was 
not possible, it would be necessary to re-examine 10-year-
olds under this condition. 

In conclusion, the results of our simulations suggest that 
limited processing capacities of children lead to 
performance that is first characterized by identity rules for 
time and velocity inferences. Later, additive inference rules 
characterize performance. Finally, multiplicative rules 
characterize the integration of distance, time, and velocity 
inferences. Once again the cascade-correlation algorithm 
has demonstrated the ability to capture the emergence of 
rule-based stages in cognitive development. 
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