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Abstract - Neural network algorithms are usually limited in 
their ability to use prior knowledge automatically. A recent 
algorithm, knowledge-based cascade-correlation (KBCC), 
extends cascade-correlation by evaluating and recruiting 
previously learned networks in its architecture. In this paper, 
we describe KBCC and illustrate its performance on the 
problem of recognizing vowels. 

I EXISTING KNOWLEDGE AND NEW LEARNING 

Neural network algorithms rarely allow prior knowledge to 
be incorporated into their learning. Most start from scratch 
and those that do use prior knowledge require that knowledge 
to have a specific form, such as having the same architecture 
[1], being a symbolic domain theory [2], or being given as 
hints [3]. However, prior knowledge can often take the form 
of some existing classifier or function approximator and no 
algorithm is flexible enough to permit the integration of such 
a wide variety of knowledge. 

It is clear that humans do not learn from scratch, but make 
extensive use of their knowledge in learning [4-6]. Use of 
prior knowledge in learning can ease and speed learning and 
lead to better generalization as well as interference effects. 
The current difficulty in using prior knowledge is arguably 
the major limitation in neural network modeling of human 
learning and cognition. In this paper, we describe and test a 
neural learning algorithm that implements a general 
mechanism of knowledge reuse. 

Knowledge-based cascade-correlation (KBCC) is a 
fundamental extension of cascade-correlation (CC), a 
constructive learning algorithm that has been successfully 
used in many real applications [7] and in simulations of 
cognitive development [8-13]. CC builds its own network 
topology by adding new hidden units to a feedforward 
network in cascade fashion, i.e., new units receive inputs 
from each non-output unit already in the network [14]. Our 
KBCC extension recruits previously learned networks in 
addition to the untrained hidden units recruited by CC. These 
recruitable networks could potentially be any functional form 
knowledge, although being differentiable is a must. We refer 
to existing networks as source knowledge and to the current 
task to learn as a target. Previously learned source classifiers 
or approximators compete with each other and with standard 
hidden units to be recruited into the learning network.  

In artificial bivariate dichotomous tasks, KBCC 
successfully recruited networks representing parts of a target 
task, equivalent-knowledge networks, and more complex 
networks embedding equivalent knowledge, with substantial 
learning speed ups [15]. KBCC was also shown to be 
superior to multi-task learning (MTL) in these respects [16]. 

II PREVIOUS WORK ON KNOWLEDGE AND 
LEARNING 

KBCC is similar to recent neural network research on 
transfer [1], sequential learning through multi-task learning 
[17], and knowledge insertion [2,18]. But KBCC is more 
ambitious and principled because it stores and searches for 
knowledge within a generative network approach and has no 
real limitation in the structure of the recruited knowledge.  

Pratt [1] studied the idea of transferring knowledge from a 
source neural network to a target network through copying 
the network structures and parameters (weights). She found 
that literally copying a network could sometimes slow down 
the training and reduce generalization performance compared 
to random networks. She therefore developed a technique to 
re-scale the weight vector feeding hidden units. If a hidden 
unit has good discrimination power, its weight vector is 
scaled up to reduce training effects, and conversely, if the 
discrimination hyperplane is bad, its weight vector is scaled 
down, or even randomized, in order to avoid copying bad 
effects. This technique is limited to discrete output networks 
where the target task requires a network at least as big as the 
source network and where input and output perfectly matches 
the source network. 

Silver and Mercer [17] developed a transfer of knowledge 
technique based on Caruana’s multi-task learning [19]. The 
basic idea derives from a proof that if a network has multiple 
related tasks to learn, it requires fewer examples to learn 
them, because the hidden layer can develop a more general 
representation. Silver and Mercer’s idea is to re-learn the 
prior knowledge while learning the new task, in parallel, on 
the same network. The target network has an output for the 
target task, and extra outputs to represent each source 
network’s outputs. Prior knowledge is used to generate the 
desired values for these extra outputs to learn. This can be 
simply done by processing the input patterns through the 
prior knowledge, thus permitting the prior knowledge to be 
any sort of function. This still has a major limitation in that 
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target inputs must match source inputs, and the new network 
must be big enough to learn the prior knowledge. Moreover, 
relearning of prior knowledge is required, which does not 
seem very efficient. 

With a slightly different goal in mind, Towell and Shavlik 
[2] invented an algorithm to transform rule-based knowledge 
into a neural network (KBANN). The idea was to refine that 
knowledge in neural network form and then to later extract 
improved rules. We believe that this technique could be used 
with KBCC, by taking rule-based knowledge and 
transforming it into differentiable functional form.  

This kind of idea was also developed by Parekh and 
Honavar [18], who proposed to use KBANN in conjunction 
with constructive algorithms. KBANN was used to create a 
neural network that would serve as a basis for a constructive 
algorithm that could build on the source knowledge outputs 
and inputs. Again, this requires the same encoding for prior 
and new knowledge. Moreover, it does not allow composition 
of prior knowledge like most other approaches. 

III DESCRIPTION OF KBCC 

Because KBCC is a generalization of CC, it is quite similar 
to CC. As in CC, candidates are installed on top of the 
network, just below the output; hence new units receive 
inputs from every non-output unit already in the network. 
Unlike CC, KBCC is not limited to a pool of candidate units 
that are univariate single-valued functions. KBCC can recruit 
any multivariate vector-valued component. The connection 
scheme in KBCC as shown below is similar to the CC 
connection scheme, except that a hidden unit may have a 
matrix of weight connections (as opposed to a single vector) 
at their inputs and their outputs as shown in figure 1. 

 
Figure 1: A KBCC network with four hidden units. The first one is an 

existing classifier, the second one is an existing approximator, and the last 
two are single sigmoid units. Dash lines represent single weights, while solid 
thin lines represent weight vectors, and solid thick lines weight matrices. 

KBCC training is composed of two phases: In output 
phase, only the weights feeding the output units are trained. 
In input phase, only the weights feeding the candidate units 
(and networks) are trained.  

The network begins in output phase with a set of output 
units fully connected to the inputs. These weights are trained 
to minimize the sum squared error: 
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Where Vo,p is the network output o at pattern p and To,p the 
corresponding target value. The training uses QuickProp1 
[14], a gradient based algorithm that employs the current and 
previous gradient to estimate the second order derivative of 
the objective function with respect to the weights to be 
trained. The output phase stops either when it successfully 
learns the task, or when the sum squared error stagnates or a 
maximum number of epochs is reached, in which case the 
algorithm goes into input phase. 

The input phase begins by initializing a pool of candidate 
units and networks (or other functional knowledge) with 
random weights from every non-output unit of the target 
network to the candidate inputs. These weights are then 
trained using QuickProp to maximize the covariance between 
the candidate outputs and the target network residual error: 

 

( )

∑∑

∑∑
=

o p
po

o o

F
c

c E

EVCov
G c

2
,

,
 (2) 

Where Eo,p is the error at output unit o for pattern p, Vc is 
the candidate output patterns, E the network error patterns 
and ||C||F the Frobenius norm of matrix C=Cov(Vc,E) defined 
as: 

  ∑=
ji

ji
F CC

,

2
,   (3) 

 Again, whenever the best score max{Gc} stagnates, or a 
maximum number of epochs is reached after a minimal score, 
the input phase stops and the best candidate is installed into 
the target network by adding connections from its outputs to 
the target network outputs using small random values and the 
sign of the covariance.  The other candidates are discarded. 

A more detailed description of the KBCC algorithm with 
all the default parameter values can be found in [20]. 

                                                           
1 Although training is not limited to QuickProp. 
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IV DEMONSTRATION OF KBCC: PETERSON-BARNEY 
VOWEL RECOGNITION 

We created six transfer scenarios with the Peterson-Barney 
vowel recognition problem from the CMU AI repository.2 
The data set can be split into three subsets based on the 
speaker type: male, female or child. One scenario was 
originally used by Pratt [1] and involved training networks on 
the female data and then using them as sources to train target 
networks on male data. The other scenarios are similar and 
complete all permutations of the three subsets. 

The data set contains the two middle formants of the 
speech sound made by 76 speakers saying 10 different 
vowels twice. The speakers were 33 males, 28 females, and 
15 children, all speaking English. The inputs were scaled 
down by 1000 resulting in input values in the range [0.0, 1.5] 
and [0.0, 4.0] for the first and second formants, respectively. 
The outputs were encoded on 10 units (one per vowel) with a 
value of 1.0 for the correct vowel and 0.0 for the others. A 
network was considered to properly classify a pattern if the 
output with highest activation corresponded to the target 
vowel. 

The scenarios are constructed using the following scheme. 
Starting with the three subsets (male, female, child), one 
subset is used to train the source networks, and a different 
subset for training the target networks. This scheme generates 
six scenarios. In order to compare KBCC with CC without 
knowledge, we added three more scenarios where we trained 
CC nets on one of the subsets without any prior knowledge. 

A. Experimental setup 

First, for each subset, we generated 10-fold cross-
validation train/test set pairs. We trained 10 CC networks (for 
up to 15 hidden units) for each train/test pair for a total of 
100 CC networks per subset. Those represent the three no-
knowledge baseline scenarios. 

We found that a good CC source network  (similar to 
Pratt’s sources) has about 10 hidden units. Since each subset 
is used as source in two scenarios, we have trained 200 CC 
networks on each of the three subsets for 10 recruitments 
each. 

For each scenario, we have 100 CC networks per source 
data set. Given a scenario, for each of the 10 train/test pairs 
of the target data set, we trained 10 KBCC networks (for up 
to 15 hidden units/networks). For each of the 100 resulting 
KBCC networks we used a different source network.  

During the training of the target networks, we evaluated 
the network on the data subset of their source to measure 

                                                           
2 http://www.cs.cmu.edu/afs/cs/project/ai-

repository/ai/areas/speech/database/pb/pb.tgz 

retention and on the third data subset, the one that wasn’t 
used in their training nor in the training of their sources. For 
example, in the scenario where the source networks are 
trained on female data and the target networks are trained on 
male data, the third subset is the child data. 

B. Early learning comparison 

In one of our scenarios, similar to Pratt, we used the 
female data (560 patterns) to train the source networks. We 
first found that good sources had about 10 hidden units, so 
we trained 100 CC sources with 10 hidden units each. We 
then tested these female-trained sources on the male data and 
obtained 52%±3% accuracy. This is quite close to Pratt’s 
result using static back propagation networks. 

Then we generated 10-fold cross-validation train/test sets. 
For each of the 10 train/test set pairs we trained 10 CC 
networks and 10 KBCC networks (each KBCC network used 
a different source) for up to 15 recruitments. We computed 
the train and test percentage correct at every epoch and 
analyzed the resulting learning curves.  

Before the first recruitment, the linear solution scored 
around 71% correct on the train set and 69% on the test set. 
Before the second recruitment (which happened sooner in 
KBCC than in CC), KBCC reached 86% and 84% on the 
train and test sets while CC had only reached 80% and 77% 
on these same sets. Moreover the peak generalization of the 
KBCC-averaged test curves (85.5%) is reached at epoch 438 
while that peak on the CC-averaged test curves (85.8%)3 is 
reached at epoch 1699. Finally, we looked at the average 
number of epochs for each network curve to reach its peak 
generalization. We computed a paired sample t-test using the 
average for each fold. KBCC was significantly faster, taking 
an average of 827 epochs to reach its peak generalization 
while CC took 1279 epochs, with t(9) = 4.418 and p < 0.005. 
Both average peak values were 89% correct. Results are 
plotted in figure 2, also showing that the effect of the first 
recruitment is even stronger with child sources. 

                                                           
3 These two peaks are not significantly different in percent correct. 
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TABLE 
TRAIN PROPORTION CORRECT AFTE

Target 
None Male 

Male 80% N/A 
Female 81% 86% 
Child 76% 81% 

 
TABLE 

TEST PROPORTION CORRECT AFTE

Target 
None Male 

Male 78% N/A 
Female 78% 83% 
Child 71% 76% 

 
C. Learning time comparison 

To evaluate the learning time, w
after training. Since during trainin
set proportion correct, we could re
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Figures 4- 6 show the results grouped by target task. For 
each of those figures, we ran an ANOVA and looked at the 
Scheffe post hoc test. For all three targets, the prior 
knowledge conditions were significantly faster than the no 
knowledge condition at the .05 level. 
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Figure4: Mean number of epochs to learn male data in three different 
source conditions. 
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Figure 5: Mean number of epochs to learn female data in three different 

source conditions. 
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Figure 6: Mean number of epochs to learn child data in three different 

source conditions. 

D. Learning quality 

We also compared the best train and test percent correct 
reached by our networks. Results are presented in Table 3. 
We did an ANOVA to compare the three source conditions 
under each target task separately. None of the three ANOVAs 
yielded significance at the .05 level on the Scheffe test. 
Hence, the quality of the final solution did not seem to be 
affected by prior knowledge.  

TABLE 3 
TEST PROPORTION CORRECT AT HIGEST GENERALIZATION 

Source Target 
None Male Female Child 

Male 89% N/A 88% 88% 
Female 89% 89% N/A 89% 
Child 84% 85% 85% N/A 

 
E. Retention and 3rd set generalization 

We compared the retention and third set generalization of 
the source knowledge conditions for each target task. Even 
though in few cases, the prior knowledge condition had a 
slightly significant advantage, in others it had a slight 
disadvantage. In most cases there was little difference. 

V DISCUSSION 

These results show that KBCC is able to adapt and use its 
prior, related knowledge in the learning of a large and 
realistic new problem. Moreover, the availability of relevant 
knowledge significantly shortens KBCC learning time, 
without any loss of accuracy. Effective use of prior 
knowledge in new learning is the sort of quality one would 
like from both engineering and cognitive modeling 
viewpoints.  

In contrast to previous methods for using knowledge in 
learning, KBCC has almost no restrictions on the format of 
prior knowledge. First, because prior knowledge is recruited 
into the network topology instead of being relearned, there is 
basically no limit to the internal complexity of the sources. 
Second, KBCC automatically searches for the best way to 
connect recruited sources in its architecture, removing any 
necessity for source inputs and outputs to perfectly match 
those of the target task.  

Moreover, KBCC can use one or multiple sources to build 
a compositional solution. Because every candidate receives 
input from every previously recruited module, KBCC can 
combine them in a compositional way, for example, 
processing input data first through some classifier and then 
through some approximator (as shown in figure 1).  

KBCC also seamlessly integrates learning by analogy with 
learning by induction. It learns by induction whenever it 
recruits single hidden units and by analogy when it recruits a 
previously trained source network. Finally, KBCC is 
consistent with the CC algorithm that has been successful in 
solving many real problems and in simulating many aspects 
of cognitive development.  

Application of KBCC to other real problems such as DNA 
junction-splicing is currently being studied in our laboratory. 
Another area under study is the effect of prior knowledge on 
KBCC in impoverished training environments.  
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