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Development of Children’s Seriation:
A Connectionist Approach

DENIS MARESCHAL & THOMAS R. SHULTZ

This paper presents a modular connectionist network model of the development of seriation
(sorting) in children. The model uses the cascade-correlation generative connectionist
algorithm. These cascade-correlation networks do better than existing rule-based models
at developing through soft stage transitions, sorting more correctly with larger stimulus size
increments and showing variation in seriation performance within stages. However, the
full generative power of cascade-correlation was not found to be a necessary component
for successfully modelling the development of seriation abilities. Analysis of network weights
indicates that improvements in seriation are due to continuous small changes instead of
the radical restructuring suggested by Piaget. The model suggests that seriation skills are
present early in development and increase in precision during later development. The
required learning environment has a bias towards smaller and nearly ordered arrays. The
variability characteristic of children’s performance arises from sorting subsets of the total
array. The model predicts better sorting moves with more array disorder, and a dissociation
berween which element should be moved and where it should be moved.
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1. Introduction

Seriation (or sorting) was one of the key tasks used by Piaget (1965; Piaget &
Inhelder, 1973) to investigate the development of children’s thinking. It is generally
considered to result from serial, symbolic processing in which the child acquires a
set of procedures and then learns how and when to apply them in order to produce
an ordered series. A number of serial, symbolic computational models of children’s
performance on seriation tasks have been constructed to describe the underlying
information processing (e.g. Baylor et al., 1973; Frey, 1964; Retschitzki, 1978;
Young, 1976). In this paper, we present a connectionist model of the development
of seriation abilities in children that breaks radically from the assumptions of
previous models.

The relevance of connectionist modelling methods to the study of cognitive
development has been established both theoretically (e.g. Bates & Elman, 1993;
Elman et al., 1996; Mareschal & Shultz, 1996; McClelland, 1995; Papert, 1963;
Plunkett & Sinha, 1992; Shultz, 1991; Shultz ez al., 1995) and empirically in the
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form of explicit models (e.g. Mareschal & French, 1997; Mareschal ez al., 1995;
McClelland, 1989; Papert, 1963; Quinn & Johnson, 1997; Schyns, 1991; Shultz
et al., 1994b). The models described in this paper are a first attempt to apply
connectionist techniques to the development of seriation. As such, one of the
principal goals of the project is to demonstrate that connectionist modelling
methods can be successfully used in this domain.

We propose a parallel approach to seriation. Despite the fact that seriation
performance arises from a series of moves, each move can involve parallel considera-
tion of which stick to move and where to move it. We model development of
seriation with the cascade-correlation connectionist learning algorithm in which
network topology is constructed as part of the learning process (Fahlman &
Lebiere, 1990; Shultz er al.,, 1995). In contrast to static networks with fixed
architectures, generative networks can increase their representational and computa-
tional power during learning, thus implementing a form of constructivist develop-
ment (Mareschal & Shultz, 1996; Quartz, 1993).

The model relies on a form of supervised learning analogous to imitation
learning rather than reinforcement learning. Imitation is one of the principal ways
that children within a society learn (Bandura, 1986; Donaldson, 1986; Rogoff,
1990; Vygotsky, 1978) and has been shown to be an effective means of teaching
seriation skills to very young children (Bergan & Jeska, 1980). The networks receive
information about which element to move and where it should be moved to, on a
small subset of unrelated, randomly selected sorting moves. This information is
consistent with what would be obtained by watching someone make an appropriate
move on separate occasions. This target information on what move to make induces
the networks to develop an internal representation of the sorting problem that
allows it to solve complete and sequenced sorting problems. The justification for this
training procedure is twofold. First, it assumes fairly minimal relevant experience. It
suggests that children can learn about sorting without ever having to witness a
complete sorting sequence. They can learn by attending to and encoding unrelated
partial sorting events, perhaps when observing an adult or older child making a
sorting move. Second, this learning scheme is consistent with Vygotsky’s cognitive
scaffolding hypothesis (Vygotsky, 1978). According to Vygotsky, children develop
within a social context. Cognitive development consists of internalizing problem-
solving solutions pervasive in the social environment. Interactions with adults and
older siblings provide a schematic framework (cognitive scaffolding) on which the
child can build in developing general cognitive strategies.

The modelling of seriation with cascade-correlation is an extension of a larger
project that attempts to model cognitive development across a wide range of
domains using a single general-purpose learning mechanism (Shultz ez al., 1995).
Other successful cascade-correlation models include the balance scale task (Shultz
et al., 1994b; Shultz & Schmidt, 1991), the developing integration of velocity, time
and distance information (Buckingham & Shultz, 1994), conservation (Shultz,
1998) and the identification of shifting pronoun reference (Shultz ez al., 1994a).

The specific network configuration required for realistic learning in each domain
depends on the precise nature of the task. In our models, the network architecture
is constructed by the cascade-correlation algorithm. Static connectionist networks
can be effective and powerful tools for modelling development in particular
domains. Their ability to develop representations through learning is well estab-
lished (e.g. Elman er al, 1996; McClelland, 1995; Plunkett & Sinha, 1992).
However, static networks must be hand-designed for each task domain, which is
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not the case when modelling development with cascade-correlation. Moreover, the
set of representations that static networks can possibly learn (i.e. the network’s
computational power) is fixed from the onset by the network architecture (Baum,
1989; Cybenko, 1989; Mareschal & Shultz, 1996; Quartz, 1993).

The need to pass through periods of more limited representational power (as
opposed to having immediate access to full representational power) may be critical
when modelling children’s cognitive development. For example, in balance scale
simulations, cascade-correlation did better than backpropagation at reaching and
staying in the final, fourth stage (McClelland, 1989; Shultz et al., 1994b). Static
backpropagation networks only stay in stage 4 if they miss stages 1 and 2 (Schmidt
& Shultz, 1991). Another developmental domain in which cascade-correlation
networks proved superior to backpropagation networks is integrating velocity, time
and distance information (Buckingham & Shultz, 1994). A wide variety of static
backpropagation networks were incapable of generating the stages observed in
children and modelled with cascade-correlation (Buckingham & Shultz, 1996).
Backpropagation networks designed with too little power were unable to reach the
final multiplicative stages, and those designed with too much power were unable
to capture the intermediate additive stages. Thus, it seems that the ability to grow
in computational power may be necessary for simulating some developmental
phenomena. Similarly, early limitations in network working memory capacity have
been found to improve overall learning (Elman, 1993). However, growth in power
may not be necessary in all developmental domains. Cascade-correlation provides
a way to assess the need for progressive increases in computational power.

To anticipate our results, it was found that the generative power of cascade-
correlation was not necessary for the successful modelling of the development of
seriation abilities, suggesting that static networks could do just as well in this
domain. Although most cascade-correlation networks did recruit new units, some
were able to acquire mature seriation abilities without the need for added hidden
units. In these cases qualitative changes in behaviour arise from small continuous
changes in the underlying mechanisms of information processing (McClelland,
1995; van Geert, 1991; van der Maas & Molenaar, 1992). These results suggest
that there may be somewhat different developmental paths underlying the same
behavioural development. Some children may acquire new structures whereas
others may develop without the addition of new structures.

2. Psychology of Seriation

Piagetian theory is perhaps the quintessential stage theory of cognitive development,
and Piaget’s account of seriation development is no exception. According to Piaget,
stages are periods of consistent behaviour reflecting qualitatively different modes
of information processing (see Flavell (1963) for an excellent review of Piagetian
theory). Transitions between stages are supposed to be abrupt, occur simulta-
neously across different domains and occur in a fixed and ordered progression. An
assessment of the stage concept against children’s behaviour (Flavell, 1971) and
neural network simulations (Shultz, 1991) suggests that although there is evidence
for notions of qualitative change and ordinal progression, there is little evidence
for abruptness or domain general transitions.

Piaget initiated the study of the development of seriation by presenting children
with a disordered collection of sticks of different lengths and asking them to arrange
the sticks in an ordered series (Inhelder & Piaget, 1969; Piaget, 1965). The results
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Figure 1. Examples of terminal series at various stages.

revealed four different seriation stages, illustrated in Figure 1. Children in the first
stage (circa 4 years old) make no real effort at ordering the sticks and either line
them up in the order they appear or move them about randomly. Children in the
second stage (circa 5 years old) are unable to construct an overall series. However,
these children succeed in combining the sticks in terms of local absolute qualities
such as big or small. This leads to series of uncoordinated pairs (pairs of large and
small elements), uncoordinated triplets (one large, one medium sized, and one
small element), seriation based on the correct alignment of only the tops of the
sticks, roof-top seriation (in which the tops rise and then descend or vice versa)
and correct seriation of the first few elements followed by an inability to continue.
In a third stage (circa 6 years old), the child succeeds in constructing a series, but
only by trial and error. Finally, there is a fourth stage of ‘operational’ seriation
(ctrca 7 years old) in which the child proceeds systematically in constructing the
series by always selecting the shortest (or longest) available stick from among those
not yet sorted and placing it in its appropriate place in the series.

Subsequent psychological research has largely supported Piaget’s four seriation
stages, but has added a number of qualifications and new findings. First, it is clear
that even very young children (e.g. 2 to 4-year-olds) are able to sort small (e.g.
two, three, or four) numbers of objects (Bullock & Gelman, 1977; Kingma, 1984;
Kingma & Roelinga, 1983; Koslowski, 1980; Siegel, 1972). This suggests that
these young children have the ability to seriate but do not apply this ability to
entire, larger series until later in development. Second, seriation is aided by
increasing the size differences between the items (Elkind, 1964; Kingma, 1984;
Kingma & Roelinga, 1983). This underscores perceptual characteristics of seriation
that may not be easily captured by symbolic operations. Third, there is considerable
variation in sorting strategies at all four stages and even within individual children
(Gilliéron, 1976, 1977; Kingma, 1982, 1983a; Lautrey er al., 1986; Moore,
1979; Pierre-Puységure et al., 1988; Retschitzki, 1978; Young, 1976). Finally, the
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transitions between seriation stages are gradual, rather than sudden and decisive
(Kingma, 1983b).

Thus, to be faithful to the psychological literature, seriation models need to
capture the following six phenomena: periods of constant stage-like behaviour;
correct ordering of the four seriation stages; transition between successive stages;
better performance with increasing size differences; variation in emergent strategies;
and gradual as opposed to sudden stage transitions.

Most existing symbolic computational models of seriation have only managed
to capture the first phenomenon, periods of constant stage-like behaviour (Baylor
et al., 1973; Frey, 1964; Nguyen-Xuan, 1976; Retschitzki, 1978; Young, 1976).
Typically, these symbolic models employ if-then rules, which have conditions and
actions referring to particular objects and events in the world. For example, a rule
implementing the systematic, operational sorting of stage 4 might specify that,
faced with an unordered array of sticks and the goal of sorting them from small to
large, one should move the smallest out-of-order stick to its correct position (the
left-most position that contains an out-of-order stick). One rule-based model did
learn to sort by modifying its own rules, but was not evaluated for psychological
realism (Anzai, 1987). The contribution of the cascade-correlation models
described in this article is that they manage to capture all six of the psychological
phenomena listed here.

3. The Cascade-correlation Algorithm

Our simulations use cascade-correlation, a generative feedforward neural network
algorithm developed by Fahlman and Lebiere (1990). Cascade-correlation learns
to approximate a response function (defined by a set of input and output patterns)
by recruiting new hidden units into the network and by modifying the connection
weights in the network. In the interset of brevity we describe only the bare essentials
of cascade-correlation. More detailed presentations and derivations of the algorithm
can be found elsewhere (e.g. Fahlman, 1988; Fahlman & Lebiere, 1990; Hoehfeld
& Fahlman, 1992; Mareschal, 1992; Shultz er al., 1994b).

3.1. Network Construction

Cascade-correlation begins with the minimal network topology of a single input
layer fully connected to a single output layer (Figure 2(a)). The input layer includes
a compulsory bias unit with an activation clamped at 1.0. A weight-adjusting
algorithm then modifies the connection weights between units such that when a
pattern is imposed across the input units the corresponding pattern produced on
the output units will more closely match that specified by the environment. This
is achieved by minimizing an error function E:

E= Z Z (Aop - Top)z 1)
o P

where o indexes the output units, p indexes the input—output pattern pairs, A4 is
the actual activation of an output unit and T is the target activation for that output
unit. The network is effectively learning to approximate a function defined by the
set of input/output pairs.

Learning occurs in batch mode; that is, the weights are updated after a single
blocked presentation of the complete set of training instances. An epoch consists
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Figure 2. Learning in cascade-correlation. Dashed lines represent modifiable con-

nections whereas solid lines represent frozen connections. (a) Initial output training

phase; (b) input (candidate) training phase; (c) subsequent output training phase;
(d) output training phase with two hidden units installed.

of one such complete presentation. Although batch learning is sometimes regarded
as psychologically suspect, there is considerable psychological (Oden, 1987) and
physiological (Dudai, 1989; Squire, 1987) evidence for it. Moreover, it is worth
noting that even in batch learning outputs are compared to their targets indepen-
dently of other patterns. Thus, the system never has to process more than one
pattern at a time. It must, however, keep a running sum of the error that is
eventually used to adjust the weights.

Cascade-correlation changes from adjusting the output weights to recruiting a
hidden unit in either of the following two cases: (1) the learning algorithm ceases
to improve the fit between the outputs produced and the desired target outputs by
more than a critical amount for at least a small specified number of epochs; or (2)
the learning exceeds a specified number of epochs without having reached victory.
Victory is declared when activations on all output units are within a threshold (0.4
in our simulations) of their target values on all training patterns.

To build the new hidden unit, a number of candidate units are initially
connected with random modifiable weights to all units in the network other than
the output units (Figure 2(b)). The weights to the candidate units are then modified
to maximize the absolute value of a scaled covariance (across the training set) of
the activation of the candidate unit and the residual error of the outputs. The
covariance function takes the form:

_ 2l Xy (= <)) (e — <))

C(LV’I) Zop (eop - <eo >)2

2

where the index p runs across patterns, the index o runs across output units, e is



LE]

Seriation: A Connectionist Approach 155

the error, 4 is the activation of a candidate unit and angled brackets signify the
mean value across all training examples.

Again, when either these covariances are no longer significantly improving or
the training process has exceeded a prespecified number of epochs, the recruitment
phase is terminated. The candidate unit with the highest absolute covariance has
its input weights frozen and is connected to all the output units. The remaining
candidate units are discarded (Figure 2(c, d)).

3.2. Weight Adjustment

Cascade-correlation uses the quickprop learning algorithm to modify the weights
(Fahlman, 1988; Fahlman & Lebiere, 1990; Hoehfeld & Fahlman, 1992). The
weight update rules are:

ws — w, = &f "(w,) ifw, —w, =0

R

27 ) — ()

w; — w, = p(w, — w,) otherwise

f(w,)
(@) —f(w2)

(w, — w,) if w, —w,; # 0 and <u

3)

where the indices 1, 2 and 3 refer to three consecutive time steps, ¢ controls the
amount of gradient descent, u controls the maximum step size and f' is the
derivative of error with respect to weights.

3.3. The Psychology of Cascade-correlation

Although the cascade-correlation learning algorithm reflects some of what is known
about neural functioning, it is not intended as a neural-level description of learning
and development. Rather, it is an information processing model of performance
that leaves open the question of its exact neural implementation. Note, however,
that both synaptogenesis and degeneration are an integral part of brain development
(Changeux & Dehaene, 1989; Dawson & Fischer, 1994). Synaptogenesis and
dendritic growth are far more prevalent in the brain than commonly believed and
have been proposed as neural bases for constructivist development (Quartz &
Sejnowski, 1997). In this section, we focus on making explicit the nature of the
information processing in cascade-correlation and its implications for cognitive
development.

As with other connectionist models, learning in these networks is driven by
the identification of associations in the environment. Internal representations of
environmental features emerge gradually. The representations are explicitly
encoded in the form of a pattern of activation across the hidden units and implicitly
encoded in the associative weights linking the units together. Knowledge of the
world is gradually stored in the connection weights (McClelland, 1995; Plunkett
& Sinha, 1993). Beyond the ability to develop representations, cascade-correlation
provides an alternative tool for addressing developmental questions. Its ability to
recruit hidden units and thus increase its representational power (Baum, 1989;
Cybenko, 1989; Mareschal & Shultz, 1996; Quartz, 1993) gives it the power to
tackle a wider range of problems than static networks are able to.

There is an ongoing debate in cognitive development concerning the nature of
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the transitions that underlie development (Keil, 1990). On the one hand, people
sympathetic to Piaget’s work have suggested that development coincides with
dramatic transitions in the computational power of the child’s cognitive apparatus
(e.g. Case, 1985). They see the child as developing through successive stages of
qualitatively different modes of processing where each successive mode is more
powerful than the other. Observed discontinuities in behaviour (stages of perfor-
mance) are interpreted as arising from qualitatively different modes of processing.
On the other hand, others have argued that there is no qualitative change in the
mind’s computational power during development; the child simply acquires more
knowledge. Development also involves restructuring, but from continuous, small,
quantitative changes in the child’s knowledge (e.g. Chi, 1978). Discontinuities in
behaviour are thought to arise naturally from dynamic processes involving only
microscopic developmental changes (van Geert, 1991; van der Maas & Molenaar,
1992).

Cascade-correlation provides a way of modelling both types of transitions in
development. As with static networks, stage transitions can occur through weight
changes (McClelland, 1989; Schmidt & Shultz, 1991). Stage transitions can also
occur with the introduction of new hidden units (Shultz, 1991; Shultz & Schmidt,
1991). It is important to distinguish qualitative changes in behaviour from qualita-
tive changes in processing. Qualitative changes in behaviour may or may not reflect
a qualitative change in processing. Moreover, a qualitative increase in computational
power does not necessarily imply a qualitative change in behaviour. It is possible
to increase computational power without changing external behaviour. Indeed, the
system may be performing correctly but inefliciently. As a result, processing may
undergo restructuring to improve computational efficiency while leaving external
behaviour unchanged.

In cascade-correlation, learning that results in only the modification of weights
corresponds to a quantitative change in knowledge. The network is accumulating
more information about the world and integrating that information with what it
already knows. Learning that requires the recruitment of a hidden unit corresponds
to a qualitative change in processing. The resulting network is computationally
more powerful and can learn more sophisticated relationships than previously. For
example, adding the first hidden unit results in a change from a perceptron, a
network incapable of computing XOR, to a multilayer network, which can compute
XOR. However, this does not imply that behaviour will necessarily change (espe-
cially if the network is already performing at a reasonable level).

Cascade-correlation provides a means of implementing a constructivist learning
mechanism (Mareschal & Shultz, 1996; Quartz, 1993). Subsequent stages of
performance benefit from an increase in the representational power of the network.
Moreover, we can make explicit statements about the type of restructuring that
occurs and the pressures that precipitate the restructuring. Qualitative changes in
processing (hidden unit recruitment) occur in one of two cases (see Section 3.1).
The first is when the network is no longer improving its performance. This
corresponds to a situation in which the task requirements are too complex for the
child’s current computational prowess. The second is when output learning has
gone on for too long. This corresponds to a situation in which the child’s
performance is inefficient. In this case, resources are added to provide a means of
re-representing the already acquired domain knowledge and thus accelerate learning
and increase efficiency (cf. Karmiloff-Smith’s (1992) representational redescription
hypothesis).
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Moreover, installing hidden units in a cascade, where all subsequent units
receive input from every previous unit in the network, ensures that there is a
hierarchical integration of knowledge throughout development (Boden, 1982).
New knowledge structures build on and incorporate old knowledge structures.

Although cascade-correlation provides a means of increasing representational
power through learning, it is still possible for learning and development to occur
without the need to recruit hidden units. As will be seen, this is the case for
networks learning to solve seriation problems.

4. Simulation Design

The models presented here focus on the seriation of six-element series in order to
keep the number of possible arrangements of the elements within reasonable
bounds. Six is fewer than the 10 used by Piaget (Inhelder & Piaget, 1969) but
more than the four used in abbreviated tasks (Koslowski, 1980; Siegel, 1972). It is
a sufficiently small number to be accessible to young children, but still large enough
to remain taxing for older children, and has been used in recent seriation studies
(Kingma, 1982, 1983a, 1984; Timmons & Smothergill, 1975).

4.1. Architectural Design

The model is to be conceived of as a specialized system dedicated to processing
serial order information. The system receives information about the present state
of the series, processes this information and outputs a move. A move is defined as
the identification of a stick and of a position to which that stick should be moved.
Moves are not executed by the network, but by auxiliary software. As in the
production system models of seriation (Baylor ez al., 1973; Young, 1976), seriation
is composed of the serial juxtaposition of these independent moves.

To implement parallel processing, the seriation system is made up of two distinct
modules, each processing the same input array but responding independently of
the other (Figure 3). One module computes which stick should be moved. A second

Which Output Units Where Output Units

OOO??O ?OOOOO

—0O

27991

Array Input Units

Figure 3. Schematic representation of the composite seriation network. The which
module processes information independently from the where module. Here, the
which network has two hidden units and the where network has one hidden unit.
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module computes where a stick needs to be moved in order to extend the current
series. Each component is computed independently of the other and gives partial
information about the proper move to make. Because the two modules are trained
independently, behavioural development of the whole can be attributed to the
developing interaction of the two modules. Pilot simulations with non-modular
networks failed both to learn seriation and to capture psychological regularities
(Mareschal, 1992). The success of the modular approach is due to better functional
decomposition (i.e. the elementary components of a complex function tend to be
easier to learn than the complex function itself) and to increased generalizability
of the function implemented by the networks (Dodd, 1992).

This modularization of the task was based on information processing considera-
tions. Components computed in parallel by separate modules must be: indepen-
dently computable; and necessary for completion of a sort. In the same way that
form and positional object information are known to be processed separately in
the visual cortex (Ungerleider & Mishkin, 1982), it is plausible to assume that
where order breaks down in a series (based on the external form of the array) is
computed separately from which element should be moved (based on the position
of the element in the array). Admittedly there is not yet any direct evidence for a
separation of which and where information in processing of seriation. Thus, the
modularization of the seriation task constitutes a strong prediction of the model.
Present support for modularization comes both from the model’s success at
capturing the six key seriation phenomena and from a new study on children’s
seriation errors (Mareschal & Shultz, submitted). Although modularization was
hardwired in these models, such processing separations can arise as a natural part
of learning in a system in which subnetworks compete during learning (Jacobs
et al., 1991).

The which and where modules are separate cascade-correlation networks that
can develop at different rates. During the recruitment phase, the model’s output
does not change while candidate hidden units are being trained. This is not meant
to imply that the network has entered some sort of hibernation phase in which no
responses are made. Indeed, even the input training mechanism requires that
activation be fed through to the outputs in order for the candidate unit activations
to be correlated with residual error at the outputs. However, during the input
training phase, output activations for a particular input pattern never change
because the weights to the output units are frozen. These weights are frozen
because the algorithm judges that no further improvement could be achieved
through the modification of the output weights given the current architecture. In
effect, performance has reached an asymptote. Thus, when a module is in the
input training phase, its response is given by the last epoch of the previous output
phase. If one modules reaches victory before the other, its weights are frozen until
the other module completes training.

4.2. Testing the Network

Sequential seriation is tested by presenting a standard disordered array to the
network. The move output by the network is carried out by moving the selected
stick and adjusting the others in order to fill the empty slots. The resulting array is
then cycled back as input to the network. At each such episode, the resulting array
is recorded. The cycling process is terminated when an array has appeared twice
because this signifies the presence of a loop (because the networks are determin-
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istic). The collection of recorded arrays constitutes a trace of a network’s seriation
of the initial array. Stage performance is then diagnosed from this trace of arrays.
The initial array used is {5241 6 3}, where the numbers represent the rank sizes
of each element in the array. This is the array suggested for testing by Retschitzki
(1978, p. 14) because it is maximally disordered from both decreasing and
increasing series.

Stage diagnosis requires information concerning both the final state of the array
and the method used to arrive at that final array. Unfortunately, determining which
stage a seriator belongs to is not without controversy, even with children (Kingma,
1982). In particular, diagnostic techniques for distinguishing between third and
fourth stage seriators, that is, between empirical and operational seriators, are not
unanimously agreed upon. The Genevan school has tended to use a variety of
different criteria, such as whether the child used the operational procedure, whether
the series was anticipated (as tested by a preliminary drawing task), whether the
child could insert additional sticks into the series, or whether there were no or very
few self-corrections (e.g. Gilliéron, 1977; Lautrey et al., 1986; Pierre-Puységure
et al., 1988; Retschitzki, 1978). Most Anglo-Saxon researchers have relied on a
‘results only’ or terminal series criterion, thereby collapsing the third and fourth
stages into a single one (e.g. (Baylor er al., 1973; Elkind, 1964; Moore, 1979;
Young, 1976).

Throughout the simulations in this study, stages 1 and 2 are diagnosed as
described by Piaget. Examples of terminal series are illustrated in Figure 1. Series
of uncoordinated pairs (one small, then one large element), uncoordinated triplets
(one small, one medium sized and one large element), roof-top seriation (in which
the tops rise for three elements and then descend for the next three, or vice versa)
and correct seriation of the first five elements followed by an inability to finish are
coded as stage 2 behaviour. Any other behaviour not resulting in an ordered series
is diagnosed as stage 1.

To distinguish between operational and empirical seriators (stages 4 and 3,
respectively), both the procedure used and the number of self-correction criteria
are applied simultaneously. Moreover, because the network is forced to make a
move even when the presented array is correctly ordered, two different responses
are taken to signify that the network has finished sorting: either the network enters
a cycle of selecting a stick and putting it back in the same place, or the network
enters a cycle of selecting a stick and moving it over one position, only to reverse
that decision on the following move. Under these conditions, a network is classified
as performing stage 4 seriation if it correctly constructs a series according to the
operational procedure with at most one error from which it continues using the
same operational procedure, or if it seriates in the same or fewer number of moves
than required by the operational method. If it constructs a completed series in any
other way, it is classified as stage 3. This epoch-by-epoch diagnosis of behaviour is
carried out automatically by software designed to implement these criteria. The
resulting traces of stages produced by the diagnostic procedure are then plotted
(see Figures 4 and 5 and the Appendix).

Finally, stages are periods of constant behaviour that extend over time (Flavell,
1971; Shultz, 1991). The procedures above describe how behaviours at every
epoch are diagnosed as characteristic of one stage or another. However, for
networks to be diagnosed as passing through a sequence of behavioural stages, the
behaviours must persist over a number of consecutive epochs. In our simulations,
a developmental stage is scored as present if the behaviour characteristic of a stage
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lasts for at least four consecutive epochs. Stage diagnosis is applied to the epoch-
by-epoch diagnostic trace.

4.3. The Models

4.3.1. Parameters. All parameters are set to their default values provided in
Fahlman’s (5 November 1991) version of cascade-correlation. The value of u is
set to 2.0 for the training of both output units and candidate hidden units. The
value of ¢ is set to 0.35 and 1.0 for the training of output units and candidate
hidden units, respectively. The input units have linear activation functions, whereas
the output units and the hidden and candidate units have sigmoid activation
functions with activations ranging from — 0.5 to + 0.5

4.3.2. Encoding. The input coding represents six elements varying in size by a
constant amount. A bank of six input units is used to code the arrays. The position
of the units relative to the others represents the position of the elements in the
array. The activation values of elements in the array are increased by » times a
constant amount, where # is the rank of each element in the array. All arrays use
an input of 1.0 to code the smallest element. The incremental value between
successive elements in the array is 1.0, 0.5, or 0.25, depending on the model
version.

The outputs also employ a band of six units, but with sigmoid activation
functions. The which network has the task of identifying the stick to be moved.
This is done by setting a target value of + 0.5 for the unit spatially coding the
position of the to-be-moved stick. Each of the other output units has —0.5 as a
target value. In the where network, the unit spatially representing the position to
which a stick should be moved has a target value of + 0.5, whereas all other output
units have a target value of — 0.5. The response of each module is computed by
selecting the unit with the highest activation. This selection mechanism could be
implemented using a winner-take-all constant satisfaction network (Feldman &
Ballard, 1982).

Note that the spatial left-to-right representation of stick position is something
that the networks have to learn. Naive networks with random initial weights do
not, of course, share our notions of left-to-right spatial representation.

4.3.3. The training signal. The networks received which and where feedback on a
small subset of unrelated, randomly elected sorting moves. As noted earlier, this
information is consistent with that which would be obtained by watching someone
else make an appropriate move. The idea is that the child observes a disordered
array, predicts a response and observes a target response made by another person.
This has been found to be a particularly effective means of teaching seriation skills
to 2- to 5-year-old children (Bergan & Jeska, 1980).

It is not necessary to witness a complete sequence of sorting moves. Again,
justification for this training procedure stems from its minimality (children to not
have to witness a complete sorting sequence, but can learn from individual sorting
moves) and its consistency with Vygotsky’s (1978) cognitive scaffolding hypothesis,
according to which the child learns from social interaction. By analogy, the networks
are provided with a disordered array, predict a sorting move, and then receive a
target move consistent with Piaget’s operational procedure.

Little is known about the child’s exact learning environment. This is partly
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because of a lack of naturalistic observations of seriation learning and partly
because the uptake environment (what counts as a possible learning experience)
may differ significantly from the objective environment. That is, the child’s learning
may focus on certain aspects of the environment that are not directly obvious to
an external observer. Cognitive biases such as a preference to attend to adult
behaviours strongly shape the nature of the child’s learning experience (Donaldson,
1986; Rogoff, 1990; Vygotsky, 1978). Additional biases in the construction of the
network training set (discussed in more detail later) reflect assumptions built into
the model about other cognitive biases that may underlie children’s learning. One
advantage of computational modelling is that it provides a means of testing the
role of various possible biases in learning. The target signals provided to our
networks are designed to mimic the conditions under which children learn and the
type of information that they might have access to.

The network modules are trained to respond as dictated by Piaget’s operational
procedure, i.e. to move the smallest out-of-order stick to its correct place. The
operational procedure reflects adult-level competence from the social environment
in which the child is immersed. Note that this is the only target behaviour. Any
other network behaviours emerge indirectly through development and are not
trained on explicitly. Aside from adopting this operational rule for training, the
simulations are not intended to implement Piaget’s theory of seriation. The training
process is presented in more detail in Section 5.

4.3.4. The training environment. In a pilot study, each network was trained on 100
randomly selected input/output pairs from the 720 possible six-element arrays
(Mareschal, 1992). An input/output pair consists of a specific array configuration
as input and as output the stick to move and the position to move it to as dictated
by Piaget’s operational procedure described in Section 2. For example, given the
array {135 624}, the composite model should conclude that the stick in the fifth
position needs to be moved to the second position resulting in the array {1235 6 4}.

The networks in these pilot simulations failed to develop further than stage 2
performance. A closer look at the behaviour of these pilot networks revealed that
they performed very well on a majority of input arrays, but failed consistently on
others. They failed to identify the correct move to make significantly more often if
presented with a low disorder array (i.e. a series that was almost completely
finished). On the other hand, if the array was very disordered there were fewer if
any errors.

In order to induce a higher level of performance, the training set was changed
so as to increase the proportion of less disordered patterns. Fifty patterns are
selected from those with a disorder (as measured by the sum-of-squares distance
from the ordered array) less than or equal to 20, and 50 are selected from those
with a disorder greater than 20. The natural, unbiased population of possible arrays
of six items consists of 569 (79%) high disorder patterns and 151 (21%) low
disorder patterns.’

This bias corresponds to the psychological assumption that a greater number
of the events from which the child learns to seriate involve situations in which
series are close to being completed. An example scenario may be one in which the
young child watches an older child or adult playing with or manipulating different
size dolls. When the dolls are completely disordered, the child is less likely to
recognize them as a possible series and, hence, does not capitalize on this event to
learn about serial order relations. On the other hand, if the dolls are largely ordered,
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the same child is more likely to conceive them as (nearly) a series, and consequently
can capitalize on this event to learn about serial order relations. The basic idea is
that low-disorder arrays become meaningful before high-disorder arrays because
the application of a serial order schema is more readily primed by the appearance
of an array similar to the ordered target array. In this context, it is noteworthy that
younger children are less likely to apply seriation schemes spontaneously than
older, more experienced children are (Liben, 1975).

Connectionist learning algorithms have a tendency to over-fit the training set if
trained too deeply (Moody, 1992). Thus, early training is often of more interest,
particularly for developmental psychology. Only the first 150 epochs of training
are reported for stage diagnosis here because networks have all reached their
optimal stage performance by then. Behaviour after 150 epochs may occasionally
regress to a lower stage or change to another behaviour characteristic of the same
stage. These later changes are not discussed because they reflect an artifact of the
training process that would not apply to learning in children. Indeed, over-fitting
of a training set can only happen if the test and training instances are kept
independent, i.e. if no learning occurs during testing. In children’s seriation, every
instance is potentially a learning instance because the child can see whether the
move increases order.

5. Simulation Results: Size Increments and Three-element Subset
Sorting

We report three simulations, one on variation in size increments, another with
training on smaller, three-element sorting subtasks and a third on developmental
changes in the effects of array disorder. The first two of these simulations are
reported in this section. Before turning to the details of the simulations, we will
first describe different types of network behaviours observed. In the interest of
clarity, we begin with a short preamble illustrating the types of network behaviours
observed across different conditions before reporting the actual results obtained in
each condition.

5.1. Characteristic Network Behaviours

This section focuses on individual network behaviours observed, whereas the
subsequent sections report the performance over groups of networks. Readers are
encouraged to keep the individual behaviours in mind when evaluating the group
performance.

Figure 4 illustrates the epoch-by-epoch developmental profile of a single net-
work. Each diamond corresponds to performance at one epoch. It is worth noting
that, although there is a general increase in stage performance with epoch, there is
considerable variability in the type of behaviour a network shows over consecutive
epochs (i.e. over consecutive tests). As discussed earlier, a network must show four
consecutive epochs of the same stage behaviour to be diagnosed as passing through
that developmental stage.

Figure 5 shows examples of different patterns of behavioural development that
can be found in the different simulation conditions. These figures depict perfor-
mance at a coarser scale than that shown in Figure 4. It is no longer possible to
distinguish epoch-by-epoch behaviour. However, it is important to remember that
only one characteristic behaviour can be diagnosed at each epoch. Networks
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Figure 4. Epoch-by-epoch diagnosis of behaviour. Each diamond marks the net-
work’s performance at one epoch.

depicted in Figure 5(a—c) are all networks that learn to sort the test array correctly
(i.e. they can produce the appropriate fully sorted array when presented with the
initial test array)—though not necessarily according to the Piagetian dictum.
Networks in Figure 5(d, €) never learn to sort correctly the test array. We now
turn to describing network performance under different training conditions.

5.1.1. The canonical condition. This set of simulations uses the input values 1,
1.5, 2, 2.5, 3 and 3.5. There are 20 networks. Each network is trained on its own
randomly selected set of patterns as described in Section 4.3.3. The mean number
of epochs to victory for the which networks is 353, with a standard deviation of
112. The median number of hidden units recruited is two. The mean number of
epochs to victory for the where network is 183, with a standard deviation of 55.
The median number of hidden units recruited is one.

The percentage of various stage progressions for each of the several conditions
is presented in Table 1. Although all networks successfully learn the training set,
not all networks go on to show the appropriate sorting behaviours on the novel
test case. As discussed in Section 4.2, networks must show at least four consecutive
epochs of a same stage behaviour to be counted as having passed through that
stage. As shown in the second column of Table I, there is moderate success at
producing the appropriate stage development in this condition. Fifty-five per cent
of the networks develop the ability to order the array (i.e. to produce the correct
final array). A little over half of those (30%) show stage 3 performance, whereas
25% do not show any stage 3 performance.

5.1.2. The large increment condition. In this condition, the step size between
successive elements is increased in order to enhance successful seriating. This set
of simulations uses input values 1, 2, 3, 4, 5 and 6. There are 20 networks. Each
network is trained on its own randomly generated patterns. The mean number of
epochs to victory for the which networks is 311, with a standard deviation of 106.
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Figure 5. Examples of network stage development in different conditions. (a)
1234 development; (b) 124 development; (c) 12 3 development; (d) 12 develop-
ment; (e) stage 1 development only.

The median number of hidden units recruited is two. The mean number of epochs
to victory for the where network is 80, with a standard deviation of 35. The median
number of hidden units recruited is zero.

As shown in the first column of Table I, performance on the seriation task
definitely improves compared to the canonical condition. Eighty-five per cent of
networks learn to sort the array correctly. Moreover, as predicted by Piaget (1965),
this improvement is marked by an absence of stage 3 performance. In fact, only
two of the 17 networks that learn to seriate ever show a consistent period of
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Table 1. Percentage of networks showing specified developmental progressions

(n=20)
Simulation

Stage progression Canonical Large increment Small increment Internal subset
1234 5 10 0 30
1324 0 5 0 0
123 25 0 10 15
124 20 70 5 15
134 0 0 0 30
14 5 0 0 5
13 0 0 0 5
12 45 15 75 0
1 0 0 10 0
Percentage learning

to order an array 55 85 15 100

empirical seriation. Of the other 15 networks, 11 (73%) show some intermittent
stage 3 performance but never reach the criterion of four successive epochs of stage
3 performance. There is some stage 3 behaviour, but it appears to be randomly
spread across a large number of epochs and always overlaps with other stages. This
suggests that these networks never go through a stage of trial and error, and either
fail to generate a global series or move directly from partial sorts to systematic
operational seriation.

5.1.3. The small increment condition. In this condition, step size is decreased in
order to investigate whether the converse relation holds, i.e. a decrease in seriation
performance when the step size is too small. This simulation uses input values 1,
1.25, 1.5, 1.75, 2 and 2.25. There are 20 networks, each trained on its own
randomly generated set of patterns. The mean number of epochs to victory for the
which networks is 531, with a standard deviation of 150. The median number of
hidden units recruited is three. The mean number of epochs to victory for the
where network is 286, with a standard deviation of 21. The median number of
hidden units recruited is 1.5.%

The third column of Table I shows a reduction in performance as compared to
the canonical condition. Only three networks (15%) are ever able to construct a
completed series. Most networks (15) remain at a stage 2 level of uncoordinated
seriation.

5.2. Simulation 2: Internal Subset Seriation’

The less than optimal performance in the previous simulations suggests that a key
piece of the seriation puzzle is missing. One clue is that even very young children
can seriate a small number of elements (e.g. three elements). A second clue is
Piaget’s (1965) suggestion that one of the causes of stage 2 seriation is that children
are unable to extend order on small sets to the entire series, relying on local size
comparisons. Together, these psychological results suggest that operational seria-
tion on a subset of the elements in a larger array may be a source of behaviour
diagnosed as stage 3 (empirical seriation). Phrasing this in terms of the cognitive
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bias discussion in Section 4.3.3, these findings suggest that children have a cognitive
bias towards recognizing and learning from the sorting of small sets of elements
rather than large sets of elements. It is also possible that small arrays are more
commonly available in the child’s environment than are large arrays.

To test this hypothesis, the training set in the large increment condition is
modified to include three-element series. In addition to the original 50 patterns
drawn from the low disorder category and 50 drawn from the high disorder
category, there are 20 patterns selected randomly from the 24 possible three-
element series (i.e. six orders by four positions). These series are created using the
integers 1, 2 and 3 to code the elements and 0 to code the resulting empty spaces
in the six-element arrays. There are never any spaces between elements, and any
ordering occurs solely within the limits of the series. For example, given the array
{002130} the correct operational move is to move element 1 to the position
occupied by element 2. There are 20 such networks. The mean number of epochs
to victory for the which networks is 614, with a standard deviation of 126. The
median number of hidden units recruited is five. The mean number of epochs to
victory for the where network is 252, with a standard deviation of 94. The median
number of hidden units recruited is one.

Stage diagnosis is displayed graphically in the Appendix for all 20 networks. In
this set of simulations all networks exhibit behaviour in all four of the stages, and
stages are spread over a larger time span. All networks are able to produce the
corrected final (sorted) array. There is much more of a mixture of different stages.
Nevertheless, six (30%) of 20 networks (networks 3, 7, 9, 15, 16 and 19) progress
through stages 1, 2, 3 and 4. There is often a large amount of overlap between
stages, suggesting that for much of the developmental period no stage is uniquely
characteristic of the network’s behaviour. Transitions between stages are soft, with
stages merging gradually into one another. Note also that network 16 regresses to
stage 3 after continued training.

Three (15%) of 20 networks (networks 1, 10 and 17) progress through stages
1, 2 and 4. These networks show stage 3 behaviour, but too inconsistently to meet
the stage requirements of four consecutive epochs at the same level. Three (15%)
of 20 networks (networks 8, 14 and 18) progress through stages 1, 2 and 3. These
networks sometimes show an early but brief stint of stage 4 behaviour followed by
regression either to stage 3 or to lower levels. This suggests that over-training may
have occurred. Network 14 begins with a brief period of stage 2 behaviour that
precedes the 1, 2, 3 progression. This premature stage 2 behaviour is due to the
initial random seeding of the weights in the network. Six (30%) of 20 networks
(networks 4, 5, 6, 12, 13 and 20) progress through stages 1, 3 and 4. Again, there
is evidence of stage 2 behaviour in these networks, but not enough to constitute a
stage according to our criterion. Note that network 6 regresses to stage 3 with
continued training. The remaining two (10%) of 20 networks (networks 2 and 11)
show only two of the four possible stages. That is not to say that the other stages
are totally absent, but only that they are very briefly present and always adjacent
to another form of behaviour.

5.3. Discussion of Simulation Results

Table I lists the percentages of networks exhibiting the different developmental
progressions found in the four simulations (i.e. showing at least four consecutive
epochs of same stage behaviours). The essential shortcoming of the large increment



Seriation: A Connectionist Approach 167

model is an absence of empirical (stage 3) seriation behaviour. The distribution of
networks in the canonical conditions confirms that empirical seriation (stage 3
performance) can be induced by decreasing the size difference between successive
elements. Moreover, the distribution of networks in the small increment conditions
shows that deterioration continues as step size decreases. These results suggest that
modular cascade-correlation networks respond to decreasing step sizes in seriation
tasks as children in the same way that children do.

Results for the internal subset simulation show that empirical seriation can be
induced by the application of a systematic procedure (in this case the operational
procedure) to a subset of the elements in the series. Indeed, having the ability to
perceive and systematically order internal subsets within the full array of available
elements could well be one of the sources of empirical seriation in children. As
noted in Section 2, young children can seriate three elements and yet fail to extend
this procedure to larger arrays.

Network stage transitions are soft. Transitions consist of the slow and gradual
merging of one style of behaviour into another. One type of behaviour is often
accompanied by the presence of other types of behaviours. During the development
period, there are few regressions to consistent lower stage behaviour, although
isolated instances of regression are common. Similar observations have been
reported in children by Kingma (1983b), who found that in a longitudinal study
of different seriation tasks the majority showed a gradual development of seriating
abilities as opposed to all-or-none acquisition.

Network behaviour is flexible. As noted in Section 2, children show considerable
variability in seriation strategies within a stage. Even stage 4 seriators use different
strategies (Gilliéron, 1977; Lautrey er al., 1986; Moore, 1979; Pierre-Puységure
et al., 1988; Retschitzki, 1978). Random selection strategies and partial seriation
are present in children of all ages, even those well into the operational stage
(Kingma, 1982). The only way that previous models have addressed this issue is
to hand-tailor a distinct model for every child (e.g. Young, 1976). However, once
a production system is designed to mimic a stage behaviour, it does not produce
any other behaviours characteristic of that stage.

The networks in the internal seriation condition show abundant variation in
seriating behaviours both between networks and within networks from a longi-
tudinal perspective. For example, recall that there are four ways to exhibit stage
2 behaviour (Figure 1). The median number of different stage 2 diagnoses
displayed by the networks is two. Ninety per cent of the 20 networks at some
epoch produce uncoordinated pairs, 30% produce uncoordinated triplets, 15%
produce a roof-top series and 55% produce a partial ordering of the first four
sticks in the series.

Stage 4 performance also shows between and within network variability in
behaviours. The median number of different stage 4 diagnoses is 2.5. With a
limited number of elements in the test series (six), it is difficult to tease apart the
different seriating strategies because they often predict the same moves. However,
all of the 20 networks deviate from pure operational seriation at some time during
stage 4. The deviations arise from the execution of an apparently random move
that increases the total number of moves required to complete the sort. In fact,
only 25% of networks never seriate operationally without any deviations. Thus,
even when networks seriate according to stage 4, they do not always follow the
dictated strategy precisely and can include an apparently random move. The nature
of that random move gives rise to different observed behaviours. Random selection
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is observed in children of all ages, even those well into the fourth stage of seriation
(Kingma, 1982).

It is important to note that networks can show more than one type of within
stage behaviour because they are constantly adapting to the environment. Thus,
over subsequent epochs the network’s experience (and hence its knowledge) differs.
Progressions and regressions occur within a stage because of continuous small
changes in the connection weights. What is especially interesting is that the
networks were only trained on a selection of moves dictated by the operational
method. No network was ever trained on any of the various stage 2, stage 3 and
alternative stage 4 behaviours that they eventually showed. The individual differ-
ences in terminal strategies reflect the individual learning experiences of each
network. The addition of hidden units did not necessarily correspond to stage
transition. The role of hidden units is discussed further in the next section.

6. Network Analysis

To get a better idea of how the arrays are processed, connection weight diagrams
were generated at selected epochs. These diagrams provide a visual display of the
sign and strength of the weights in the network. Hence, it is possible to follow the
weight evolution that leads to the particular solution settled on. The analysis
focuses on the internal subset seriation simulation because it produces the largest
proportion of networks progressing through all four stages.

The initial architecture of both the which and the where modules consists of a
bias unit and six other input units and six output units. In the diagrams in Figure
6, the bias unit is labelled 0 and the other input units are labelled 1-6 from left to
right, respectively. The output units are also numbered 1-6 from left to right.
Because the inputs are initially fully connected to the outputs, there are 7 x 6 = 42
connection weights at this point. In Figure 6, a black square represents a negative
weight, whereas a white square represents a positive weight. The relative magnitude
of a weight is represented by the relative size of the side of the corresponding
square, with the size of the side increasing in proportion to the magnitude of the
weight.

As a prelude to the investigation of network structure it is worthwhile pondering
in more detail the nature of the respective subtasks (i.e. identifying a stick and a
destination). Understanding the task requirements simplifies interpretation of
network weights. An output unit in the which module should have a positive
activation if the stick in the input array whose position it is coding is the smallest
stick not yet in order. Otherwise, an output unit should be negative. Thus, an
output unit learns to attend to its corresponding input unit.

In the where module, an output unit coding a position should be positive if all
the previous positions are correctly filled and the position corresponding to that
unit is not correctly filled. Otherwise, an output unit should be negative. Thus, an
output unit learns to attend to its corresponding input unit but also to all of the
input units of lower rank.

In mature networks, one could thus expect to find large weights along the
diagonal of a weight diagram of the which module. In a weight diagram of a mature
where module, there should be large weights not only along the diagonal but also
above the diagonal.

The weight diagrams are remarkably similar in the structure they reveal for
different networks in the internal subset condition. Presumably, macroscopic
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Figure 6. Hinton diagrams of the connections in network 3 of the internal subset
simulation at selected epochs.

differences in diagnostic behaviour hinge on minor differences in weight magni-
tudes. Figure 6 shows the weight diagrams derived from network 3 of the internal
subset simulation (selected because it shows behaviour at all four stages). These
diagrams are representative of those obtained for other networks. The diagrams on
the left of the figure are derived from the which module, whereas those on the right
of the figure are derived from the where module. Successive diagrams are drawn at
epochs 5, 15, 35, 125 and 145 because these coincided with periods of consistent
stage behaviour.
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6.1. The Which Network

Early in the development of the whickh network (epoch 5), the weights still appear
to be quasi-randomly distributed. This is reflected by stage 1 performance. The
network has not yet organized its behaviour sufficiently to order much of a series.

Considerably more structure becomes evident by epoch 15. As a general rule,
development in this set of simulations occurs early in training. Note that all the
connections leading to output unit 1 are negative. The other output units have
small weights of varying sizes everywhere except from the input unit whose position
they are coding, thereby defining a diagonal. Interpreting this is straightforward.
The first stick is never selected to be moved, so all weights into the first output
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unit are negative. For the other output units, the large negative weights along the
diagonal ensure that if anything but a small stick is in that position the unit will
fire negative. Thus, the strategy is to dampen out any signal other than that arising
from the smallest stick.

Also, this network has begun to develop a gradient in the magnitude of the
weights along the diagonal. The diagonal weights get smaller progressing from
output unit 2, to 3, and to 4. This establishes an order in which out-of-place sticks
are identified. For example, the weight to output unit 2 is very large and so only
sticks of small length (less than 2) fail to dampen activation of unit 2. The weight
into output unit 3 is a little smaller so only sticks with length less than 3 fail to
dampen the activation. This ordering breaks down at the longer sticks. This is
consistent with stage 2 behaviour in which the child can correctly apply a procedure
to the initial elements of the series but fails to extend it to the entire series.

By epoch 35, the ordering of weights along the diagonal extends to all of the
outputs units. All the weights from the bias unit except the weight to output unit
3 have been trained to negative values and appear to be tuned to the precarious
balance required for the dampening mechanism to function correctly. The
remaining weights activate the correct output unit, especially if there are bigger
items to the right of the critical position (i.e. no smaller sticks to the right of that
position). Thus, positive weights are required on the right of the diagonal. The
appearance of stage 3 performance therefore coincides with the extension of an
ordering process across the entire array as well as the consolidation of the delicate
threshold mechanism through modifications of the bias weights.

Few changes occur between epochs 35 and 125. The essential difference is a
change of sign in the weight joining the bias unit to the third output unit.
Performance is now diagnosed as stage 4 rather than stage 3. This suggests that
the transition from empirical to operational seriation is due to refinement of



172 D. Mareschal & T. R. Shultz

procedures already present during stage 3 (and in fact partially present during
stage 2) rather than radical structural reorganization. This observation is in
agreement with Koslowski’s (1980) suggestion that the development of children’s
seriating abilities is partially driven by improvement in the precision to which
operations are carried out.

Epoch 145 still corresponds to stage 4 performance but now shows the presence
of a hidden unit (labelled 7). The hidden unit is particularly sensitive to the
presence of anything but a small stick in position 2 as well as to a proper ordering
of the elements in positions 3, 4 and 5. If one of the sticks in these positions is out
of order, the hidden unit dampens the firing of position 6 and enhances activation
in positions 4 or 5. The purpose of this hidden unit is to fine-tune procedures that
have already been in place since at least epoch 35. The hidden unit conveys the
need for added power to extend ordering accurately to the last few elements in the
series. It does not seem to be critical for stage 4 performance and may in fact be
an artifact of the previously described over-training.

6.2. The Where Nerwork

Turning now to the where network, it is again clear that the weights at epoch 5 are
still quasi-randomly distributed. As in the which network, this results in stage 1
performance. By epoch 15, the essential solution structure has begun to appear.
Note that all the weights leading into output unit 6 are negative. This makes sense
because location 6 is never a target of the smallest stick out of order. Once again
the diagonal plays a distinctive role. The weights below the diagonal are all very
small and hence contribute little to computing activation of the output units. The
weights above the diagonal are of moderate to large magnitude as the network
discovers that this task requires an output unit to attend to its corresponding input
unit as well as all the input units of lower ranking positions, but not to the input
units of higher ranking positions.

The weights along the diagonal are positive, with one exception. Hence, any
output unit tends to be positive if there is a large stick in the position coded by
that unit. Keeping in mind that the role of this network is to identify positions to
which small sticks are to be moved, it is easy to understand how the strategy of
positive weights along the diagonal works. If there is a larger stick in the correspond-
ing position, then it is not a small stick and a small stick should be moved there.
Thus, the relevant output unit should fire to signal that a small stick is required.
This part of the weight structure is devoted to identifying positions that could
potentially receive a small stick.

The other half of this network’s task is to verify that all the sticks to the left of
the target position are in order. If they are not in order, then the output unit should
be inhibited from firing because some lower ranking position is required to be filled
prior to this position. This is the role of the negative weights above the diagonal.
At this epoch of stage 2 performance, the weights above the diagonal are all
negative and of the same size or larger than those along the diagonal. Thus, if any
stick larger than the one in the target position should be to the left of that position,
the resulting negative activation exceeds the resulting positive activation and the
corresponding output unit is inhibited. However, this mechanism is not guaranteed
to work if the sticks to the left of the target position are all smaller than the one in
the target position (i.e. the network would tend to identify position 4 in both arrays
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{123564} and {132564}). Interestingly, such mistakes only become possible
when the array exceeds lengths of three or four elements.

By epoch 35, the problem of testing for proper order in the lower ranking
positions is solved by a decreasing gradient in weight magnitudes. Note that
negative weights leading to output units 3 and 4 decrease in magnitude with a
progression from left to right in the input array. A gradient in this direction is
sensitive to ordering by increasing size of the sticks in the array, with any exception
resulting in an excess of negative activation thereby inhibiting the output unit. Unit
5 appears to be dealt with in a different way. In contrast to other units that can
fire positively when presented with different input arrays, this unit should only ever
fire positively when presented with the array {123465}. Because the last two
values (5 and 6) have the smallest proportional increment, they will be the most
difficult to tell apart. In order to resolve the case in which the array is completely
ordered from the case in which the last two values are swapped around, the network
grows moderately large weights from those two input units. The larger weights will
magnify the differences and help distinguish between these two cases. However, it
is most important to magnify that difference when the first four elements are
already sorted. The left to right increasing gradient ensures that the negative
activation entering the unit is a maximum when the four preceding units are
correctly ordered. In this case, only the largest input activation (6) multiplied by
the large positive weight from input 5 will succeed in tipping the balance towards
positive activation. Also, the weight connecting output unit 2 to its corresponding
input unit is now positive so that all weights along the diagonal are positive. The
resulting behaviour is now diagnosed as stage 3.

Once again, only fine-tuning occurs between epoch 35 (stage 3 performance)
and epoch 125 (stage 4 performance). The weights leading from the bias unit have
been tuned to adjust the firing thresholds of the output units. A clear example of
this is found in the weights leading to output unit 1. Notice that the weights leading
to the output from the bias unit and first input unit are of the same magnitude but
of opposite signs. Therefore, when stick 1 is in position 1 the resulting activation
is counterbalanced by that of the bias unit. The remaining weights (with larger
input activations) determine the unit’s activation. Because these are all negative,
the unit fires negatively. If, on the other hand, some other stick is in the first
position, then the resulting activation exceeds that arising from the bias unit and
the corresponding output unit fires positive. No differences appear between epoch
125 and epoch 145. In all networks (and in fact in all simulations), the where
network completed its training before the which network.

6.3. Hidden Units

The weight diagram analyses show how a representation of the task is developed.
Knowledge of what action to carry out is encoded in the connection weights linking
the input and output units. However, no clear functional role is identified for the
hidden units recruited into the network. A further 10 networks were trained in the
internal seriation condition in order to investigate the environmental pressures that
might induce the recruitment of more computational resources into the network.
These networks were only trained for the first 150 epochs used to diagnose
stages. Under these conditions, eight of these 10 networks recruited a which hidden
unit at epochs ranging from 120 to 145 (the other two networks recruited no
hidden unit in the whick module). In the where module, six networks did not recruit
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hidden units whereas the other four recruited a hidden unit at epochs ranging from
144 to 149. In only one network did the recruiting of a hidden unit (a which
hidden unit) correspond to an immediate change in seriation strategy: performance
changed from one type of stage 4 behaviour to another as result of this hidden
unit. No other recruited units produced any immediate diagnosable change in
macroscopic behaviour. That is, there is a qualitative change in computational
power, but no qualitative change in observable behaviour.

The hidden units are introduced at a point in training where error is already
low and is approaching asymptote. However, even at this point residual error
remains. The added hidden units do increase the rate at which this residual error
is reduced. This becomes clear when examining the relative error drop-off rates for
the 10 epochs prior to the introduction of a hidden unit and comparing it to the
rate for the 10 epochs immediately after the introduction of the hidden unit. The
average post-unit drop-off rate in the which module is 4.42 times larger than the
pre-unit drop-off rate. The effect is less pronounced but similar in the where
module, where the average post-unit drop-off rate is 1.37 times larger than the
average pre-unit drop-off rate.

6.4. Summary of Network Analyses

This analysis reveals that networks use local size comparisons between sticks. The
extent to which these comparisons are extended throughout the whole array
depends on the developmental state of the networks. Systematic comparisons are
built up progressively from the smaller end, resulting in early stage 2 performance
due to an incomplete extension of the comparisons. Note that this is in accord
with Trabasso’s (1977) suggestion that a linear order mental representation of
series is progressively built up from the end. Stage 3 evolves into stage 4 : ~rfor-
mance because of fine-tuning of an already present structure. These adjustments
correspond to a need for more precise perceptual discriminations (Terrace &
McGonigle, 1994). This suggests that a perceptual saliency dimension may be
involved in the developmental of seriation.

An increase in representational power is not necessary for successful develop-
ment on this task. However, learning continues even after the networks are
performing according to a diagnosable optimal strategy (e.g. using the operational
method). This learning is driven by the occasional errors that the network continues
to make. Computational power increases to provide a more efficient means of
processing that reduces residual errors at a faster rate.

7. Simulation 3: Disorder and the Development of Seriation

In discussing the biases in the training set (Section 4.3.4), it was noted that the
disorder of the array presented to networks in a pilot study was a significant factor
in determining whether a network would choose the correct move (Mareschal,
1992). This is one of a number of perceptual effects evident in our network
simulations. In this section we investigate the development of the disorder effect.
We focus on the large increment condition where the different input arrays are
most distinct from each other.

Generalization is tested on 15 networks. At the end of learning, these networks
identify the correct move to make on 691 (96%) of the 720 possible six-element
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Figure 7. Development of three networks’ generalization abilities. Early in develop-
ment, passing and failing are equally distributed along the disorder dimension.
Later, failures tend to cluster in the lower disorder region.

arrays they are presented with. It is worth remembering that these networks have
only been trained on 100 (14% of the total) randomly selected arrays.

Figure 7 shows the development of generalization abilities during the early part
of learning for two networks as a function of the disorder of the array presented.
The disorder of an array ranges from minimum of zero to a maximum of 72 in
incremental steps of two. In order to reduce the complexity of the figure, only
alternate disorder values are plotted in Figure 7 (i.e. at increments of four instead
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. of two). The proportion of correct responses is presented as a function of these
disorder values. Proportional scores are used because there are varying numbers
of possible arrays for a given disorder. Initially, errors occur across the whole range
of disorder values. However, by 50 epochs these networks are performing with
almost 100% accuracy on arrays with disorder values above 20. Errors do persist,
but they tend to occur on arrays with disorder values of 20 or less.

These results suggest an alternative interpretation for why children fail seriation
tasks. A child begins sorting the array correctly, but as sorting proceeds the child
becomes more likely to produce an error simply because the current array has less
and less disorder. This could be true even when the child is applying an operational
procedure. The child may stop before the array is completed by adult standards or
may even stumble on to the finished series, but in so doing would be classified as
an empirical seriator. This scenario is consistent with studies reviewed in Section
2, showing that young children possess the requisite skills for seriating small arrays
but fail to apply these skills fully to larger arrays.

One conclusion from this section is that unbiased training sets lead to biased
results: low-disorder arrays are poorly sorted. Hence, in order for the network to
learn, the training set must be biased towards the lower disordered examples, as
found in the previous sections. One can see why disorder has such an impact on
the network’s performance by referring back to the connection weight analyses
(Section 6). Networks solve seriation by representing the ordered structure of a
target array within their weights. The weights act as negative template filters against
which the input arrays are compared. If the input array does not match the
template, an appropriate move is computed as activation from the inputs filters
through the system. This filter mechanism works well for arrays that are very
different from the internalized order template, but becomes increasingly unreliable
as arrays come to resemble the target.

8. General Discussion

The principal goal of showing that connectionist methods can be successfully
applied to modelling seriation has been achieved. The cascade-correlation models
presented in this paper capture all six seriation phenomena identified in the
psychological literature. They show: periods of constant stage-like behaviour;
correct ordering of the four seriation stages; transition between successive stages;
better performance with increasing size differences; variation in emergent strategies;
and gradual as opposed to sudden stage transitions.

The six seriation phenomena found in cascade-correlation models derive natur-
ally from the information processing characteristics of connectionist networks.
Periods of constant stage-like behaviour result from the sensitivity of networks to
statistical regularities in the training environment and the fact that learning results
in small changes. Correct ordering of the four seriation stages results from the
gradual extension of seriation ability (as represented in the network’s connection
weights) to more and more of the array.? Transition between successive stages is
due to the dual process of connection weight adjustment and occasional recruitment
of new hidden units. The better performance with increasing size differences results
from the continuous coupling between input and output in connectionist networks,
which ensures that network performance varies continuously in response to changes
in the input (Shultz er al., 1994b). Large input differences create clearer activation
patterns on the hidden units and more decisive responses by the output units.
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networks show variation in strategies because such strategies are not built in as
actual computational mechanisms, but rather emerge from underlying topological
and weight adjustment mechanisms. Strategy-based stages are merely diagnosed
from behavioural performance; they are not the actual means of computation.
Often all of the children’s seriation behaviours cannot be classified within the
strategy inferred by the observer (Greenfield e al., 1972; Moore, 1979). Our model
suggests that the apparent diversity of strategies does not necessarily reflect different
underlying information processing. Rather than positing a wide range of strategies
used in different contexts, it is more parsimonious to posit a single mechanism to
account for the different strategies. Finally, networks exhibit gradual, as opposed
to sudden, stage transitions for the same reason. Network learning is gradual and
so the emergence of diagnosed strategies is also gradual.

Earlier computational models captured only one seriation phenomenon, consis-
tent stage performance. It may be possible to design serial symbolic models that
would capture these same six seriation phenomena. Ultimately, however, models
must be evaluated on the ease or naturalness with which the required phenomena
emerge from the proposed information processing mechanisms.

We approach seriation from a radically different perspective than that of either
Piaget or serial symbolic processing. We suggest that, although seriation is executed
through a series of actions, the computations underlying choice of each action are
carried out in parallel. The required information components are computed in
separate modules that process the same input simultaneously and in parallel. In
particular, we hypothesize a which versus where dissociation in the processing of
arrays to be sorted. We arrived at this architectural modularization through
information processing considerations. The fact that the model captures six seria-
tion phenomena leads us to predict a similar dissociation in children’s seriation.

Unlike Piagetian accounts, our model also implies that children can develop
through all four stages of performance without requiring an increase in representa-
tional power. The same computational apparatus is at work in a child performing
at either a stage 1 or a stage 4 level. The basic skills required for seriation are
present as early as stage 2. Seriation development is essentially due to an increase
in the precision of processing rather than to any fundamental reorganization of
knowledge. Hence, these models provide evidence of stage-like development arising
through micro-genetic changes. This is radically opposed to Piaget’s initial conclu-
sions and provides computational support for some more recent accounts of
seriation development as involving a refinement of initial procedures (Koslowski,
1980; Terrace & McGonigle, 1994).

Our model also suggests a new explanation for typical seriation errors observed
in children. Rather than lacking seriation operators, the model suggests that
children fail to apply these operators as the series gets closer to completion. Stages
2 and 3 should not be characterized by the absence of systematic seriation
procedures. Instead, these stages appear because a systematic procedure is being
applied, but only to subsets of items, not to the entire array.

The development of seriation expertise is closely constrained by the nature of
the learning (or uptake) environment. That environment may differ from the
objectively observed environment due to biases introduced by a teacher who selects
the kinds of problems the child is faced with (Rogoff, 1990), or by built-in cognitive
biases that limit the experiences that can be learned from. Our best model points
to a cognitive bias towards learning from smaller arrays and from less disordered
arrays. Children may more easily recognize and learn from the sorting of small
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arrays that are commonly available in the environment. Also, the child is more
likely to perceive the completion of a nearly sorted array as an instance of seriation
and to learn from that instance. Moving items in a highly disordered set does not
provide feedback for learning about sorting unless the child perceives the array as
a potential series and not just as a collection of unrelated items. Finally, the ability
to demonstrate expertise is closely tied to perceptual constraints such as array size,
increment size and disorder of the current array.

The connectionist models we describe rely on direct environmental information
about sorting. Such information could arise when the child watches an adult or
older sibling sort objects. Note that the child does not have to witness a complete
set of moves to learn to seriate. The child only needs to be exposed to small
random sets of independent moves. These could be accumulated over a number
of different observations. We focused on learning through imitation rather than
reinforcement learning for a variety of reasons. First, it is difficult to assess
what might constitute reinforcement for the child’s behaviour and when such
reinforcement may occur. In contrast, imitation is a more passive form of learning
in the sense that the child does not need to act but only observes someone else
act, perhaps predicting what the other person will do. Also, imitative learning does
not require reinforcement of the child’s behaviour by some other agent. Imitation
does, however, include a more complete and informative response target than does
reinforcement. Reinforcement is essentially a binary signal that a response was
correct or incorrect. In contrast, learning by imitation supplies full information on
the nature of a correct response. Moreover, imitation is one of the principal means
by which children are known to learn (cf. Bandura, 1986; Rogoff, 1990).

Empirical studies in progress with 4- to 7-year-old children seem to confirm the
model’s predictions about disorder and modularity (Mareschal, 1992; Mareschal &
Shultz, submitted). Just like the networks, children are more likely to identify an
inappropriate move when presented with a nearly sorted array than when presented
with a highly disordered array. Moreover, as with our networks, children’s ability
to identify which stick should be moved in a partially ordered array emerges later
than their ability to identify where a stick should be moved to extend the sort.

In summary then, we propose a parallel processing approach to seriation that
breaks radically with previous work. This framework is implemented using the
cascade-correlation generative connectionist algorithm. The model captures known
empirical phenomena much better than previous models do. Moreover, it provides
a parsimonious account of a wide range of seriation strategies by positing a single
underlying information processing mechanism. Although this is clearly a first
attempt to model seriation using connectionist methods, it is impressive in the
number of phenomena that can be captured by appealing to a simple learning
mechanism.

The success of our seriation model provides additional support for cascade-
correlation as a domain general model of processing and transition in cognitive
development. The cascade-correlation algorithm has now been used to model
successfully a wide range of cognitive developmental phenomena. In some cases,
such as the balance scale, conservation, integration of velocity, time and distance
information, and acquisition of personal pronouns, recruitment of new hidden
units has been necessary for accurate modelling of stage progressions. Although
some hidden units were recruited during seriation acquisition, no novel functional
role could be attributed to the hidden units, outside their ability to reduce residual
error at a faster rate. The corresponding increase in the network’s computational



Seriation: A Connectionist Approach 179

power did not produce a qualitative shift in diagnosable behaviour. Hence, we
suggest that seriation could also be modelled with static networks. Although the
generative properties of cascade-correlation do not appear to be necessary for
realistic seriation development, this was not clear beforehand. Modelling with
cascade-correlation provides a vehicle for testing the necessity of increases in
computational power.
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Notes

1. Earlier work included five no-change patterns in the training set (i.e. ones in which the presented
series was complete). Indeed, the results reported in Shultz er al. (1995) refer to that set of
simulations. However, it was found in the simulations reported here that the five no-change patterns
made no appreciable difference to network behaviour. We report simulations without the no-change
patterns because we feel that their exclusion reduces the number of ad hoc constraints on the
training set.

2. In a sample with an even number of measurements the median value falls between two measurements.
When those values differ, the median is taken as the mid-point between the two values (Ferguson &
Takane, 1989). In this case, the sample size is 20 and the median falls between the values one and two.

3. A preliminary version of this simulation was presented in Mareschal and Shultz (1993).

4. Only the 1324 order is inconsistent with correct ordering, and that occurs in only a few networks in
one condition. All other orders that occurred in any condition were consistent with the predicted
order; that is, all stages that occurred did so in the proper order. Stage skipping does not imply that
stages are incorrectly ordered (Flavell, 1971; Shultz, 1991).
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Appendix

This appendix shows the stage development of all 20 networks in the internal
subset condition. All networks were trained on 100 randomly selected six-element
arrays and 20 randomly selected three-element arrays. The introduction of three-
element arrays into the training set induces periods of consistent stage 3
performance.
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