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ABSTRACT

Although most English-speaking children master the correct use of first
and second person pronouns by three years, some children show
persistent reversal errors in which they refer to themselves as you and to
others as me. Recently, such differences have been attributed to the
relative availability of overheard speech during the learning process.
The present study tested this proposal with feed-forward neural net-
works learning these pronouns. Network learning speed and analysis of
their knowledge representations confirmed the importance of exposure
to shifting reference provided by overheard speech. Errorless pronoun
learning was linked to the amount of overheard speech, interactions with
a greater number of speakers, and prior knowledge 6f the basic-level
kind PERSON.

INTRODUCTION

Learning the semantic rules for first and second petison pronouns poses
problems for young children because the referent of these pronouns shifts
with speech roles, and because a model for correct use of these pronouns is
not provided in speech addressed to the child (Oshima-Takane, 1985, 1988).
When a mother talks to her child, me refers to herself, and you to the child.
However, when the child talks to the mother, me refers to the child, and you
to the mother. Yet most children master the correct use of these pronouns in
English by the age of three (Clark, 1978; Oshima-Takane, 1985). Previous
psycholinguistic research has documented that there are individual dif-
ferences in pronoun acquisition in English-speaking children (Clark, 1978;
Oshima-Takane, 1985, 1992; Chiat, 1986). A m#jority of normally de-
veloping children master the correct usage of these pronouns with few errors,
whereas some produce persistent reversal errors (i.e. producing you instead
of me or me instead of you) in the course of acquisition.

Although several different accounts have been proposed for children’s
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initial hypothesis about the meaning of the personal pronouns, none of the
previous theories has accounted for the variations in pronoun acquisition
(Shipley & Shipley, 1969; Clark, 1978; Charney, 1980; Schiff-Myers, 1983;
Chiat, 1986). These theories have focused either on children’s pronominal
errors or on the lack of pronominal errors. Oshima-Takane’s account (1985)
is the first to explain why some children make persistent errors, whereas a
majority do not. Based on her theoretical analysis of pronoun learning,
Oshima-Takane (1985) hypothesized that children learn the correct semantic
rules for personal pronouns by observing the shifting reference of pronouns
used in speech not addressed to them (non-addressed speech), whereas they
learn the incorrect semantic rules by observing pronouns used in each speech
addressed to them (addressed speech). She argued that, in addressed speech,
children simply observe that second person pronouns refer to themselves and
that first person pronouns refer to the person who is speaking to them. Thus,
children are more likely to entertain incorrect semantic rules that second
person pronouns refer to themselves and first person pronouns refer to the
person talking to them. Consequently, they would show persistent reversal
errors when they use these pronouns. In non-addressed speech, on the other
hand, children often observe that second person pronouns refer to a person
other than themselves and that first and second person pronouns shift
systematically. In this case children are more likely to induce the correct
rules that first person pronouns refer to the person who is using them and
that second person pronouns to the person addressed. They would conse-
quently produce correct pronouns without errors.

In support of her theoretical analysis, Oshima-Takane (1985, 1988)
conducted a training experiment with children at 1;7 who were about to
learn personal pronouns. The results indicated that children benefit in
pronoun production from non-addressed speech. In fact, only those children
who had opportunities to hear pronouns in non-addressed speech could
produce pronouns without errors. A subsequent observational study done by
Oshima-Takane, Goodz & Derevensky (1996) provided naturalistic evidence
consistent with her experimental finding. The study demonstrated that
secondborn children produced correct pronouns earlier than firstborns, even
though these children did not differ on other language measures such as mean
length of utterance and vocabulary size. They argue that secondborn children
acquire the correct usage of pronouns earlier than firstborn children because
they have relatively more opportunities to hear pronouns used in non-
addressed speech, that is, in conversation between their parent and older
sibling. Other observational as well as experimental studies done by Oshima-
Takane and her collaborators also provided converging evidence in support
of her theory (Oshima-Takane & Benaroya, 1989; Oshima-Takane & Oram,
1991 ; Oshima-Takane, 1992 ; Oshima-Takane, Cole & Yaremko, 1993; Cole,
Oshima-Takane & Yaremko, 1994).
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Recent computer simulations by Shultz, Buckingham & Oshima-Takane
(1994) simulated these psychological findings using the cascade-correlation
(CC) learning algorithm (Fahlman & Lebiere, 1990).! They found that
networks trained by non-addressee parent-speaking training patterns were
quick to learn the correct rules, whereas networks trained by addressee
parent-speaking training patterns learned incorrect rules and showed per-
sistent reversal errors. In addition, the more the networks were exposed to
the shifting reference of first and second person pronouns in non-addressed
speech, the faster the mastery of the correct rules. However, unlike human
children, none of the networks in their study could learn to produce the
correct pronouns without requiring explicit error-correcting feedback, even
though they were trained by non-addressed speech patterns.

A primary motivation for the present network simulations is to understand
the mechanisms by which children learn to produce these pronouns correctly
without explicit corrections. In the previous computer simulations, speech
role information (i.e. who is the speaker and who is the addressee) and the
referent information (i.e. who is the referent of the pronoun) were im-
plemented as the minimum prior knowledge for learning the first and second
person pronouns. The present simulation study investigated whether the
implementation of other prior knowledge, as well as the opportunity to
overhear more speakers, would facilitate learning without explicit cor-
rections.

Previous theoretical analysis of pronoun learning has emphasized the
importance of the basic-level kind category PERSON in learning the
meaning of personal pronouns (Oshima-Takane, 1985; Macnamara, 1986;
Macnamara & Reyes, 1994). For instance, Macnamara (1982, 1986) argued
that unless the child understands the basic-level kind PERSON, the child
would not be able to understand that a personal pronoun refers to a person,
not just a person’s face, nose, or visible surface. Furthermore, the notion of
the kind PERSON would help the child to pick out a person from all other
animate and inanimate objects as the referent of the pronoun and to make a
correct generalization to any member of the kind PERSON. Unless the child
knows that he/she is also a member of the kind PERSON, the child would
not be able to realize that he/she could also use first person pronouns in
reference to him/herself. Recent evidence suggests that children can make
global kind distinctions (e.g. animal/artifact, vehicle/animal) and basic-

[1] The CC algorithm is one of the class of so-called generative learning algorithms that build
their own topology by recruiting new hidden units as needed. Therefore, it affords a more
principled approach to network construction than static learning algorithms such as back-
propagation that require a full specification of the network. Another important feature of
CC is that it uses second order error minimization techniques in computing weight
changes and learns only one level at a time. Thus, it is typically 10 to 50 times faster at
learning than is back-propagation. See Section 2 for a more detailed description.
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level kind distinctions (e.g. bottle/ball, cup/book) by 12 months of age
(Mandler, Bauer & McDonough, 1991; Xu & Carey, 1996; Sorrentino,
1999). Then, it seems reasonable to assume that children can recognize an
individual including themselves as a member of the kind PERSON by the
time they learn personal pronouns.

In the previous computer simulations (Shultz, Buckingham & Oshima-
Takane, 1994), three persons appeared in the training patterns (mother,
father and child) and their identities were coded in an arbitrary, binary
-fashion distributed over two input units. The child was coded as 11, the
mother as 10, and the father as ox. They were coded as distinct individuals
but not explicitly as a member of the same kind. In subsequent simulations
(see Shultz, Schmidt, Buckingham & Mareschal, 1995 for a discussion of the
preliminary results) the distinction between ‘self’ and ‘other’ was explicitly
coded by adding a unit for each individual to see if this additional
information would facilitate the correct production of first and second person
pronouns. But again individuals were not coded as a member of the same
kind due to limitations of the distributed binary coding used.? The results
indicated that the addition of ‘self/other’ information did not enable
immediately correct generalization to child-speaking patterns for networks
trained with non-addressed speech patterns. Generalization tests immedi-
ately after non-addressee training revealed that none of the networks
produced the first person pronoun me in reference to the child (self), although
some did produce the second person pronoun you in reference to mother and
father (other) correctly. Overall, networks exposed to non-addressee speech
patterns required only about 12 epochs of child-speaking patterns to master
the correct rules, about one-tenth of the additional training required by
networks trained initially on addressee speech patterns. The lack of in-
formation that the child (self) as well as mother and father (other) belongs to
the same kind might have been the reason why none of the networks trained
by non-addressee speech patterns produced correct first person pronouns
without errors. In the present simulations, we use analogue coding to
represent the individual members and the kind to which they belong by
assigning a number to the members on the same unit.

Experiencing many examples involving various persons may be another
important factor in learning correct semantic rules of the first and second
person pronouns. In the previous simulations, networks learned parent-
speaking patterns in which only the mother and the father were using the
pronouns (Phase I) before they learned child-speaking patterns (Phase II).

[2] With distributed binary coding used in the previous simulations (Shultz, Buckingham &
Oshima-Takane, 1994), explicit coding of PERSON is not informative for the networks
because individuals appearing in the training patterns were all persons. Non-persons
could not be added to the training patterns because they do not take speaker and addressee
roles.
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Children learning personal pronouns normally also hear persons other than
parents using pronouns (e.g. older siblings, grandparents, babysitters, etc.)
even though their parents’ utterances are the major source of input they hear.
Overhearing multiple speakers may help children realize that a pronoun not
only refers to a specific person who has interacted with them but also refers
to any person depending on the speech role. In the present simulation study
we included conditions in which two other persons were added to Phase I
training patterns in order to investigate whether exposure to more speakers
would facilitate the learning of the correct rules.

In this paper we report four computer simulations using the CC learning
algorithm. In simulation 1, prior knowledge of the basic-level kind PERSON
was added to the pure addressee and non-addressee conditions. There was a
maximum of three persons appearing in the training patterns as in the
previous simulations (Shultz, Buckingham & Oshima-Takane, 1994). In the
present simulation we investigated whether networks subjected to pure non-
addressee training could produce correct child-speaking patterns without
explicit corrections but with this prior knowledge. In simulation 2, two
additional persons were included in the training. By comparing the network’s
production of child-speaking patterns across simulations 1 and 2, we tested
whether the addition of two other persons in the training patterns would
facilitate correct production of the child-speaking patterns. In simulation 3
two mixtures of addressee and non-addressee materials were included in
addition to the pure addressee and non-addressee conditions in order to more
realistically simulate the child’s natural language learning environment. By
comparing across simulations we assess the extent to which non-addressed
speech is needed for the learning of the semantic rules for the personal
pronouns. In addition, network analysis was performed to understand what
the networks learn at various points in the acquisition process. In particular,
we examined the network’s knowledge representations and generalization
capability to determine whether the networks have arrived at highly abstract
generalizations or if the networks have simply memorized correct responses
to the training situations. Simulation 4 is a remedial study of one of the pure
addressee trained networks which have learned incorrect semantic rules in
simulation 3. We examine the effects of additional remedial training, with
different degrees of non-addressee materials, in unlearning the incorrect
rules. Network analysis is also performed to understand how these networks
unlearn incorrect rules and eventually learn the correct ones.

SIMULATIONS

The acquisition of first and second person pronouns can be regarded as a
special kind of nonlinear function learning because the referent of the
pronoun shifts with speech roles. The semantic rules involve an interaction
between referent and speech roles.® We investigated how feed-forward
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Fig. 1. Pronoun network after recruitment of two hidden units.

networks approximated the nonlinear function underlying pronoun learning.
We used the CC algorithm because it is particularly good at capturing
interaction effects among input variables without being told which inter-
actions are important. Furthermore, this algorithm dynamically grows
networks to approximate increasingly more complicated functions, thus
allowing for the growth in representational power that is often assumed to
underlie human development (Shultz et al. 1995).

In CC learning, no a priori net topology has to be specified. Each network
starts without hidden units, and hidden units are added to improve its
performance until a satisfactory degree of performance is reached. Hidden
units are added one at a time so that all pre-existing units are connected to
new ones. The topological changés in the network may define distinct
developmental stages in learning. Cross connections that bypass hidden
layers are used and often simplify the solutions by capturing linear effects in
the simplest way. Hidden units with sigmoid activation functions produce
nonlinear, interactions effects in the mapping of inputs to outputs. When a
new hidden unit is recruited, incoming weights to the new unit are
determined by increasing the correlation of the unit’s activation with network
error, and are fixed throughout the rest of the learning process. This avoids

[3] In the present paper we did not employ the traditional semantic feature analysis of
personal pronouns. Instead, we adopted Kaplan’s (1978) formulation of semantic rules for
_first and second person pronouns which Oshima-Takane’s (1985) pronoun learning model
was based on. That is, (1) a first person pronoun, in each utterance, refers to the person
who uses it, and (2) a second person pronoun, in each utterance, refers to the person who

is addressed when it is used. :
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the necessity of back-propagating error across different levels of the network,
and leads to faster and more stable convergence. The weights associated with
output connections are, however, re-estimated after a new hidden unit is
recruited. The CC algorithm has been successfully applied to a number of
problems in cognitive development, including the balance scale (Shultz,
Mareschal & Schmidt, 1994), seriation (Mareschal & Shultz, 1993), the
integration of velocity, time and distance cues (Buckingham & Shultz, 1994),
conservation (Shultz, 1998) and prediction of effect sizes from the mag-
nitudes of causal potencies and effect resistances (Shultz et al. 1995).
Mathematical and computational details of the CC algorithm can be found
elsewhere (Fahlman & Lebiere, 1990; Shultz, Mareschal & Schmidt, 1994;
Shultz et al. 1995; Mareschal & Shultz, 1996).

The initial CC network used in our computer simulation had three input
units representing speaker, addressee and referent, and one output unit
representing the pronoun. All of the input units were connected to the output
unit. In addition, there was a bias unit, which was always on, connected to
the output unit. The bias is a constant similar to the constant term in a
regression analysis. It can also be interpreted as the negative threshold of
receiving units. If the value goes beyond the threshold, the neuron is
supposed to ‘fire’. A sample pronoun network after recruitment of two
hidden units is presented in Figure 1.

We used analogue coding for all simulations in order to implement prior
knowledge about the kind PERSON on inputs in an implicit way. The child
was coded as o, the mother was coded as + 2, and the father as —2. Two
other persons were coded +1 and —1, respectively. Numbers other than
these training points indicate other persons who did not appear in the
training patterns. The number assigned to each person was on nominal scale
(Stevens, 1951). It simply identifies the members with respect to the
property in question, although networks do not know what each number
indicates (i.e. each person in the present study) and what the property in
question is (i.e. the kind PERSON). The networks were expected to learn the
nominality of the numbers used for the input variables but learn to ignore
orders, sizes of differences and ratios (Takane, 1998). The learning of the
nominality of numbers can be achieved by a nonlinear transformation
applied to the summed contributions, which forms the activation at the
output unit of the CC networks.

This type of analogue coding has several advantages over the distributed
binary coding used in our earlier pronoun simulations (Shultz, Buckingham
& Oshima-Takane, 1994). First, persons appearing in the training patterns
are treated as if they are the same kind. Yet the child is treated differently
from other persons without explicitly indicating to the networks that the
child is the self. In other words, analogue coding allows us to represent
members and the class to which members belong by assigning a number to
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the members on the same unit. Thus, it should facilitate generalization to
untrained members of the same kind without explicit teaching. With the
previous distributed binary coding, on the other hand, the networks treat
each person as a distinct individual with no relation to other individuals in
the training patterns. As a result, they may learn rules for distinguishing me
from you separately for each individual. Second, with analogue coding, any
number of persons could be added to the training patterns without adding
input units. Third, the target semantic rules can easily be translated into the
target functions that the networks are approximating. Finally, the general-
ization capability of the networks can be examined using graphing techniques
(Takane, Oshima-Takane & Shultz, 1994).

The output unit was coded+o'5 for me and —o-'5 for you. We used a
score-threshold value of o'1 in all of the present simulations. CC networks
stop learning when all of the outputs are within score-threshold of their
targets on all of the training patterns. Thus, the score-threshold parameter
reflects the allowable differences between actual and target output activations.
With the score-threshold parameter set to the value of o1, the activation level
of the output unit needs to be above +0°4 to be interpreted as me, and below
—o0°4 to be interpreted as you.

Stmulation 1 : pure conditions with three persons

This study investigated whether networks in the pure non-addressee con-
dition could produce correct child-speaking patterns without explicit cor-
rections by having prior knowledge about the basic-level kind PERSON.
Only three persons, child, mother and father, were involved in this study.
Table 1 summarizes 12 possible ways me and you occur when there are only

TABLE 1. Training patterns

Input Output
Condition : Speaker  Addressee Referent Pronoun
Phase 1: Parent-speaking patterns
Pure addressee father child father me
father - child child you
mother child mother me
mother child child you
Pure non-addressee father mother father me
father mother mother you
mother father mother me
mother father father you
Phase 2: Child-speaking patterns
child father child me
child father father you
child mother child me
child mother mother you
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three persons. The first four are called pure addressee patterns, in which the
addressee is always the child. The next four are called pure non-addressee
patterns, in which the child is neither the speaker nor the addressee (i.e. the
conversation is between mother and father). The remaining four patterns
occur when the child is the speaker, producing the pronouns, and they are
called child-speaking patterns.

There are two training phases. In Phase I training, networks learn parent-
speaking patterns (four patterns). In Phase II training, child-speaking
patterns (four patterns) are added to Phase I training patterns. Phase I
training can be seen as the period during which children hear pronouns used
by others but have not yet produced any pronouns, and Phase II training as
the period during which they not only hear the pronouns but also start
producing them. In this simulation there were two conditions: addressee and
non-addressee. In phase I training networks in the addressee condition were
trained with the four addressee patterns and those in the non-addressee
condition were trained with the four non-addressee patterns. There were 20
runs in each condition, with each run starting from a different random set of
connection weights.

Learning time was measured in terms of the number of epochs required to
learn all of the training patterns. An epoch is a sweep through all of the
training patterns. The mean epochs to learn in Phase I were 606 (s.D. = 4°1)
in the addressee condition and 62-3 (s.D. = 4'7) in the non-addressee
condition. There was no significant difference between the two. All networks
recruited one hidden unit during Phase I training. The mean epochs to learn
Phase II training patterns were 106-8 (s.D. = 9'8) in the addressee condition
and 506 (8.D. = 32'0) in the non-addressee condition. The networks in the
non-addressee condition took significantly fewer epochs to learn than those
in the addressee condition, t(23)* = 7°51, p < 0-0o1.® However, unlike human
children, none of them could produce the correct child-speaking patterns
without some Phase II training, where the networks were explicitly taught
the correct child-speaking patterns. For Phase 11, one additional hidden unit
was recruited by all the networks in the addressee condition and by ¢
networks (45 %) in the non-addressee condition. The performance of the
networks in the pure non-addressee condition is similar to that of those in the
previous simulations with three persons (Shultz, Buckingham & Oshima-
Takane, 1994), although learning takes longer here because of a much smaller
score-threshold (o'1 vs. 0°4). It appears that having prior knowledge about

[4] A separate variance estimate was used to calculate the ¢-value because there was a
significant difference in variances between the two conditions. The number of degrees of
freedom was adjusted accordingly.

[s] Although the 1%, significance level was employed for all statistical tests in the present
paper, the probability was reported for each test when p < ooo1 for the interest of the
readers.

553



OSHIMA-TAKANE, TAKANE & SHULTZ

the kind PERSON is not enough for pure non-addressee networks to
produce the correct child-speaking patterns without error-correcting feed-
back.

Simulation 2 : pure conditions with five persons

This study was conducted to test whether additional persons appearing in
Phase I non-addressee patterns would improve learning and generalization to
the child-speaking patterns. For this purpose, two other persons were
included in Phase I training patterns besides those used in simulation 1. With
five persons (child and four other persons) there are 40 possible ways in
which me and you occur. Eight patterns were child-speaking patterns. The
remaining 32 patterns were other-speaking patterns in which the speaker was
someone other than the child. Eight out of 32 patterns were pure addressee
patterns and the remaining 24 patterns were pure non-addressee patterns. In
Phase I training, networks in each condition learned a total of 24 other-
speaking patterns. Networks in the addressee condition were given eight
addressee patterns three times in each epoch, whereas networks in the non-
addressee condition were given 24 non-addressee patterns once per epoch. In
Phase II training, the eight child-speaking patterns were added to Phase I
training patterns.

The mean epochs to learn Phase I training patterns were g91'0 (s.D. = 84)
in the addressee condition and 2714 (s.D. = 17°0) in the non-addressee
condition, which shows a significant difference between the two, #(38) = 277,
P < ooo1. One hidden unit was recruited by all networks in both conditions
during Phase I training. All networks in the addressee condition needed
Phase II training to produce correct child-speaking patterns. The mean
epochs to master child-speaking patterns was 169'3 (s.D. = 26-2). One
additional hidden unit was recruited by 19 networks and two additional
hidden units by one network during Phase II training. On the other hand,
none of the networks in the non-addressee condition needed any Phase 11
training to produce correct child-speaking patterns.®

[6] In order to rule out a possibility that difference in input complexity rather than the
shifting references may explain this significant condition effect, we conducted an
additional simulation where networks in the pure addressee condition received the same
number of distinct patterns (24) as those in the pure non-addressee condition by adding
8 more persons to the pure addressee patterns. The results indicated that these pure
addressee networks needed mean epochs of 3965 and 2988 for learning the Phase I and
Phase 11 training patterns, respectively. Further, consistent with our hypothesis, network
analysis revealed that these networks learned the incorrect me—you reversal function
during Phase I training. These results confirmed that networks trained by non-addressee
patterns with 5 persons in simulation 2 learned the correct function, not because the input
patterns are three times more varied than those for the pure addressee networks, but
because the input contains systematic shifting references. Another piece of evidence is
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The non-addressee networks in the 5-person condition showed perfect
generalization to the child-speaking patterns without Phase II training. On
the other hand, non-addressee networks in the 3-person condition needed
some Phase II training to master the child-speaking patterns, although they
showed better generalization than addressee networks. The results clearly
indicate that addition of two other persons in the Phase I training patterns
facilitates correct production of the child-speaking patterns without Phase 11
training.

Stmulation 3 : pure and mixed conditions with five persons

The child’s natural language learning environment involves some mixture of
addressee and non-addressee materials. Simulation 3 was conducted to
simulate the child’s natural language learning environment by including two
conditions with different mixtures of addressee and non-addressee materials.
Although the pure addressee and the pure non-addressee conditions are not
a realistic simulation of the child’s language environments, they were
included to determine to what extent non-addressed speech is needed to learn
the nonlinear function underlying the semantic rules of the pronouns.

As in simulation 2, five persons (the child and four other persons) were
involved and 4o different training patterns were used. There were four
conditions with the frequency multiplies of addressee:non-addressee of
10:0, 9:1, 5:5 and o:10. The 10:0 and the o: 10 conditions were essentially
the same as the pure addressee and the pure non-addressee conditions,
respectively, in simulation 2. Two mixed conditions, 9:1 and 5:5, were
included to model more realistic language learning environments. We
assume that the g addressee vs. 1 non-addressee mixed condition is similar to
the linguistic environment of firstborn children, whereas the 5:5 mixed
condition is similar to the linguistic environment of secondborn children
(Shultz, Buckingham & Oshima-Takane, 1994). In Phase I training, net-
works in each condition learned other-speaking patterns (a total of 240
patterns). In Phase II training, child-speaking patterns (eight patterns) were
added to Phase I training patterns. Other-speaking patterns used in Phase I
training depended on the conditions. We hypothesized that the more the
non-addressee materials appearing in Phase I training patterns, the faster the
learning and the better the generalization.

from the significant condition effect observed in the three-person study (simulation 1).
There both addressee and non-addressee conditions received the same number of
different patterns, and the non-addressee condition was clearly superior to the addressee
condition. These two pieces of evidence support our hypothesis that observation of
shifting reference in overheard speech is crucial for inducing the correct semantic rules.
The results cannot be explained by the alternative of input complexity.
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The mean epochs required for learning Phase I and Phase II training

patterns are given by condition in Table 2. Planned comparisons revealed

TABLE 2. The mean epochs required for learning Phase I and II training
patterns by condition

Condition
(addressee:non-addressee)

10:0 9:1 5:5 0:10
(n = 20) (n = 20) (n = 20) (n=20)
Phase 1
Mean 927 3721 219'7 247°9
S.D. 74 429 217 20°3
Phase 11
Mean 1474 64-8 o 1)
$.D. 138 279 ] [

that it took more epochs to learn Phase I training patterns in the ¢9:1 mixed
condition than in the 5: 5 mixed and the 0: 10 pure non-addressee conditions
combined, F(1,76) = 28012, p < 0001, and fewer epochs to learn in the
10:0 pure addressee condition than in the other three conditions combined,
F(1,76) = 1699'8,% p < o'oo1. This result is consistent with the psychological
finding that firstborn children are delayed in pronoun production compared
to secondborn children (Oshima-Takane et al., 1996). All o: 10 pure non-
addressee and 5: 5 mixed networks recruited one hidden unit during Phase I
training and none of them needed Phase 11 training to produce correct child-
speaking patterns. On the other hand, most ¢:1 mixed networks (90 %)
recruited two hidden units during Phase I training. They needed some Phase
II training, although none of them recruited an additional hidden unit. All
10:0 pure addressee nets recruited one hidden unit during Phase I training
and needed Phase II training in which they recruited an additional hidden
unit. The 10:0 pure addressee networks needed more epochs than the 9:1
mixed networks to learn Phase I1I training patterns, #(28)* = 11-86, p < o-001.

How much non-addressee material is needed in Phase I to produce
correct child-speaking patterns without Phase I1 training ? It is clear from the
present results that more than 109 of the training patterns must be non-
addressee to produce correct child-speaking patterns without Phase II
training. However, there may not be a need for 50 %, of the training patterns
to be non-addressee materials as in the 5: 5 mixed condition. T'o answer this
question, we conducted an additional simulation with two new mixed
conditions with the frequency multiples of addressee:non-addressee of 8:2
and 7:3. Interestingly, all networks in both conditions produced correct
child-speaking patterns without Phase II training. The mean epochs to learn
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Phase I training patterns were 2327 (s.D.=17-2) in the 8:2 mixed
condition and 2177 (s.0.= 18-8) in the 7:3 condition. There was no
significant difference between the two. One hidden unit was recruited by
each network in both conditions. Planned comparisons showed that there was
no difference in the mean epochs to learn Phase I training patterns between
the 8:2 and the 7:3 mixed conditions combined and the 5: 5 mixed and the
o:10 pure non-addressee conditions combined. However, networks in the
9:1 mixed condition needed more epochs than those in the other three
mixed conditions and the o:10 pure non-addressee condition combined,
F(1,114) = 4090,” p < 00o1. The networks in the 10:0 pure addressee
condition needed fewer epochs to learn Phase I training patterns than those
in all other conditions combined, F(1,114) = 18441, p <o0.001. These
results are consistent with the above finding that the 10:0 pure addressee
networks needed the fewest epochs to learn Phase I training patterns,
whereas the 9: 1 mixed networks needed the most. The results indicate that
if at least 20%, of the training patterns were non-addressee materials, the
networks could produce correct child-speaking patterns without Phase II
training. An interesting question is whether the knowledge representation
and generalization capability of the networks when only 20 % of the training
patterns are non-addressee materials differ from when they constitute more
than 20 %,. This issue will be examined by analysing networks’ representation
of function approximations 4s learning progresses.

NETWORK ANALYSIS

We analysed networks’ representation of function approximation and gen-
eralization capability by examining how the function approximation was
accomplished over time. In particular, we examined whether non-addressee
materials are crucial in approximating the target function underlying the
correct use of first and second person pronouns.

Target function ,

The target function is the correct function connecting inputs to outputs that
the network has to learn. In the case of me-you pronoun learning, this
function outputs the value representing me (+0-5) when the speaker is the
referent and the value representing you (—o-5) when the addressee is the
referent. We define ’ ’

y=(A4—-R)/(A-S)—o,
where A is the addressee, R is the referent of the pronoun to be produced,

[7]1 The F-value was obtained from the log transformations to stabilize variance. The original

mean values were reported in the text, however, because a monotonic transformation does

- not change what is originally measured by the dependent variables and conclusions can be

made on the original measures (Ferguson & Takane, 1989, p. 267). The F-value became
smaller but the text result did not change with the transformations.
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S is the speaker, and y is the output. This correct function with training
points under 5-person conditions is depicted in Figure 2. The graphic
representation of the correct me surface is presented on the top and that of the
you surface at the bottom. In the case of me, the left side horizontal axis of
the graph represents the speaker = referent dimension (Sp = Rf) and the
right side horizontal axis the addressee dimension (Ad). In the case of you,
the former represents only the speaker dimension (Sp) and the latter the
addressee = referent dimension (Ad = Rf). A number on these dimensions
indicates who is the speaker, ranging from —3'5 to +3'5, and who is the
addressee, ranging from —3'5 to +3'5. Note that the number assigned to
each person was on a nominal scale and it simply identified a discrete entity
(i.e. person). The vertical axis represents pronouns in terms of the output
-activation. When the speaker and the referent agree and when the addressee
and the referent disagree, then the correct pronoun to be produced is me and
the output activation is +o0'5. When the addressee and the referent agree, on
the other hand, the correct pronoun to be produced is you and the output

Fig. 2. Graphic representation of the target (correct) function with training points under 5-
person conditions. The me surface is presented on the top (+0-5) and the you surface at the
bottom (—o0-5). A number on the left side horizontal axis of the graph indicates who is the
speaker, ranging from —3's5 to + 35 and a number on the right side horizontal axis indicates
who is addressee, ranging from —3'5 to +3'5. The child is coded as o, the mother as 2, and
the father as —2. T'wo other people are coded as 1 and —1. The letter A on each surface
indicates addressee patterns, the letter N non-addressee patterns, and the letter C the child-
speaking patterns. All other points on the grids of the me or you surface represent speaker-
addressee combinations that do not appear in any of the training patterns. For the me surface,
the referent is the speaker; for the you surface, the referent is the addressee. The diagonal
points where the speaker and the addressee agree are excluded. Sp = speaker and
Ad = addressee.
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activation is —o5. For instance, when the child is speaking to the mother and
referring to himself/herself, the correct pronoun to be produced is me. This
is depicted on the me surface (top) with the zero on the speaker = referent
dimension (i.e. the child is the speaker and the referent) and the +2 on the
addressee dimension (i.e. the mother is the addressee). Similarly, when the
mother is talking to the child and referring to the child, the correct pronoun
to be produced is you. This is depicted on the you surface (bottom) with the
zero on the addressee = referent dimension (i.e. the child is the addressee and
the referent) and the +2 on the speaker dimension (i.e. the mother is the
speaker). The letter A on each surface represents the addressee patterns, the
letter N indicates non-addressee patterns, and the letter C indicates the child-
speaking patterns in the 5-person conditions. All other points on the grids of
the me or you surface represent speaker-addressee combinations that do not
appear in the training patterns. Figure 3 presents the graphic representation
of an incorrect function (bottom) in contrast with that of the correct function
(top). The incorrect me and you surfaces portray reversed errors in which me
is produced whenever the referent is a person other than the child (i.e. the
output activation is + o-5 regardless of speech roles), whereas you is produced
whenever the referent is the child (i.e. the output activation is —o-5).

We investigated approximations of the target function in networks by
graphing performance on training and test patterns. Generalization tests
included both interpolation within the range of training values and extra-
polation beyond the range of training values. An example of interpolation is
speaker = +1'5, addressee = —1'5, and referent =+1'5. An example of
extrapolation is speaker = 0, addressee = —2°'5 and referent = —2-5. If the
network’s approximation is close to the target function, we can conclude that
the network’s generalization capability is quite good.

Function approximations : developmental data

The CC algorithm constructs a network and estimates connection weights
based on a sample of training patterns. The sample of training patterns used
for Phase I training depends on the conditions. For each input pattern, a unit
in a trained network sends contributions to units it is connected to. A
contribution is defined as the product of the activation of the sending unit
and the connection weight between the sending unit and the receiving unit.
The receiving unit forms its activation by summing up the contributions
from other units and applying the sigmoid transformation to the summed
contribution. An activation is computed at each unit and for each input
pattern in the training sample. An activation at the output unit is the network
prediction for the output. In the training phase, connection weights are
determined so that the network prediction closely approximates the output
corresponding to the input pattern. In order to understand how function
approximation is done, we examined network performance at various points
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The correct me surface The correct you surface

Sp=Rf 5 -5 Ad sp 55 Ad=Rf

Fig. 3. Graphic representation of the target (correct) and incorrect functions. The correct me

and you surfaces are presented on the top and the incorrect me and you surfaces at the bottom.

Sp = speaker, Ad = addressee and Rf = referent. Sp = Rf indicates that the speaker and the
referent agree and Ad = Rf indicates that the addressee and the referent agree.

in learning in each condition. Distinct developmental stages in learning are
defined by the topological changes that occur in the network when a hidden
unit is added.

Figures 4—6 depict function approximations at different developmental
stages, and their changes from one stage to the next for each training phase
by one of the networks in each condition. Networks’ function approximations
in each developmental stage are obtained by deriving network predictions
just before a new hidden unit is recruited. Only one figure (Figure 4) is
presented for the 8:2, 7:3, 5:5, and 0:10 networks because the topological
changes in these networks were essentially the same across these four
conditions.

The network’s representation of the me and you surfaces at Stage 1 in
Figure 4 shows that the network in the three mixed (8:2, 7:3 and 5:5) and
the o: 10 pure non-addressee conditions could not discriminate me from you
at Stage 1, because all points on both surfaces took the value of o, that is,
neither me or you. After adding the first hidden unit, k,, it learned to
approximate the correct function remarkably well (Stage 2). The network
now correctly discriminated the trained non-addressee patterns as well as the
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Phase I
05 me, Stage 1 05 you, Stage 1

-5-5 0
me, Stage 2 you, Stage 2
+0-5 05
0
-0-5
5 5

—5-5

Fig. 4. Development changes in function approximations by one network in the o:10 pure

non-addressee condition. The figures for the 8:2, 7:3, and 5: 5 mixed conditions were similar

to that for the o: 10 pure non-addressee condition. Both me and you surfaces have a value of

o at Stage 1. At Stage 2, most points on the me surface have a value of +o0-5 and all the points
on the you surface have a value of —o's5.

untrained addressee and child-speaking patters. That is why the networks in
the three mixed and the o:10 pure non-addressee conditions did not need
Phase II training to produce the correct child-speaking patterns. The
network’s generalization to untrained other-speaking patterns was also very
impressive, although extrapolation for the points very far away from the non-
addressee patterns was a bit difficult as indicated by the points on the left side
corner of the me surface taking the value of —o-5 (you).

Figures 5-6 indicate that the 10:0 pure addressee and g: 1 mixed networks
could not discriminate me from you at Stage 1. At Stage 2—1, the 10:0 pure
addressee network (Figure 5) learned to approximate an incorrect function,
producing reversal errors. That is, the network produced you (—o'5) when
the child is speaking and referring to himself/hefself (o points on the Sp =
Rf dimension of the me surface), and produced me (+o0-5) when the child is
speaking and referring to others (o points on the Sp dimension and all points
other than o on the Ad = Rf dimension of the you surface) except the points
on the edges. It needed Phase II training to master the correct child-speaking
patterns but even after the child-speaking patterns were added to the Phase
I training patterns (Stage 2-2), the 10:0 pure addressee network kept
producing reversal errors. After the second hidden unit, k,, was added (Stage
3), the network produced me and you correctly at the training points
(addressee and child-speaking patterns). However, the you and me surfaces
after Phase II training were not as flat as those of the correct function. In
particular, the me surface at Stage 3 indicates that extrapolation for the points
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Phase I
05 me, Stage 1 05 you, Stage 1

,.{\??';"I '
il

)

1=,
=

Fig. 5. Developmental changes in function approximations by one network in the 10:0
pure addressee condition. The change in the training set occurred between Stage 2-1 and
Stage 2-2.

on the untrained other-speaking patterns far away from the training points
(addressee and child-speaking patterns) was very difficult as indicated by the
points on the right side corner of the me surface taking the value of —o'3
(you). This indicates that the generalization capability of the 10:0 pure
addressee net was much more limited than the o:10 pure non-addressee
network and the three mixed networks (8:2, 7:3 and 5:5) even after Phase
I training.

Similarly, by adding the first hidden unit, h, (Stage 2), the 9:1 mixed
network (Figure 6) learned to approximate the incorrect function, producing
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Phase 1
me, Stage 1 05 you, Stage 1

-5=5
you, Stage 2

me, Stage 3-1

=555 0
me, Stage 3-2
05
0
_055
0 5 3
~5-5

Fig. 6. Developmental changes in function approximations by one network in the 9: 1 mixed
condition. The change in the training set occurred between Stage 3-1 and Stage 3-2.

reversal errors. However, unlike the 10:0 pure addressee network, this
network appeared to unlearn this incorrect function during Phase I training
by adding the second hidden unit, &, (Stage 3-1). This is why the 9: 1 mixed
networks needed significantly more epochs than other mixed networks in
Phase I training. Although it needed Phase II training, no additional hidden
unit was recruited (Stage 3-2). Comparison of the nétwork’s approximation
of the me and you surfaces between Stages 3-1 and 3-2 indicates that the
network needed Phase Il training for adjusting the weights to produce you
correctly. However, unlike the 0:10 pure non-addressee network and the
other three mixed networks, the you surface was not as flat as that of the
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correct function. This indicates that generalization capability of the 9:1
mixed network was not as good as that of the 0:10 pure non-addressee
network and the other three mixed networks.

SIMULATION 4: A REMEDIAL STUDY OF THE PURE ADDRESSEE
NETWORKS

Some normal children show persistent reversal errors just like the 10:0 pure
addressee networks. For instance, Oshima-Takane (1992) reports a case of a
firstborn boy whose pronoun errors persisted for about 10 months. At an
earlier stage the boy made consistent errors both in comprehension and
production indicating that he learned the incorrect, reversal rules. Oshima-
Takane suggested two reasons why his pronoun errors persisted for such a
long time. First, once children learn the incorrect reversal rules, it is very
difficult to correct them, because they completely misunderstand others’
corrections. Suppose that the boy says, ‘ You want cookie’ (meaning ‘I want
cookie’) and his mother says, ‘No, you should say, ‘‘I want cookie’’.” The
boy’s interpretation of what his mother would like him to say would be that
Mommy wants cookie and not that he wants cookie. Thus, he would say ‘No’
or simply ignore his mother’s comment. Even though corrections may give
children the idea that there is something wrong with their usage of pronouns,
these corrections do not seem to tell them the correct semantic rules. Second,
it is rather difficult for parents to keep correcting their children’s errors all
the time. The boy’s mother and his babysitter tried to correct the boy’s
errors, but they also responded to him as if he used correct pronouns most
of the time by using the context to figure out what he meant. Consequently,
children may not feel any need to change their use, simply because the
pronouns work. Oshima-Takane (1992) argues that non-addressed speech
plays an important fole in unlearning incorrect semantic rules because it
provides children with an opportunity to observe how the referent of first and
second person pronouns shifts systematically.

In order to test Oshima-Takane’s hypothesis, we conducted a remedial
study by examining whether the addition of the non-addressee materials to
the 10:0 pure addressee materials after Phase I training would help the 10:0
pure addressee networks to unlearn the incorrect function and eventually
learn the correct function. One network trained by the 10:0 pure addressee
condition in Phase I training was trained by three different mixed conditions
in Phase II with the frequency multiples of addressee:non-addressee of 9: 1,
5:5, and 1:9. In Phase III training all networks were trained with the child-
speaking patterns added to the Phase II training patterns. There were 20
runs for each condition.

The mean epochs required for learning phase II and Phase III training
patterns by condition are given in Table 3. All networks in the 9:1 and the
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TABLE 3. The mean epochs required for learning for Phase II other-speaking
mixed patterns and Phase 111 child-speaking patterns

Condition
(addressee:non-addressee)

9:1 5:5 1:9
(n = 20) (n = 20) (n = 20)
Phase 11
Mean 3062 3064 2029
S.D. 653 797 1689
Phase III
Mean 872 82-3 20'5
$.D. 368 279 17°9

5:5 mixed conditions needed Phase III training to produce correct child-
speaking patterns, whereas six out of 20 networks in the 1:9 mixed condition
did not need Phase III training. Planned comparisons revealed that there
were no significant differences between the 9:1 and the §: 5 conditions in the
mean epochs to learn Phase II and Phase III training patterns, although it
took fewer epochs to learn both training patterns in the 1:9 condition than
in the other two conditions combined, F(1, 57) = 362, p < 0-001 for Phase
IT training and F(1,57) =712, p < 0001 for Phase III training. Fifteen

Phase I

me, Stage 1 05

you, Stage 1

0 0
0
-0'5 -0:5
’ 0 5 ’ 0 >
-5-5 -5-5

me, Stage 2-1 you, Stage 2-1

I

==
=
=

=

;/

~5-5

Fig. 7. Function approximation by one 10:0 pure addressee network during
Phase I training.

[8] The F-value was obtained from log transformations to stabilize variance. The F-value
became larger and the probability became smaller (the F-value without transformation
was 10°g7, p = 0'002), but the test result did not change with the transformations
(p < oor1).
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Phase II
me, Stage 2-2 you, Stage 2-2

you, Stage 3-1
05
0
-05

0 0 3
-5-5 -5_5
Phase III
me, Stage 3-2 : you, Stage 3-2

-5 575

Fig. 8. Developmental changes in function approximations by one 10:0 pure addressee
network in the 9: 1 mixed condition. The changes in the training set occurred between phases.

networks in the 9: 1 condition and 14 networks in the 5: 5 condition recruited
one hidden unit and the remaining networks recruited two during Phase I1
training. None of the networks in the 9:1 and the 5:5 mixed conditions
recruited additional hidden units during Phase III training. On the other
hand, all the networks in the 1:9 condition recruited one hidden unit during
Phase II training and only one recruited an additional hidden unit
during Phase III training. The results indicate that the more the non-
addressee materials appearing in Phase Il training patterns, the faster the
learning of the correct function.

In order to understand how networks in each condition unlearn the
incorrect function and how they eventually learn the correct function, we
analysed one network in each condition using the same graphing technique
used in section 3. Figure 7 presents function approximations of the 10:0 pure
addressee network during Phase I training. All networks in the remedial
study started with this 10:0 pure addressee network’s representation of the
incorrect function at Stage 2-1.
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Phase II

me, Stage 2-2

-5-5 -5-5

me, Stage 3-2 you, Stage 3-2

575 55

Fig. 9. Developmental changes in function approximations by one 10:0 pure addressee
network in the §: 5 mixed condition. The changes in the training set occurred between phases.

Developmental changes from one stage to the next during Phase IT and ITI
training by one network in each of the 9:1, §5:5 and 1:9 conditions are
presented in Figures 8-10, respectively. Comparisons of the representations
of me and you surfaces by the three mixed networks at Stage 2-2 (Figures
8-10) indicate that the more non-addressee materials appearing in Phase 11
training patterns, the flatter the me and you surfaces, suggesting that the non-
addressee materials facilitate unlearning of the incorrect function. Although
the ¢9:1 (Figure 8) and the 5:5 (Figure 9) networks still kept producing
reversal errors at Stage 2-2, the 1:9 network (Figure 10) produced few
reversal errors. However, it could not discriminate me from you because none
of the output activations for me or you were within the score-threshold; they
were all between —o'4 and +0°4. Such indefinite responses could be the
network equivalent of a child’s not being sure about which pronoun to
produce. After adding the second hidden unit, A, (Stage 3), the networks in
all three conditions learned to discriminate me from you. Although most
networks needed some Phase III training, no additional hidden unit was
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Phase I
05 me, Stage 2-2 05 you, Stage 2-2
| i o g
-0 55 —0 55
5 5
0 0 0 0
=55 -5
me, Stage 3-1 you, Stage 3-1
05 05
0 0
-0-5 -0-5
5 s 5 s
3 0 3 0
Phase I1I
me, Stage 3-2 you, Stage 3-2
05 : 05
0 0
-0-5 05
’ 0 3 ’ 0 5
-5-5 -525

Fig. 10. Developmental changes in function approximations by one 10:0 pure addressee
network in the 1:9 mixed condition. The changes in the training set occurred between phases.

recruited. Furthermore, the me and you surfaces of these networks after
Phase III training are similar to those of the ¢: 1 mixed network rather than
those of the 10:0 pure addressee network after Phase II training in
simulation 3. The result that the networks in the three mixed conditions (9: 1,
5:5, 1:9) in the present study needed fewer epochs to learn child-speaking
patterns than those in the 10:0 pure addressee condition in simulation 3
indicates that non-addressee materials are effective for unlearning the
incorrect function.

In the present simulation, six out of 20 networks in the 1:9 condition (9o %,
non-addressee materials) could produce correct child-speaking patterns
without errors. In simulation 3, all the networks in the 8:2 condition (20 %,
non-addressee materials) could produce correct child-speaking patterns
without errors. This suggests that once networks learn an incorrect function
solely from addressed speech, they need substantial non-addressee material
to unlearn it.
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DISCUSSION

The most impressive finding is that the CC networks could produce the
correct pronouns without errors if they hear pronouns used by a variety of
speakers in non-addressed speech. Although pure non-addressee networks in
the 3-person condition showed better generalization than addressee net-
works, they needed some Phase II training to master the child-speaking
patterns. On the other hand, pure non-addressee networks in the 5-person
condition showed perfect generalization to child-speaking patterns without
any Phase 11 training. Furthermore, the pure and the mixed conditions with
5 persons indicate that networks in the 8:2 condition could show perfect
generalization to child-speaking patterns without any Phase II training, just
like the o: 10 pure non-addressee networks. On the other hand, networks in
the 9: 1 condition needed some Phase I training to master the child-speaking
patterns, just like the 10:0 pure addressee networks. Network analysis
revealed that without non-addressed speech, networks would learn an
incorrect function and make reversal errors. The 9: 1 mixed networks showed
better generalization than the 10:0 pure addressec networks after Phase 1
training, but they needed Phase II training to master child-speaking
patterns. Furthermore, generalization to untrained, other person-speaking
patterns was not as good as in o:10 pure non-addressee networks and the
other three mixed networks (8:2, 7:3, 5:5).

The results are consistent with the hypothesis that non-addressed speech
is a necessary ingredient for the learning of first and second person pronouns.
Previous psychological studies done by Oshima-Takane and her collaborators
(Oshima-Takane & Oram, 1991; Oshima-Takane et al., 1996) have shown
that secondborn children acquire first and second person pronouns faster
than firstborn children and they make few production errors. Furthermore,
they typically do not show systematic errors in comprehension (e.g. you
refers to the child even when the child is not addressed) before they produce
the pronouns. First-born children typically show systematic errors in
comprehension at earlier stages, indicating that they initially learn incorrect,
reversal rules. Some firstborns correct these errors by the time they begin to
produce pronouns and do not show errors in production. Others make a few
but inconsistent reversal errors in production. Thus, performances of the
networks in mixed conditions other than the 9:1 match the typical de-
velopmental stages of secondborn children. On the other hand, performances
of the networks in the 9: 1 condition match the typical developmental stages
of firstborn children.

Developmental stages in the 10:0 pure addressee networks are similar to
those of the firstborn boy reported in Oshima-Takane’s (1992) study who
made persistent reversal errors. At an early stage, this boy made consistent
errors in both comprehension and production, indicating that he learned the
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incorrect, reversal rules. Just like the 10:0 pure addressee networks, his
pronoun errors persisted for a long period of time despite the fact that his
mother and babysitter often tried to correct his errors. The present remedial
study showed that opportunities to hear shifting reference of pronouns in
non-addressed speech facilitate the unlearning of the incorrect function.
However, if the incorrect reversal function is learned solely from addressed
speech, substantially more such opportunities are needed. Unlike the present
simulations, children do not receive corrections consistently when they
produce incorrect pronouns (Oshima-Takane, 1992). In addition, children
who learned the incorrect, reversal rules misunderstand the error-correcting
feedback completely. Therefore, opportunities to observe pronouns in non-
addressed speech must play a more important role in discovering the
relationship between pronouns and speech roles in actual language learning
than in the simulations. Oshima-Takane (1992) speculated that the boy
making persistent errors might have first noticed that there was something
wrong with his pronoun usage through the parents’ corrections or through
misunderstandings of his utterances by others. Then perhaps he began
observing other people’s usage and inspecting the speech roles of the person
that a pronoun designated.

A pilot simulation with distributed binary coding indicates that non-
addressee networks lacking knowledge of the kind PERSON under a 5-person
condition show no improvement over those under a 3-person condition in
their generalization to child-speaking patterns. Unlike analogue coding in
the present study, direct comparisons between §-person and 3-person
conditions could not be made with distributed binary coding, because
additional individuals could not be included in the training patterns without
changing the network topology (i.e. two input units are necessary for coding
each person under the 3-person condition, whereas three input units are
necessary for the 5-person condition). Nonetheless, close examination of the
networks’ performances in the pilot simulation suggests that binary-coded
networks cannot generalize to child-speaking patterns without error-cor-
recting feedback and that having more speakers in the training patterns does
not change this. It appeared that, without information that individuals
appearing in the training and test patterns are a member of the same kind,
networks learn rules for distinguishing first person pronouns from second
person pronouns separately for each individual appearing in the training
patterns and, thus, cannot generalize to child-speaking patterns without
error-correcting feedback. With analogue coding, the networks are able to
represent the kind (type) and its members (tokens) and this seems to be a key
of their success in extending generalizations to untrained members of the
same kind. Analogue coding appears to have advantages over distributed
binary coding for capturing this fundamental characteristic of human
cognition.
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Several investigators have suggested that an ability to take speaker’s point
of view is necessary for the child to understand the shifting reference of first
and second person pronouns (de Villiers & de Villiers, 1974; Fraiberg, 1977;
Loveland, 1984). For instance, Loveland (1984) investigated the acquisition
of personal pronouns in relation to the comprehension of spatial points of
view on the assumption that understanding spatial viewpoints is a cognitive
prerequisite to understanding speaker’s point of view, which, in turn, is a
prerequisite to the correct use of personal pronouns. Her data indicated that
only children with full understanding of spatial viewpoints were able to
correctly use all the forms of first and second person pronouns tested.
However, evidence for the causal link between understanding of spatial
viewpoints and acquisition of these pronouns is not conclusive, because the
level of language development of the children in her study was not controlled.
Subsequent studies done by other researchers (Issler, 1993; Girouard,
Ricard & Decarie, 1995) have provided more complicated results, suggesting
that spatial viewpoints and pronouns are not directly related, but develop
simultaneously. Furthermore, no studies have directly examined Loveland’s
assumption that understanding spatial viewpoints i$ a cognitive prerequisite
to understanding speaker’s point of view. There is some evidence that at
about 9 months of age children begin to understand another’s perspective
(Baron-Cohen & Ring, 1994; Tomasello, 1995). This would presumably be
long before children understand spatial points of view.

We believe that children need to understand another’s point of view or
intention in order to correctly identify the referent of any word used by them.
The major problem with first and second person pronouns is not only that
the referent of the pronouns shifts with the speaker but also that the model
for correct usage is not provided in speech addressed to the child. Thus, even
though children could identify the person referred to by a pronoun used by
others correctly, they may be unable to produce the pronoun correctly.
Understanding the speaker’s intention is not sufficient for learning the
semantic rules underlying the correct use of these pronouns. Observing
shifting reference of the pronouns in non-addressed speech is necessary.

Much previous language acquisition research has focused on mothers’
speech addressed to the child as the primary linguistic input for language
acquisition, and little theoretical attention has been paid to non-addressed
speech (Oshima-Takane et al., 1996). However, the findings of the present
simulations as well as those from Oshima-Takane’s psychological studies
demonstrate that non-addressed speech is also an important resource for
early language development. The present research also suggests that hearing
many examples involving various referents would facilitate word learning
and generalization. Future research should examine this hypothesis with
children.

The present simulations are still incomplete because they do not contain
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third person references. In actual language learning situations, children not
only hear first and second person pronouns but they also hear third person
pronouns referring to a person who is neither speaker nor addressee. A new
simulation containing all three kinds of pronouns is now underway to
simulate children’s pronoun learning situations more realistically. Addition
of third person references is particularly important because we could rule out
a possibility that networks simply learn a partially correct function (i.e.
partially correct with regard to the correct semantic rules) to produce the
correct first and second person pronouns. That is, if the speaker is the
referent, me should be produced; otherwise you should be produced. Or if the
addressee is the referent, you should be produced; otherwise me should be
produced.

A subsequent network analysis of me—you two pronoun learning (Takane,
1998) proved that this was the case. It appears that, for CC networks, speaker
= referent is equivalent to addressee + referent, and addressee = referent is
equivalent to speaker # referent when only me and you are to be dis-
tinguished. Because no training patterns were given for speaker = referent
and addressee =+ referent, it is quite natural that the networks showed errors
for these patterns. This implies, however, that pronouns such as ke and she
have to be included in the training patterns in order to learn to discriminate
between speaker = referent, on one hand, and speaker # referent and ad-
dressee # referent, on the other.

Previous psychological research may suggest that children, too, learn a
partially correct function before learning the full correct function. For
instance, Brener (1983) reported that children show comprehension errors
for second person pronouns indicating that they understand second person
pronouns as referring to both addressee and non-addressee, even after they
understand that first person pronouns refer only to the speaker. Furthermore,
they show similar errors for third person pronouns: they interpret third
person pronouns as referring to both addressee and non-addressee before
they understand that third person pronouns refer only to non-addressee.
Charney (1980) also reported that some children showed comprehension
errors suggesting that third person pronouns refer to addressee. However,
empirical evidence for such partially correct function is still inconclusive due
to the cross-sectional designs used in these studies and the fact that there is
very little research investigating the full developmental process of all three
personal pronouns.

Although Oshima-Takane (1992) reports a case of consistent reversal
errors across different pronoun cases, not all children making persistent
reversal errors display such consistency. For instance, the boy in Chiat’s
study (1982) showed a significantly higher reversal error rate for the first
person possessive forms than for its non-possessive forms. Oshima-Takane,
Cole & Yaremko (1993) have reported that the hearing-impaired child in
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their study correctly produced I in self-reference, while producing me/my
incorrectly in reference with her mother or her mother as possessor. The
networks producing reversal errors in the present simulation did not show
any variability in error patterns because the study did not deal with the
pronoun case distinction. Future research should construct a model which
could account for such discrepancies in error rate among different pronoun
cases observed in the course of acquisition.

An important difference between networks and children is that networks
typically concentrate on a single task or on a restricted set of related tasks, and
have little or no prior knowledge to draw upon. Children must deal with
many unrelated tasks, but have considerable prior knowledge that might
influence new learning. One definite advantage of computer simulation is,
however, that we can test the hypothesized developmental mechanisms by
setting up ideal environmental conditions that are impossible with humans
for ethical reasons. Furthermore, we can specify prior knowledge the
networks must have before the learning starts and test the effects of this prior
knowledge. We can also directly examine internal representations of networks
and their changes, which are again impossible with humans. The present
work demonstrates that network analysis is important to understand what
and how the networks learn. In particular, analysis of the different knowledge
representations over time allows a close comparison between the behaviours
of the networks and those of children. This is essential for determining
whether the networks have arrived at the same degree of mastery as children
and whether their development is similar to that of children.

Future study will examine the role of each unit in neural networks by
conducting lesioning studies. We will eliminate connections in a network
systematically and will examine how function approximation deteriorates.
Elimination of a set of connections may entail elimination of direct or indirect
effects of the unit. In this way we can isolate the total, direct, and indirect
effects of a unit in function approximations, which would help determine
whether the developmental changes observed in children can reasonably be
approximated by the addition of hidden units in networks.

In sum, the present modelling study provided evidence in support of
Oshima-Takane’s theoretical analysis on the learning of English personal
pronouns (Oshima-Takane, 1985, 1988, 1992; Oshima-Takane et al., 1996).
Children learn correct semantic rules for first and second person pronouns by
observing the shifting reference of these pronouns in non-addressed speech,
whereas they learn incorrect semantic rules if they simply observe the
pronouns in addressed speech. In addition to speech role and referent
information, the present study suggests that prior knowledge of the kind
PERSON and exposure to examples involving various persons are important
factors for improving networks’ generalization capability.
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