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Abstract 

 
We explore the ability of a static connectionist algorithm to 
model children's acquisition of velocity, time, and distance 
concepts under architectures of different levels of 
computational power. Diagnosis of rules learned by networks 
indicated that static networks were either too powerful or too 
weak to capture the developmental course of children’s 
concepts. Networks with too much power missed 
intermediate stages; those with too little power failed to reach 
terminal stages. These results were robust under a variety of 
learning parameter values. We argue that a generative 
connectionist algorithm provides a better model of develop-
ment of these concepts by gradually increasing representa-
tional power. 
 
 

Introduction 
The use of connectionist networks to model cognitive development 
has placed new emphasis on a fundamental question in cognitive 
development: How is transition from one stage to another possible 
(Bates & Elman, 1993)? Although many researchers (e.g., Plunkett 
& Sinha, 1992; McClelland, 1995) conclude that connection weight 
adjustment can account for transition, the recent success of models 
employing a generative algorithm questions this conclusion (Shultz, 
Schmidt, Buckingham, & Mareschal, 1995). Shultz et al. (1995) 
argue that, in addition to weight adjustment, transition requires 
increases in non-linear computational power afforded by the 
recruitment of hidden units into the network as it learns. To assess 
the importance of hidden unit recruitment, in this article we explore 
the ability of a static connectionist algorithm to model children's 
acquisition of velocity (v), time (t), and distance (d) concepts and 
compare it to research using a generative connectionist algorithm 
(Buckingham & Shultz, 1994).  

Development of Velocity, Time, and Distance 

In classical physics, velocity is defined as v = d÷t , time as  
t = d÷v, and distance as d = v*t. Wilkening (1981, 1982) designed 
tasks in which children were asked to infer velocity, time, or 
distance given information about the other two dimensions. 
Wilkening found the following regularities: (1) In a distance-
inference task, 5-year-olds employed an additive rule, d = t+v, 
whereas adults used the correct multiplication rule, d = v*t; (2) in 
a time-inference task, 10-year-olds and adults employed the correct 
division rule, t = d÷v, whereas 5-year-olds used a subtraction rule, 
t  = d-v; and (3) in a velocity-inference task, 10-year-olds and 

adults used a subtraction rule, v = d-t, whereas 5-year-olds used an 
identity rule, v = d .  

Simulations Using a Generative Algorithm 

Buckingham and Shultz (1994) modeled the acquisition of velocity, 
time, and distance concepts using cascade-correlation (Fahlman & 
Lebiere, 1990), a generative connectionist algorithm. Cascade-
correlation networks begin with a minimal topology determined by 
the number of input and output units, without any hidden units. 
During an output training phase, weights from input units and any 
installed hidden units are adjusted to minimize the sum of squared 
error between actual and target outputs. When error can no longer 
be minimized, an input training phase begins in which weights from 
input units to a pool of candidate hidden units are adjusted to 
maximize the correlation between hidden unit activation and output 
error. The hidden unit that attains the highest correlation is then 
installed into the network and output training recommences. 

Simulation results matched those of Wilkening (1981; 1982) 
for the most part. For distance inferences, there was a progression 
from the additive (d = t+v) to the multiplicative rule (d = t*v). 
For time and velocity inferences, networks began with identity 
rules (t = d and v = d, respectively), progressed to additive (t = 
d-v and v = d-t, respectively), and finally multiplicative rules (t = 
d÷v and v = d÷t , respectively).1 Wilkening's participants did the 
same, except that they showed no identity rule for time inferences 
and failed to use the multiplicative rule for velocity inferences 
(Wilkening, 1981, attributed this latter failure to task demands). 

Buckingham and Shultz (1994) suggested that the transition 
from identity stages through intermediate additive stages and 
finally multiplicative stages was made possible by both weight 
adjustment and hidden unit recruitment. In order to test this 
hypothesis, we compare the performance of cascade-correlation 
networks with that of static networks (i.e., networks in which the 
architecture is fixed throughout training). 

______________ 
1 Example results are presented in Figure 1a for comparison 
purposes. 
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Simulations Using a Static Algorithm 

Experiment 1 

We used standard back-propagation networks as static networks 
because these were used by McClelland (1989) in his pioneering 
work modeling cognitive development on the balance scale task and 
are the most common connectionist learning networks. To 
maximize the chances of capturing human performance, we 
systematically sampled a variety of back-propagation architectures 
and parameter values. We ran simulations using four differentially 
powerful architectures: one hidden layer with one, two, or three 
hidden units; and two hidden layers with two hidden units in each 
layer. In each architectural condition, 180 networks were run in a 
crossed experimental design consisting of three levels of learning 
rate (eta) and momentum (alpha). The levels of learning rate were 
0.025, 0.050 (the default value), and 0.100. The levels of 
momentum were 0.100, 0.450, and 0.900 (the default value). 

The task was the same as in our cascade-correlation 
simulations. The networks had to predict, as output, the value of 
one dimension (e.g., velocity) given information about the other 
dimensions (e.g., distance and time). In order to maximize the 
ability to compare the performance of static networks with that of 
generative networks, input and output coding, output unit type, 
weight updating mode, and training and testing methods were as 
they had been in the cascade-correlation simulations (Buckingham 
& Shultz, 1994). 

Inference patterns were encoded using nth encoding as 
follows.2 Two input banks received dimensional values ranging 
from 1 to 5. The third bank received an input of 0 indicating that it 
was the dimension to be predicted. Each input bank had five input 
units for a total of 15 input units. A dimensional value n was 
encoded by assigning an activation of 1 to the nth input unit of the 
bank and 0 to all other units in the bank. Thus, for a given inference 
pattern, one input bank received activations of 0 on all of its five 
input units, indicating it was unknown. One unit of each of the 
other two input banks received an activation of 1. The remaining 
units in these banks received activations of 0. 

As in our work with cascade-correlation, one linear output 
unit was used. A linear output was used because it is the most 
natural way of producing a quantitative output similar to the 
responses made by Wilkening's participants. Target values for the 
output unit were calculated using the three Newtonian equations (v 
= d÷t , t = d÷v, and d = v*t), respectively. In addition, distance 
target values were divided by five so that their range was identical 
to the ranges of time and velocity target values. Twenty-five 
instances of each of the three inference problem types were 
obtained by crossing the five levels of velocity, time, and distance 
for a total of 75 inference patterns. 

At each epoch of training, all 75 inference problems were 
presented to the network. Weight updates occurred only after all 
patterns had been presented to the network. This batch training 
continued for a maximum of 1500 epochs. 

To compare network results with human performance, every 
______________ 
2 In Buckingham (1993), cascade-correlation networks with nth 
encoding demonstrated the same qualitative stage progression as 
those with more distributed input encodings. However, networks 
with nth encoding had a decided advantage in that their solutions 
were more transparent. 

fifth epoch of training we diagnosed rules that best captured 
network performance on each problem type. We computed 
correlations between the network's responses and those predicted 
by various plausible rules such as identity  
(v = d, or v = t), addition (v = d+t, or v = d-t), or multiplication 
(v = d*t, v = t÷d , or v = d÷t) rules. To be diagnosed as exhibiting 
stage performance, a rule had to correlate positively with network 
responses, account for more than 50% of the variance in network 
responses, and account for more variance than other plausible rules 
across four consecutive sampled epochs. 

 
Results. A plot of the rules diagnosed as training progressed is 
shown in Figure 1 (b-e) for one network in each of the architectural 
conditions. These nets were chosen because they were good 
exemplars of typical performance across learning rates and 
momentum values.  

For networks with a single hidden unit (Figure 1b), the typical 
progression involved early onset of time and velocity identity 
stages, followed by onset of the distance additive stage and, then, 
oscillation between the additive and multiplicative distance rules. 
Only 19 of the 180 networks attained a stable multiplicative stage 
of distance (d = t*v). None of the networks attained the 
multiplicative stages of time and velocity (only four networks 
progressed beyond the identity stages to the additive stages of 
time, t = d-v, and velocity, v = d-t). 

In contrast to networks with a single hidden unit, the majority 
of networks with two hidden units (Figure 1c) progressed beyond 
the identity stages of time and velocity, attaining the multiplicative 
stages. However, only 13 of the 180 networks demonstrated the 
intermediate additive stages of both time and velocity. With respect 
to distance development, a small majority (94) demonstrated the 
distance additive stage and, unlike networks with a single hidden 
unit, a large majority (166) of networks attained a stable distance 
multiplicative stage.  

Performance of networks with three hidden units (Figure 1d) 
was similar to those with two hidden units although slightly fewer 
networks demonstrated both time and velocity identity stages (170 
vs. 177) and additive stages (4 vs. 13). All 180 networks attained 
the multiplicative stages of time and velocity. Another difference 
was that fewer networks (69 vs. 94) demonstrated the distance 
additive stage. All but one of the 180 networks attained the 
distance multiplicative stage. 

Finally, the majority of networks with two hidden layers 
(Figure 1e) also failed to demonstrate the time and velocity additive 
stages. Only six networks attained both intermediate additive 
stages of time and velocity. The majority of networks (172) 
attained the multiplicative stages of time and velocity, respectively. 
Use of a second hidden unit layer increased the number of 
networks demonstrating the distance additive stage but only 
slightly  (106 vs. 94 networks with one hidden layer of two units). 
All but six of the 180 networks attained the distance multiplicative 
stage. 



509 

  
  
  
 (c) (d) 

 
300250200150100500

2

13

v=d÷t
t=d÷v
d=v*t

t=d-v
d=t+v

v=d
t=d

D
ia

gn
os

ed
 R

u
le

   

  

1 hidden layer with 2 units

 eta = 0.025, alpha = 0.45

v=d-t

Epoch  
300250200150100500

2

13

v=d÷t
t=d÷v
d=v*t

t=d-v
d=t+v

v=d
t=d

D
ia

gn
os

ed
 R

u
le

   

  

1 hidden layer with 3 units

  eta = 0.05, alpha = 0.45

v=d-t

Epoch  
  
  
  
 (e) (f) 

 
300250200150100500

2

13

v=d÷t
t=d÷v
d=v*t

t=d-v
d=t+v

v=d
t=d

D
ia

gn
os

ed
 R

u
le

   

  

2 hidden layers with 2 units

  eta = 0.05, alpha = 0.45

v=d-t

Epoch  
300250200150100500

2

13

v=d÷t
t=d÷v
d=v*t

t=d-v
d=t+v

v=d
t=d

D
ia

gn
os

ed
 R

u
le

   

  

   Cross-connections

eta = 0.05, alpha = 0.9

v=d-t

Epoch  
 
Figure 1: Diagnosed rules of (a) a generative connectionist network from previous research (H indicates hidden unit recruitment); one 
network in experiment 1 that exemplifies typical performance with one hidden layer of (b) one, (c) two, and (d) three hidden units, and (e) 
two hidden layers with 2 hidden units in each layer; (f) one network in experiment 2 with one hidden layer containing two hidden units and 
cross-connections. 
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In summary, very few static networks demonstrated the entire 
developmental course: time and velocity identity stages; distance, 
time, and velocity additive stages; and distance, time, and velocity 
multiplicative stages. Of the networks with a single hidden unit 
layer, only five out of 180 networks with two hidden units and 
three out of 180 networks with three hidden units demonstrated 
the entire developmental course. None of the networks with a 
single hidden unit attained the multiplicative stages of time and 
velocity. Networks with two or three hidden units on one layer 
typically missed the intermediate additive stages, particularly for 
time and velocity inferences. Finally, only one of the 180 networks 
with two hidden layers demonstrated the entire developmental 
course; these networks also missed the intermediate additive stages 
for time and velocity inferences.  

Experiment 2 

Cascade-correlation differs from back-propagation not only in the 
progressive recruitment of hidden units, but also in the use of 
cross-connections that bypass hidden unit layers. To assess the 
possibility that the psychological realism of cascade-correlation 
simulations might be due to the use of these cross-connections, and 
not to generative hidden unit creation, we ran 20 static networks 
with an architecture consisting of cross-connections and one hidden 
layer with two units. One hidden layer with two units was chosen 
because it showed the most promise of capturing time and velocity 
additive stages in Experiment 1. In experiment 2, we used only the 
default learning rate (0.050) and momentum values (0.900). 
Everything else was kept constant with Experiment 1. 

 
Results. A plot of the rules diagnosed in one network as training 
progressed is shown in Figure 1f. This network was chosen 
because it was a good exemplar of typical performance. Overall the 
performance of these networks was similar to those in Experiment 
1. That is, the majority of networks (14/20) progressed from the 
identity stages of time and velocity to the multiplicative stages 
without demonstrating the intermediate additive stages. Of the 
remaining six networks, three did not exhibit either identity stage 
and three attained one identity stage but not the other. All 20 
networks attained the multiplicative stages of time and velocity. 
One difference compared to networks in Experiment 1 was that the 
use of cross-connections resulted in even fewer networks (5/20) 
first achieving the distance additive stage before the multiplicative 
stage. All 20 networks attained the distance multiplicative stage. 

Discussion 
Static networks in both experiments had no difficulty capturing 
early time and velocity identity stages. The limitation of static 
networks was their inability to capture both additive and 
multiplicative stages, regardless of a wide sampling of network 
architecture and parameter values. Different network architectures 
could capture one type of stage, but not the other, e.g., additive but 
not multiplicative, or multiplicative but not additive. Thus, simple 
connection weight adjustment is insufficient to capture all stage 
transitions. 

The most general failure of static networks with more than 
one hidden unit was to miss intermediate additive stages. Although 
there remains some doubt as to the inter-developmental course of 
additive stages and whether or not the additive stage of velocity is 
the terminal stage of velocity development, children clearly pass 

through these additive stages (Wilkening, 1981; 1982).  Static 
networks with only one hidden layer consisting of one hidden unit 
often captured additive stages, but failed to reach multiplicative 
stages. Static networks with the limited computational power 
provided by one hidden layer with one hidden unit seemed too 
weak to attain multiplicative stages; static networks with more 
computational power seemed too powerful because they skipped 
intermediate stages. There seemed to be no static back-propagation 
architecture capable of simulating the full range of stages in the 
domain of velocity-time-distance. In contrast, all generative 
networks captured identity, additive, and multiplicative stages 
(Buckingham & Shultz, 1994).  

The failure of static networks with cross-connections to 
successfully capture human performance in Experiment 2 suggests 
that the use of these cross-connections by cascade-correlation is 
not sufficient for its success. Rather, progressive recruitment of 
hidden units appears necessary for capturing correct stage 
progressions. Cross-connections may prove to be necessary as 
well, particularly in capturing early linearly separable performance, 
but this would need to be documented in future simulations. 

Other, less direct evidence for the superiority of generative 
over static connectionist algorithms at simulating human 
development has been reported. For example, generative networks 
(Shultz, Mareschal, & Schmidt, 1994) captured the terminal stage 
of balance scale development more successfully than did static 
networks (McClelland, 1989; 1995). The present results extend 
these findings to cases in which static networks, with a sufficiently 
powerful architecture, successfully capture terminal stages 
(multiplicative stages) but fail to capture intermediate stages. 
Simulating the full range of psychologically realistic stages appears 
to rely on the ability of networks to grow in computational power. 
A similar point in the realm of grammar learning was made by 
Elman (1993). To learn an English-like grammar, recursive back-
propagation networks had to receive either progressively more 
complex sentences or grow in working memory capacity. 

The fact that realistic connectionist models of development 
need to grow in computational power suggests that human 
development involves not only incremental learning but also 
increases in non-linear representational abilities. What factors cause 
the emergence of these new representational abilities in children 
remains an open question. 

This research compares only a single exemplar of a static 
algorithm (back-propagation) to a single exemplar of a generative 
algorithm (cascade-correlation). Using other exemplars of each class 
of algorithm could indicate the generality of the conclusions. It 
might also be interesting to explore the capacity of other generative 
network techniques to capture cognitive developmental 
phenomena. For example, must the network grow vertically, as in 
cascade-correlation, or could it grow horizontally on a single layer 
(e.g., Ash, 1989)? If cognitive development is characterized by the 
continual redescription of earlier knowledge representations 
(Karmiloff-Smith, 1992), then vertical, rather than horizontal, 
growth would seem to be required. Further, how would network 
pruning techniques (Hanson & Pratt, 1989; Le Cun, Denker, & 
Solla, 1990) fare in capturing developmental stages? If cognitive 
development is characterized by the emergence of qualitatively 
distinct knowledge representations (Carey, 1991), then recruitment 
ought to work better than pruning.  
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