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Abstract

We explore the ability of a static connectionist algorithm to
model children's acquisition of velocity, time, and distance
concepts under architectures of different levels of
computational power. Diagnosis of rules learned by networks
indicated that static networks were either too powerful or too
weak to capture the developmental course of children’s
concepts. Networks with too much power missed
intermediate stages; those with too little power failed to reach
terminal stages. These results were robust under a variety of
learning parameter values. We argue that a generative
connectionist algorithm provides a better model of develop-
ment of these concepts by gradually increasing representa
tional power.

I ntroduction

The use of connectionist networks to model cognitive development
has placed new emphasis on a fundamenta question in cognitive
development: How is trangition from one stage to another possible
(Bates & Elman, 1993)? Although many resserchers (e.g., Plunkett
& Sinha, 1992; McCldland, 1995) conclude thet connection weight
adjustment can account for trangtion, the recent success of models
employing a generative agorithm questions this conclusion (Shultz,
Schmidt, Buckingham, & Mareschd, 1995). Shultz e d. (1995)
argue that, in addition to weight adjustment, transition requires
increases in non-linear computational power afforded by the
recruitment of hidden units into the network as it learns. To assess
the importance of hidden unit recruitment, in this article we explore
the ability of a static connectionist agorithm to moded children's
acquidtion of veocity (v), time (t), and distance (d) concepts and
compare it to research using a generative connectionist agorithm
(Buckingham & Shultz, 1994).

Development of Velocity, Time, and Distance

Indassica physics, veocity isdefined asv = d+t, timeas

t = d+v, and digance asd = v« t. Wilkening (1981, 1932) designed
tasks in which children were asked to infer velocity, time, or
distance given information about the other two dimensions.
Wilkening found the following regularities (1) In a distance
inference task, 5year-olds employed an additive rule, d = t+v,
whereas adults used the correct multiplication rule, d = v«t; (2) in
atime-inference task, 10-year-olds and adults employed the correct
division rule, t = d+v, whereas 5-year-olds used a subtraction rule,
t = dv; and (3) in a veocity-inference task, 10-year-olds and
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adults used a subtraction rule, v = d-t, wheress 5-year-olds used an
identity rule, v = d.

Simulations Using a Gener ative Algorithm

Buckingham and Shultz (1994) modeed the acquisition of velocity,
time, and distance concepts using cascade-corrdaion (Fahlman &
Lebiere, 1990), a generdtive connectionist agorithm. Cascade-
correlation networks begin with aminimal topology determined by
the number of input and output units, without any hidden units.
During an output training phase, weights from input units and any
ingtalled hidden units are adjusted to minimize the sum of squared
error between actud and target outputs. When error can no longer
be minimized, an input training phase begins in which weights from
input units to a pool of candidate hidden units are adjusted to
maximize the correlation between hidden unit activation and output
eror. The hidden unit that attains the highest correlation is then
ingaled into the network and output training recommences.

Simulation results matched those of Wilkening (1981; 1982)
for the most part. For distance inferences, there was a progression
from the additive d = t+V) to the multiplicative rule (d = t*v).
For time and velocity inferences, networks began with identity
rules (t = d and v = d, respectively), progressed to additive (t =
d-vand v = d-t, respectively), and findly multiplicative rules (t =
d+v and v = d=t, respectively).l Wilkening's participants did the
same, except that they showed no identity rule for time inferences
and faled to use the multiplicative rule for veocity inferences
(Wilkening, 1981, attributed this|atter failure to task demands).

Buckingham and Shultz (1994) suggested that the transition
from identity stages through intermediate additive stages and
finaly multiplicative stages was made possble by both weight
adjusment and hidden unit recruitment. In order to test this
hypothesis, we compare the performance of cascade-correlation
networks with that of static networks (i.e., networks in which the
architecture isfixed throughout training).

I Example results are presented in Figure la for comparison
purposes.



Simulations Using a Static Algorithm

Experiment 1

We used standard back-propagation networks as static networks
because these were used by McCldland (1989) in his pioneering
work modeling cognitive development on the balance scale task and
ae the mogt common connectionist learning networks. To
maximize the chances of capturing human peformance, we
systematically sampled a variety of back-propagetion architectures
and parameter values. We ran smulations using four differentialy
powerful architectures. one hidden layer with one, two, or three
hidden units; and two hidden layers with two hidden units in each
layer. In exch architectural condition, 180 networks were run in a
crossed experimental design condsting of three levels of learning
rate (eta) and momentum (al pha). The levels of learning rate were
0.025, 0.050 (the default vaue), and 0.100. The leves of
momentumwere 0.100, 0.450, and 0.900 (the default vaue).

The tak was the same as in our cascade-corrdation
smulations. The networks had to predict, as output, the value of
one dimension (eg., veocity) given information about the other
dimensons (eg., digance and time). In order to maximize the
ability to compare the performance of static networks with that of
generative networks, input and output coding, output unit type,
weight updating mode, and training and testing methods were as
they had been in the cascade-corrdlation smulations (Buckingham
& Shultz, 1994).

Inference patterns were encoded using nth encoding as
follows2 Two input banks received dimensiona vaues ranging
from 1 to 5. The third bank received an input of 0 indicating that it
was the dmension to be predicted. Each input bank had five input
units for a total of 15 input units. A dimensona vadue n was
encoded by assgning an activation of 1 to the nth input unit of the
bank and O to al other unitsin the bank. Thus, for agiven inference
pattern, one input bank received activations of 0 on dl of its five
input units, indicating it was unknown. One unit of each of the
other two input banks received an activation of 1. The remaining
unitsin these banks received activations of O.

Asin our work with cascade-correlation, one linear output
unit was used. A linear output was used because it is the most
natural way of producing a quantitative output smilar to the
responses made by Wilkening's participants. Target values for the
output unit were calculated using the three Newtonian eguations (v
= d+t, t = d+v, and d = wt), respectively. In addition, distance
target values were divided by five so thet their range was identical
to the ranges of time and veocity target values. Twenty-five
instances of eech of the three inference problem types were
obtained by crossng the five levels of velocity, time, and distance
for atota of 75 inference patterns.

At each epoch of training, dl 75 inference problems were
presented to the network. Weight updates occurred only after al
patterns had been presented to the network. This batch training
continued for amaximum of 1500 epochs.

To compare network results with human performance, every

2 In Buckingham (1993), cascade-correlation networks with nth
encoding demonstrated the same qualitative stage progression as
those with more distributed input encodings. However, networks
with nth encoding had a decided advantage in that their solutions
were more transparent.

fifth epoch of training we diagnosed rules that best captured
network performance on eech problem type We computed
correlations between the network’s responses and those predicted
by various plausible rules such asidentity
(v=d,orv=t),addition (v= d+t, or v=d-t), or multiplication
(v= d*t, v=t=d, or v = d+t) rules To be diagnosed as exhibiting
stage performance, a rule had to correlate positively with network
responses, account for more than 50% of the variance in network
responses, and account for more variance than other plausible rules
across four consecutive sampled epochs.

Results. A plot of the rules diagnosed as training progressed is
shown in Figure 1 (b-e) for one network in each of the architectura
conditions. These nets were chosen because they were good
exemplars of typicd performance across learning rates and
momentum vaues

For networks with a single hidden unit (Figure 1b), the typica
progression involved early onset of time and velocity identity
stages, followed by onsat of the distance additive stage and, then,
ogcillation between the additive and multiplicative distance rules.
Only 19 of the 180 networks attained a stable multiplicative stage
of distance (d = txv). None of the networks attained the
multiplicative stages of time and velocity (only four networks
progressed beyond the dentity stages to the additive stages of
time t = d-v, and velocity, v = d-t).

In contrast to networks with a single hidden unit, the mgjority
of networks with two hidden units (Figure 1c) progressed beyond
the identity stages of time and velocity, attaining the multiplicative
stages. However, only 13 of the 180 networks demongtrated the
intermediate additive stages of both time and velocity. With respect
to distance development, a small mgjority (94) demonstrated the
digtance additive stage and, unlike networks with a single hidden
unit, a large mgority (166) of networks attained a stable distance
multiplicative stage.

Performance of networks with three hidden units (Figure 1d)
was smilar to those with two hidden units dthough dightly fewer
networks demongtrated both time and velocity identity stages (170
vs. 177) and additive stages (4 vs. 13). All 180 networks attained
the multiplicative stages of time and velocity. Another difference
was that fewer networks (69 vs. 94) demondrated the distance
additive stage. All but one of the 180 networks attained the
digtance multiplicative stage.

Findly, the mgority of networks with two hidden layers
(Figure 1e) dso failed to demonstrate the time and vel ocity additive
stages. Only six networks atained both intermediate additive
stages of time and velocity. The mgority of networks (172)
attained the multiplicative stages of time and velocity, respectively.
Use of a second hidden unit layer increesed the number of
networks demongrating the distance additive stage but only
dightly (106 vs. 94 networks with one hidden layer of two units).
All but six of the 180 networks attained the distance multiplicative
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Fgure 1: Diagnosad rules of (8) a generative connectionist network from previous research (H indicates hidden unit recruitment); one
network in experiment 1 that exemplifies typica performance with one hidden layer of (b) one, (c) two, and (d) three hidden units, and (€)
two hidden layers with 2 hidden unitsin each layer; (f) one network in experiment 2 with one hidden layer containing two hidden units and
Cross-connections.



In summary, very few gtatic networks demonstrated the entire
developmenta course: time and velocity identity stages, distance,
time, and velocity additive stages; and distance, time, and velocity
multiplicative stages. Of the networks with a single hidden unit
layer, only five out of 180 networks with two hidden units and
three out of 180 networks with three hidden units demonstrated
the entire developmental course. None of the networks with a
single hidden unit attained the multiplicative stages of time and
velocity. Networks with two or three hidden units on one layer
typically missed the intermediate additive stages, particularly for
time and velocity inferences. Findly, only one of the 180 networks
with two hidden layers demondtrated the entire developmental
course; these networks aso missed the intermediate additive stages
for time and velocity inferences.

Experiment 2

Cascade-corrdation differs from back-propagation not only in the
progressive recruitment of hidden units, but dso in the use of
cross-connections that bypass hidden unit layers. To assess the
possibility that the psychologicd redism of cascade-correation
simulations might be due to the use of these cross-connections, and
not to generative hidden unit cregtion, we ran 20 static networks
with an architecture consisting of cross-connections and one hidden
layer with two units. One hidden layer with two units was chosen
because it showed the most promise of capturing time and velocity
additive stages in Experiment 1. In experiment 2, we used only the
defallt leaning rae (0.050) and momentum vaues (0.900).
Everything else was kept constant with Experiment 1.

Results. A plot of the rules diagnosed in one network as training
progressed is shown in Figure 1f. This network was chosen
because it was agood exemplar of typica performance. Overdl the
performance of these networks was similar to those in Exp eriment
1. That is, the mgority of networks (14/20) progressed from the
identity steges of time and velocity to the multiplicative stages
without demondrating the intermediate additive stages. Of the
remaining six networks, three did not exhibit either identity stage
and three attained one identity stage but not the other. All 20
networks attained the multiplicative stages of time and veocity.
One difference compared to networks in Experiment 1 was that the
use of cross-connections resulted in even fewer networks (5/20)
firgt achieving the distance additive sage before the multiplicetive
gage. All 20 networks attained the distance multiplicative sage.

Discussion

Static networks in both experiments had no difficulty capturing
ealy time and veocity identity stages. The limitation of dtatic
networks was their ingbility to capture both additive and
multiplicative stages, regardless of a wide sampling of network
architecture and parameter vaues. Different network architectures
could capture one type of stage, but not the other, e.g., additive but
not multiplicative, or multiplicative but not additive. Thus, smple
connection weight adjustment is insufficient to capture al stage
trangtions.

The mogt generd failure of static networks with more than
one hidden unit was to miss intermediate additive stages. Although
there remains some doubt as to the inter-developmenta course of
additive stages and whether or not the additive stage of velocity is
the termind stage of veocity development, children clearly pass
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through these additive stages (Wilkening, 1981; 1982). Static
networks with only one hidden layer consisting of one hidden unit
often captured additive stages, but failed to reach multiplicative
dages. Stetic networks with the limited computational power
provided by one hidden layer with one hidden unit seemed too
weak to attain multiplicative stages; stetic networks with more
computational power seemed too powerful because they skipped
intermediate stages. There seemed to be no atic back-propagation
architecture capable of smulating the full range of stages in the
domain of veocity-time-disance. In contrast, al generdive
networks captured identity, additive, and multiplicetive stages
(Buckingham & Shultz, 1994).

The failure of datic networks with cross-connections to
successfully capture human performance in Experiment 2 suggests
that the use of these cross-connections by cascade-corrélation is
not sufficient for its success. Rather, progressive recruitment of
hidden units appears necessary for capturing correct stage
progressions. Cross-connections may prove to be necessary as
well, particularly in capturing early linearly separable performance,
but thiswould need to be documented in future Smulations.

Other, less direct evidence for the superiority of generdtive
over doaic connectionis dgorithms a smulating humen
development has been reported. For example, generative networks
(Shultz, Mareschd, & Schmidt, 1994) captured the termind stage
of baance scde devdopment more successfully than did static
networks (McCldland, 1989; 1995). The present results extend
these findings to cases in which static networks, with a sufficiently
powerful architecture, successfully cepture termind  stages
(multiplicetive stages) but fal to capture intermediate stages.
Simulaing the full range of psychologicaly redistic stages appears
to rely on the ability of networksto grow in computationa power.
A smilar point in the redm of grammar learning was made by
Elman (1993). To learn an English-like gammar, recursive back-
propagation networks had to receive either progressvely more
complex sentences or grow in working memory capacity.

The fact that redigtic connectionist models of development
need to grow in computationd power suggests that human
development involves not only incrementd learning but adso
increases in non-linear representationa abilities. What factors cause
the emergence of these new representationd abilities in children
remains an open question.

This research compares only a singe exemplar of a datic
dgorithm (back-propagetion) to a single exemplar of a generative
dgorithm (cascade-corrdation). Using other exemplars of each dass
of dgorithm could indicate the generdity of the conclusions. It
might aso be interesting to explore the capacity of other generative
network techniques to capture cognitive developmentd
phenomena. For example, must the network grow verticdly, asin
cascade-corrdation, or could it grow horizontaly on asingle layer
(eg., Ash, 1989)? If cognitive development is characterized by the
continual redescription of earlier knowledge representetions
(Karmiloff-Smith, 1992), then vertica, rather than horizontd,
growth would seem to be required. Further, how would network
pruning techniques (Hanson & Pratt, 1989; Le Cun, Denker, &
Solla, 1990) fare in capturing developmenta stages? If cognitive
development is characterized by the emergence of quditatively
digtinct knowledge representations (Carey, 1991), then recruitment
ought to work better than pruning.
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