
I enthusiastically concur with the bulk of what Page has to say,
but I would like to elaborate on the localist approach outlined in
the target article based on my own involvement with the approach.
In my opinion, the localist position and the localist computational
model presented in the target article are overly restrictive. The au-
thor has focused primarily on the representation of entities that can
be expressed as soft (weighted) conjunctions of features. The lo-
calist model described in section 4 deals almost exclusively with the
acquisition and retrieval of higher-level concepts (nodes) that are
soft conjunctions of lower-level features. Even the more advanced
example discussed in section 4.5 focuses on learning associations
between such entities. This limited representational focus is also
reflected in the examples of entities enumerated by the author,
namely, “words, names, persons, etc.” (sect. 2.5). What Page leaves
out are more complex conceptual items such as events, situations,
actions, and plans, which form the grist of human cognition.

Events, situations, actions, and plans involve relational and pro-
cedural knowledge, and hence, cannot be encoded as mere soft
conjunctions of features; their encoding requires more structured
representations. Working toward a representation of such com-
plex and structured items leads to a more articulated view of the
localist approach than the one presented in the target article. I will
briefly comment on this view. For more details, the reader is re-
ferred to specific models that instantiate this view (see Ajjana-
gadde & Shastri 1991; Bailey 1997; Shastri 1991; 1997; 1999a;
1999b; 1999c; Shastri & Ajjanagadde 1993; Shastri et al., in press).

In the enriched representational context of events, situations,
actions, and plans the operative representational unit is often a cir-
cuit of nodes rather than a node. Moreover, only some of the nodes
in such a circuit correspond to cognitively meaningful entities (as
the latter are characterized in sect. 2.5). Most of the other nodes
in the circuit serve a processing function or perform an ancillary
representational role. For example, such nodes glue together sim-
pler items in systematic ways to form composite relational items,
they provide a handle for systematically accessing specific com-
ponents of a composite item, they provide a handle for systemat-
ically accessing specific components of a composite item, and they
allow actions and plans to be expressed as partially ordered struc-
tures of subactions and subplans. Thus the encoding of an event
(E1) “John gave a book to Mary” in long-term memory would in-
volve not only nodes corresponding to cognitively meaningful en-
tities such as John, Mary, book, giver, recipient, and object, but
also functionally meaningful nodes such as: a node for asserting
belief in E1, a node for querying E1, binder nodes for encoding
role-entity bindings in E1 (for example, a node for encoding the
binding giver 5 John), binding-extractor nodes for selectively re-
trieving role-fillers in E1 (for example, a node for activating “John”
in response to the activation of the role “giver” in the context of
E1), and nodes for linking the encoding of E1 to a generic per-
ceptual-motor schema for the give action. Furthermore, the lo-
calist encoding of the give schema would involve specific nodes
and circuits for encoding a partially ordered sequence of percep-
tual-motor subactions comprising the give action.

In the expanded localist framework, individual nodes continue
to have well-defined localist interpretations. However, these in-
terpretations are best couched in terms of a node’s functional sig-
nificance rather than its semantic significance (cf. sect. 2.5).

The learning framework presented by the author has a strong
overlap with work on recruitment learning (Diederich 1989; Feld-
man 1982; Shastri 1988; 1999b; 1999c; Valiant 1994; Wickelgren
1979). The architecture described in Figure 9 of the target article
is in many ways analogous to that sketched out in (Shastri 1988,
pp. 182–92). This overlap merits further exploration. In the re-
cruitment learning framework, learning occurs within a network
of quasi-randomly connected nodes. Recruited nodes are those
nodes that have acquired a distinct meaning or functionality by
virtue of their strong interconnections to other recruited nodes
and/or other sensorimotor nodes. Nodes that are not yet recruited
are nodes “in waiting” or “free” nodes. Free nodes are connected
via weak links to a large number of free, recruited, and/or senso-

rimotor nodes. These free nodes form a primordial network from
which suitably connected nodes may be recruited for represent-
ing new items. For example, a novel concept y which is a conjunct
of existing concepts x1 and x2 can be encoded in long-term mem-
ory by “recruiting” free nodes that receive links from both x1 and
x2 nodes. Here recruiting a node simply means strengthening the
weights of links incident on the node from x1 and x2 nodes. In gen-
eral, several nodes are recruited for each item.

The recruitment process can transform quasi-random networks
into structures consisting of nodes tuned to specific functionali-
ties. Typically, a node receives a large number of links, and hence,
can potentially participate in a large number of functional circuits.
If, however, the weights of selected links increase, and optionally,
the weights of other links decrease, the node can become more se-
lective and participate in a limited number of functional circuits.

In Shastri (1999b; 1999c) it is shown that recruitment learning
can be firmly grounded in the biological phenomena of long-term
potentiation (LTP) and long-term depression (LTD) that involve
rapid, long-lasting, and specific changes in synaptic strength (Bliss
& Collingridge 1996; Linden 1994). Moreover, as explained in
Shastri (1999c) the specification of a learning algorithm amounts
to choosing a suitable network architecture and a set of appropri-
ate parameter values for the induction of LTP and LTD.

The recruitment learning framework also offers an alternate ex-
planation for the age-of-acquisition effect discussed in section 4.4.
It suggests that (on an average) more cells are recruited for items
acquired earlier in a learning cycle than for items acquired later
in the cycle. Thus items acquired earlier in the learning cycle have
greater neuronal mass and it is this greater mass that gives these
items their competitive edge.

To conclude, Page must be commended for systematically and
comprehensively presenting a strong case for the localist models.
The localist position and computational model presented in the
target article, however, can be enriched by considering the repre-
sentation of complex items involving relational and procedural
knowledge. Work on representing such items leads to a more ar-
ticulated view of the localist approach than that presented in the
target article.

ACKNOWLEDGMENT
This work was supported in part by NSF grants SBR-9720398 and ECS-
9970890.

Prototypes and portability in artificial 
neural network models

Thomas R. Shultz
Department of Psychology, McGill University, Montreal, Quebec, Canada
H3A 1B1. shultz@psych.mcgill.ca
www.psych.mcgill.ca/labs/lnsc/html/Lab-Home.html

Abstract: The Page target article is interesting because of apparent cov-
erage of many psychological phenomena with simple, unified neural tech-
niques. However, prototype phenomena cannot be covered because the
strongest response would be to the first-learned stimulus in each category
rather than to a prototype stimulus or most frequently presented stimuli.
Alternative methods using distributed coding can also achieve portability
of network knowledge.

The Page target article is surprisingly interesting. I use the term
“surprisingly” because, with all of the deep controversies in cog-
nitive science, it is difficult to care much about whether network
representations are local or distributed. In any given simulation,
choice of representation is of key importance, but it is rarely re-
garded as a life-and-death ideological issue whether these codes
are local or distributed. Many modelers adopt an eclectic ap-
proach that enables them to use representations that (a) work in
terms of covering psychological data and (b) can be justified by
psychological evidence.
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What is significant about Page’s article is the fact that such a
simple, unified, nonmainstream neural model can apparently cap-
ture so many phenomena, from unsupervised learning to age-of-
acquisition effects, in such a natural fashion. That the coding is lo-
cal is somewhat incidental to that source of interest, even though
local coding happens to be critical to the functioning of Page’s par-
ticular networks.

It might be that Page has dichotomized and polarized the field
too much. For example, a reader could easily get the impression
from section 4.3.2 that conventional attractor networks always or
typically employ distributed codes. But there are many instances 
of local encoding in successful attractor network models that are
quite different from the networks that Page proposes. Such mod-
els cover, for example, analogical retrieval and mapping (Holyoak
& Thagard 1989; Thagard et al. 1990), explanation (Read & Mar-
cus-Newhall 1993; Thagard 1989), decision making (Thagard &
Millgram 1995), attitude change (Spellman et al. 1993), person im-
pression (Kunda & Thagard 1996; Read & Miller 1998; Smith &
DeCoster 1998), and cognitive dissonance (Shultz & Lepper 1996).

Page argues that local coding is to be preferred for psychologi-
cal modeling over distributed coding. A less polarizing conclusion
would be that both local and distributed encoding techniques are
legitimate within a variety of different neural network techniques.
Page himself notes that many localist models use some distributed
coding. Because eclectic use of local and distributed codes is so
common, it is somewhat difficult to accept Page’s strongly localist
argument. In the end, Page is willing to call a coding system local
even if only some of its codes are local. With so many modelers
willing to use both local and distributed codes, a strict dichotomy
seems unwarranted.

Because Page’s models can apparently cover such a wide range
of effects, it would be useful to examine this coverage in more de-
tail than was possible in his article. For example, the basic learn-
ing module described in section 4.1 would seem to have consid-
erable difficulty simulating common prototype effects. This
difficulty stems from the fact the strongest second-layer (output)
responses would be the first stimulus learned in each category,
rather than to a prototype stimulus or the most frequent stimuli.
This is because each new stimulus is responded to most by the
second-layer unit that first learned to respond to the most similar
previously learned stimulus. Only stimuli that are sufficiently dif-
ferent from previously learned stimuli will provoke new learning
by an uncommitted second-layer unit. In contrast, psychological
evidence has found the largest recognition responses to occur to
prototypic or especially frequent stimuli, not to first-learned stim-
uli (Hayes-Roth & Hayes-Roth 1977). These psychological proto-
type findings are more readily accounted for by a variety of neural
network models that are different from Page’s models. For exam-
ple, auto-associator networks learning with a Hebbian or delta
rule (McClelland & Rumelhart 1986) or encoder networks learn-
ing with the back-propoagation rule can cover prototype phe-
nomena. Interestingly, it does not matter whether these success-
ful network models use local or distributed codes. It might prove
interesting to examine in more detail the psychological fitness of
the rest of Page’s models, all of which build on this basic learning
module.

One of the major apparent advantages of Page’s localist models
is the relative ease with which local representations can be ma-
nipulated (sect. 7.5), as compared to representations that are dis-
tributed over many units. It is possible that this feature could be
exploited to achieve portability of knowledge. People seem capa-
ble of porting their knowledge to novel problems in creative ways,
and this portability is sometimes regarded as a significant chal-
lenge for artificial neural network models (Karmiloff-Smith 1992).
Local representations like those advocated by Page might be good
candidates for portability. Building or learning connection weights
from a single unit, perhaps representing a complex idea, seems
much easier than establishing connection weights from many such
representation units.

This is not to admit, however, that local coding is required for

knowledge portability in neural networks. Alternative techniques
for achieving knowledge portability with distributed codes might
well be possible too. One example is the work we are currently do-
ing on a system called Knowledge-based Cascade-correlation
(KBCC) Shultz 1998). Ordinary Cascade-correlation (CC) is a
generative feed-forward network algorithm that grows as it learns,
by recruiting new hidden units into a network as needed to reduce
error (Fahlman & Lebiere 1990). The hidden units recruited by
CC are virginal, know-nothing units until they are trained to track
current network error during the recruitment process. However,
KBCC has the ability to store and possibly recruit old CC net-
works that do already know something. In KBCC, old networks
compete with new single units to be recruited. This makes old
knowledge sufficiently portable to solve new problems, if the old
knowledge is helpful in tracking and ultimately reducing network
error. Moreover, because the stored networks are retained in their
original form, KBCC is much more resistant to the catastrophic
interference caused by new learning in most static feed-forward
networks. It is noteworthy once again that all of this can be ac-
complished regardless of whether the coding is local or distributed
in KBCC systems. Actually, even ordinary CC networks are quite
resistant to catastrophic interference because of the policy of
freezing input weights to hidden units after recruitment (Tetew-
sky et al. 1994). This ensures that each hidden unit never forgets
its original purpose, even though it may eventually play a new role
in learning to solve current problems.
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Abstract: Page’s manifesto makes a case for localist representations in
neural networks, one of the advantages being ease of interpretation. How-
ever, even localist networks can be hard to interpret, especially when at
some hidden layer of the network distributed representations are em-
ployed, as is often the case. Hidden Markov models can be used to pro-
vide useful interpretable representations.

In his manifesto for the use of localist neural network models,
Page mentions many advantages of such a scheme. One advantage
is the ease of interpretation of the workings of such a network in
psychologically relevant terms (sect. 7.6).

As Page justly remarks, a localist model does not imply that dis-
tributed representations are not used in any part of the model;
rather a localist model is characterized by employing localist rep-
resentations at some (crucial) points such as the output level of the
network. More specifically he states that “any entity that is locally
represented at layer n of the hierarchy is sure to be represented
in a distributed fashion at layer n 2 1” (sect. 2.6). Why should the
problem of interpretation not apply to these distributed repre-
sentations at lower levels as well? I think it does, and it’s best to il-
lustrate this with an example.

Following the work of Elman (1990), Cleeremans and McClel-
land (1991) used a simple recurrent network SRN to model im-
plicit learning behavior using localist representations at both in-
put and output layers, but a distributed representation at the
hidden layer of the network. As they show in their paper the SRN
model captures the main features of subjects’ performance by
“growing increasingly sensitive to the temporal context [of the cur-
rent stimulus].” This sensitivity to the temporal context of stimuli
is somehow captured by representations formed at the hidden
layer of the network. In exactly what sense differences in tempo-
ral context affect activity at the hidden layer is unclear: What does
a certain pattern of activity of the hidden layer units mean?
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