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Introduction 
One of the fundamental debates in cognitive science over the last 20 years concerns the 
proper theoretical account of human cognition. Is cognition better interpreted in terms of 
symbolic rules or subsymbolic neural networks? A study of infant familiarization to 
sentences in an artificial language claimed to have produced data that only a rule-based 
account could explain (Marcus, Vijayan, Rao, & Vishton, 1999). Those results showed 
that 7-month-old infants attend longer to sentences with an unfamiliar syntax than to 
sentences with a familiar syntax. Learning of such artificial languages is thought to reveal 
the language-learning capabilities of infants (Gómez & Gerken, 2000).  

Partly because of their own unsuccessful attempts at modeling these data with neural 
networks, Marcus et al. (1999) concluded that infants possess a rule-learning capability 
unavailable to neural networks that do not employ symbolic variables and rules. A 
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background, companion article suggested that rule learning might be an innately provided 
capacity, distinct from the associative learning mechanisms in neural networks (Pinker, 
1999).  

The challenge laid down by Marcus et al. and Pinker was promptly accepted by a 
number of neural-network modelers, many of whom produced neural models that seemed 
to capture the infant data (cf. review by Shultz & Bale, 2001). However, recent papers by 
Vilcu and Hadley (2001, 2003, 2005) reported, somewhat surprisingly, that several of 
these simulation results could not be replicated. The one simulation they replicated was 
by Shultz and Bale (2001). Although they acknowledged that this model could cover the 
infant data, they argued that it was learning numerical contours of the artificial sentences 
rather than the underlying grammatical pattern. In support of their claim, they noted that 
their own extensions of the Shultz and Bale model failed to generalize, both in terms of 
interpolation and extrapolation.  

The purpose of the present paper is to examine Vilcu and Hadley’s argument in 
detail. We present nine new simulations and three new analyses to show that Shultz and 
Bale’s (2001) model does in fact learn to discriminate the simple grammars used in the 
Marcus et al. (1999) infant experiments. The paper begins with a brief review of the 
infant experiments and the original Shultz and Bale simulations. The contours involved in 
the sentences learned by the infants and the network models are then analyzed, and a new 
simulation explains cross-experiment differences based on contour patterns. Then the 
ability of the networks to generalize within and beyond the range of training stimuli is 
examined in additional simulations. This is followed by simulations and analyses of the 
knowledge representations learned by the networks. Finally, other new simulations 
explore the role of sonority contours in identifying syllables in continuous speech. It is 
concluded that contour learning and grammar learning are not incompatible, that learning 
sound contours can help in learning grammars, and that the Shultz and Bale (2001) model 
still offers a viable account of the infant data.   

The Infant Data 
Marcus et al. (1999) performed experiments in which 7-month-old infants were 
familiarized with three-word sentences of monosyllabic words in an artificial language 
and were then tested on novel sentences that were either consistent or inconsistent with 
those to which the infant was familiarized. In one experiment, infants were presented 
with sentences exhibiting an ABA pattern, for example, ga ti ga or li na li. There were 16 
of these ABA sentences, created by combining four A-category words (ga, li, ni, and ta) 
with four B-category words (ti, na, gi, and la). Then the infants were presented with two 
novel sentences that were consistent with the ABA pattern (wo fe wo, and de ko de) and 
two novel sentences that were inconsistent because they followed an ABB pattern (wo fe 
fe, and de ko ko). In a control condition, infants were familiarized with sentences having 
an ABB pattern, e.g., ga ti ti and ga na na. Again, 16 such sentences were created by 
combining the four A-category words with the four B-category words. The test sentences 
were the same in this second condition, although here the novel ABB sentences were 
consistent and the novel ABA sentences were inconsistent with the familiar ABB pattern.  
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The dependent measure in these studies was looking time. During the test phase, if an 
infant looked at a flashing light to her left or right, a test sentence was played from a 
speaker near the light. A test sentence was played for 15 s or until the infant looked away.  

A second experiment had the same structure except that the words were chosen more 
carefully so that phoneme sequences were more different in the familiarization and test 
patterns. A third experiment used the same words as did Experiment 2, but had 
contrastive syntactic patterns that each duplicated a consecutive word, i.e., AAB vs. 
ABB. This was to rule out the possibility that infants might have used the presence or 
absence of consecutively-duplicated words to distinguish syntactic types. Here both 
syntactic types had consecutively-duplicated words.  

In all three experiments, infants attended more to inconsistent than to consistent novel 
sentences, suggesting that they had learned something about these simple grammars. The 
issue that has perplexed the literature ever since concerns the proper theoretical account 
of this syntactic processing. Is this processing based on rules and variables or on the 
mechanisms employed in neural networks, i.e., unit activations and connection weights? 
Marcus et al. (1999) argued that even these simple grammars could not be learned by a 
computational system that did not employ rules and variables, such as If the first word of 
a sentence matches the third word of a sentence, then this sentence is grammatical. In 
this rule, sentence, first-word, and third-word are variables that can be bound to different 
instances. Computational models by Shultz (1999) and Shultz and Bale (2001), among 
others, showed that unstructured neural networks could cover most features of the infant 
data. In this context, unstructured neural networks are those that are not engineered to 
explicitly employ rules and variables. Unstructured networks pass activation signals from 
unit to unit and modify connection weights, and some even grow new units and weights, 
but they do not bind values to variables within symbolic rules.   

Cascade-correlation Simulations 
The models of Shultz (1999) and Shultz and Bale (2001) both used an encoder version of 
the cascade-correlation (CC) learning algorithm. CC is a constructive algorithm for 
learning from examples in feed-forward neural networks (Fahlman & Lebiere, 1990; 
Shultz, 2003). As with other constructive algorithms, CC builds its own network 
topology as it learns. It does this by recruiting new hidden units as needed, thus searching 
in network-topology space as well as in connection-weight space for a solution to the 
problem on which it is being trained. Network-topology space is the space of possible 
network topologies, a space ordinarily searched by modelers themselves as they design 
static (unchanging) network topologies. Connection-weight space is the space of possible 
patterns of network weights, ordinarily searched automatically by a learning algorithm 
except in the case of programmer-designed weights.  

Unlike the more standard, back-propagation networks with designed and static 
topologies, CC networks grow as they learn. They grow during what are called input 
phases by recruiting new hidden units into the network as needed to reduce error. New 
hidden units are recruited one at a time and installed each on a separate layer, receiving 
input from the input units and from any existing hidden units. The candidate hidden unit 
that is recruited is the one whose activations correlate most highly with the current error 
of the network. After recruiting a new hidden unit, the algorithm returns to an output 
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phase in which weights feeding the output units are adjusted to reduce error. CC has been 
used to simulate many aspects of cognitive development (Shultz, 2003).  

Encoder networks are feedforward networks whose task is to learn to reproduce their 
inputs on their output units. Discrepancy between inputs and outputs is network error, 
which the learning algorithm attempts to reduce. Such encoder networks are particularly 
well suited for simulating familiarization experiments. Just as infants are imagined to 
build up a model of stimuli to which they are being exposed, and start to attend to more 
novel stimuli that deviate from their existing models, so do encoder networks build a 
model of the stimuli to which they are exposed. Network error can be taken as an index 
of stimulus novelty and interest.  

Ordinary CC networks have many cross connections that bypass hidden layers. An 
encoder option within CC freezes direct input-output connections at zero in order to 
prevent trivial solutions in which weights of about 1.0 are learned between each input 
unit and a corresponding output unit (Shultz, 1999). Such trivial solutions can solve an 
encoder problem very quickly in the sense of error-free performance. However, they tend 
not to develop knowledge representations that could enable completion of partial patterns 
or generalization to similar, but novel patterns.  

In the Shultz (1999) model, the A-category training syllables were coded as the real 
numbers 1, 3, 5, and 7, while B-category training syllables were coded as 2, 4, 6, and 8. 
The test syllables were coded with the interpolated values of 2.5, 3.5, 5.5, and 6.5. These 
networks simulated the consistency effect found with infants, and also generalized well, 
both inside and outside of the range of training sentences.  

The coding scheme was considerably more realistic in the Shultz and Bale (2001) 
simulation. Coding there employed a continuous sonority scale inspired by phonological 
research (Vroomen, van den Bosch, & de Gelder, 1998). Sonority is the quality of vowel 
likeness and can be defined by openness of the vocal tract during speech production 
(Selkirk, 1984). The coding scheme for phonemes in single-syllable words in the infant 
experiments is presented in Table 1. The precise sonority numbers are somewhat 
arbitrary, but their ordering is based on research by Vroomen et al. (1998), who in turn 
based their sonority scale on Selkirk (1984).  

Table 1 Phoneme sonority scale used in the Shultz and Bale (2001) simulationsa 
Phoneme category Examples Sonority 
Low vowels /a/  /æ/ 6
Mid vowels /ε/  /e/  /o/  /ɔ/ 5
High vowels /I/  /i/  /U/  /u/ 4
Semi-vowels and laterals /w/  /y/  /l/ -1
Nasals /n/  /m/  / ŋ / -2
Voiced fricatives /z/  /ʒ/  /v/ -3
Voiceless fricatives /s/  /ʃ/  /f/ -4
Voiced stops /b/  /d/  /g/ -5
Voiceless stops /p/  /t/  /k/ -6
aExample phonemes are represented in International Phonetic Alphabet. From “Infant 
familiarization to artificial sentences: Rule-like behavior without explicit rules and 
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variables.” By T. R. Shultz and A. C. Bale. In L. R. Gleitman & A. K. Joshi (Eds.), 
Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society 
(p. 461), 2000. Mahwah, NJ: Erlbaum. Copyright 2000 by the Cognitive Science Society, 
Inc. Adapted by permission. 

Sonorities ranged from -6 to 6 in steps of 1, with a substantial gap and change of sign 
between the principal categories of consonants and vowels. Each word was coded on two 
input units for the sonority of its consonant and the sonority of its vowel. For example, 
the sentence ga ti ga was coded as (-5 6 -6 4 -5 6). 

Both CC models, whether using arbitrary (Shultz, 1999) or sonority (Shultz & Bale, 
2001) coding of phonemes, captured the essential features of the infant data (Marcus et 
al., 1999) including: 

1. exponential decreases in attention to a repeated sentence pattern, 

2. more interest in sentences inconsistent with the familiar pattern than in sentences 
consistent with the familiar pattern, 

3. occasional familiarity preferences, 

4. more recovery to consistent novel sentences than to familiarized sentences, 

5. and generalization both outside and inside the range of the training patterns.  

Sonority Contours 
Vilcu and Hadley (2003, 2005) argued that these CC models only learn numerical 
contours and not grammatical relations. As an example of what they mean by numerical 
contours, Vilcu and Hadley referred to the peaks or valleys formed by ABA sentences, 
depending on whether the B-category words have higher (peak) or lower (valley) values 
than the A-category words.  

However as shown in Figure 1, plots of the raw sonority scores used as network 
inputs by Shultz and Bale (2001) reveal a sawtooth-shaped pattern reflecting the fact that 
vowels have higher sonorities than consonants. This difference between vowels and 
consonants is, of course, built into the sonority scale and does not by itself help a learning 
system to understand the grammatical nature of the sentences.  

The contours of most relevance to CC networks were identified in Shultz and Bale’s 
(2001) extensive knowledge-representation analysis of their networks. Shultz and Bale 
discovered via principle-component analyses of network contributions (sending 
activations x connection weights entering output units) that networks learned to represent 
on their hidden units sums (or equivalently, differences) of the consonant and vowel 
sonority values represented in the input. Further evidence for this claim is presented in 
detail in Simulation 8 and the subsequent section. For now, we focus on the shapes of 
sonority contours of sounds used in the infant experiments of Marcus et al. (1999).  

Plots of sonority sums (sums of consonant and vowel sonority values) of training 
sentences in the three experiments, corresponding to a network’s hidden-unit 
representations, reveal a mixture of sonority contours in each condition. As illustrated in 
Figure 2, for example, in the ABA condition of Experiment 1, there is a not a single 
contour to learn, but rather an equal mixture of peaks and valleys. The consistent test 
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patterns follow a subset of these trained contours, whereas the inconsistent test patterns 
(e.g., ABB) violate them.  
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Figure 1. Sonority contours of the training sentences in the ABA condition of Experiment 
1 from Shultz and Bale (2001). On the x-axis, A refers to the category-A words, B to the 
category-B words. Consonants are identified by c, vowels by v. The number 2 refers to 
the second occurrence of a phoneme. Each of the 16 sentences is represented by a line 
tracing the sonority contour from the consonant phoneme of the A syllable through to the 
second occurrence of the vowel phoneme of the duplicate A syllable. There is 
considerable overlap in these contour traces. 
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Figure 2. Sonority-sum contours of the training sentences in the ABA condition of 
Experiment 1 from Shultz and Bale (2001). These sums, of consonant sonority plus 
vowel sonority, correspond to a network’s hidden-unit representations. Each of the 16 
sentences is represented by a line tracing the sonority-sum contour from the initial A 
syllable to the B syllable to the duplicated A syllable.  
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Sonority-sum contours in these experiments take a variety of shapes in addition to 
peaks and valleys. These additional contour shapes are illustrated in Figure 3, which plots 
sonority-sum contours for 3 of the 16 training sentences in the ABB condition of 
Experiment 2. An increasing contour reflects a lower sonority sum for the A word than 
the B word. A decreasing contour reflects a higher sonority sum for the A word than the 
B word. A plateau contour signifies a flat shape in which the sonority sum for the three 
words is identical. 
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Figure 3. Illustrative sonority-sum contours for 3 of 16 training sentences in the ABB 
condition of Experiment 2. Each of the three sentences is represented by a line tracing the 
sonority-sum contour from the initial A syllable to the B syllables.  

The frequencies of the various contour shapes of sonority sums in the training 
patterns of all conditions of the three experiments are listed in Table 2. Note that there are 
two plateau patterns in the sonority sums for each condition of Experiments 2 and 3. Such 
plateaus identify sentences in which the A and B categories cannot be distinguished 
merely on the basis of sonority sums or differences. This might make the training patterns 
in Experiments 2 and 3 more difficult to learn than those in Experiment 1, as indeed they 
appeared to be in Marcus et al.’s (1999) infant experiments, as measured by the mean 
difference in looking time between inconsistent and consistent test sentences: 2.7 for 
Experiment 1 vs. 1.75 and 2.1 for Experiments 2 and 3, respectively.  

Table 2 Number of training sentences of various contours 
Experiment Familiarization Contour of sonority sums 
 condition Peak Valley Increase Decrease Plateau 
1 ABA 8 8 - - - 
 ABB - - 8 8 - 
2 ABA 7 7 - - 2 
 ABB - - 7 7 2 
3 AAB - - 7 7 2 
 ABB - - 7 7 2 

Simulation 1: Cross-experiment differences  
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This cross-experiment prediction was explicitly tested in a full replication of the Shultz 
and Bale (2001) simulations. Table 3 presents mean network error to consistent and 
inconsistent test patterns in this replication. For each experiment, there was again a 
significant main effect of test-pattern consistency, with more error to the inconsistent 
patterns than to the consistent patterns. This means that there have now been three 
published replications of the Shultz and Bale networks capturing the essential main effect 
of test-pattern consistency.  

Table 3 Mean network error to consistent and inconsistent test patterns in Simulation 1 
Experiment Consistent Inconsistent F(1, 14) p < 
1 10.17 13.61 20 .0001
2 14.81 16.01 12 .005
3 14.09 15.60 18 .001

To test the prediction that networks would have relatively more difficulty learning the 
training sentences in Experiments 2 and 3, the epochs required to learn were subjected to 
an ANOVA in which experiment was the independent factor. There was a main effect of 
experiment, F(2, 45) = 12.05, p < .001. See Figure 4 for a plot of the mean epochs to 
learn. As expected from the distribution of plateau-shaped training patterns, networks in 
Experiment 1, with no plateau patterns, learned faster than did networks in either 
Experiment 2, t(30) = 6.03, p <  .001, or Experiment 3, t(30) = 2.85, p <  .01. Networks in 
Experiments 2 and 3, each with two plateau training patterns, learned equally fast, t(30) = 
1.58, ns.  
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Figure 4. Mean epochs to learn in each experiment of Simulation 1, with standard-error 
bars.  

Importantly, these differences in plateau-induced learning difficulty have implications 
for the size of the test-pattern consistency effect. A clear way to see this is to analyze the 
differences in test-pattern error, computed as error to inconsistent test patterns minus 
error to consistent test patterns. A one-way factorial ANOVA of these difference scores 
yielded an effect of the experiment factor, F(2, 45) = 4.38, p < .05. The mean difference 
scores, plotted in Figure 5, show a larger consistency effect in Experiment 1 than in either 
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Experiment 2, t(30) = 2.39, p <  .05,  or Experiment 3, t(30) = 2.07, p <  .05. In contrast, 
mean difference scores did not differ between Experiments 2 and 3, t(30) = 0.575, ns.  
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Figure 5. Mean consistency differences in each experiment of Simulation 1, with 
standard-error bars.  

None of the test sentences in any experiment had plateau patterns, so the diminished 
discriminability of test sentences is probably due to plateau patterns in the training 
sentences. More precise coding of individual phonemic features, or a finer sonority scale, 
could eliminate this problem, but such remedies might also eliminate coverage of the 
phenomenon that infants showed less discrimination between consistent and inconsistent 
test patterns in Experiments 2 and 3. This coverage by the networks provides another 
measure of support for the realistic nature of the Shultz and Bale (2001) sonority coding 
scheme and for the model itself. A rule-and-variable system that ignored sonority 
contours (the sort of model apparently favored by Marcus et al. (1999) and Vilcu and 
Hadley (2005)) would presumably predict no difference between experiments.  

Peaks and valleys in sonority contours 

As noted earlier, Vilcu and Hadley (2003, 2005) felt that the neural models by Shultz and 
Bale (2001) and Shultz (1999) learn only numerical contours and not grammatical 
relations. In two of their experiments, Vilcu and Hadley revealed what they mean by 
“numerical contours”, namely the peaks and valleys formed by ABA sentences. One of 
these simulations was an extension of the Shultz (1999) model. In that model, the A-
category training syllables were arbitrarily coded as 1, 3, 5, and 7, while B-category 
training syllables were coded as 2, 4, 6, and 8. The test syllables were coded with the 
interpolated values of 2.5, 3.5, 5.5, and 6.5. Not only did these networks cover the 
consistency effect found with infants, but they generalized well, both inside and outside 
of the training range (Shultz, 1999). The coding of training sentences was balanced in the 
sense that half of the ABA training sentences involved peaks (e.g., 1 3 1) and half 
involved valleys (e.g., 5 3 5). Thus the Shultz (1999) networks had to do more than 
merely learn numerical contours, just as the Shultz and Bale (2001) sonority-coded 
networks did.  
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Vilcu and Hadley (2003, 2005) distorted this experimental balance in their extension 
simulations by always selecting a B-category word with a higher numerical code than the 
A-category words in ABA sentences. Thus, their ABA sentences always formed a peak 
contour. Then they formed two sets of consistent and inconsistent test sentences, one of 
which had peak-shaped ABA sentences and the other of which had valley-shaped ABA 
sentences. With peak-shaped ABA test sentences, there was less error to consistent than 
to inconsistent sentences, replicating the Shultz (1999) networks and Marcus et al.’s 
(1999) infants. But with valley-shaped ABA test sentences, there was more error to 
consistent than to inconsistent sentences. As with the other Vilcu and Hadley simulations, 
no statistical analysis was provided so it is unknown whether these differences are 
reliable. If the findings are reliable, they would appear to capitalize on the well-known 
fact that neural networks can be exquisitely sensitive to the statistics of training patterns. 
If the ABA training sentences are contrived to all have peaks, then networks will likely 
discover that feature and then naturally find ABA sentences with valleys to be relatively 
novel.  

Vilcu and Hadley (2003, 2005) reported a similar simulation using the sonority 
coding scheme of Shultz and Bale (2001). In this simulation the absolute values of both 
consonants and vowels were greater for the B-category syllables than for the A-category 
syllables in ABA sentences. Once again, one set of test sentences had ABA sentences 
with a peak contour, while another had ABA sentences with a valley contour. Vilcu and 
Hadley reported that error was smaller with peak-contoured ABA test sentences. They 
argued that this means that grammatical structure does not play a significant role in the 
model’s behavior, but such a conclusion is difficult to prove without a statistical analysis. 
It could well be that the networks are sensitive to both contour and grammar, as later 
sections of this paper attest.  

We did not bother trying to replicate these two simulations because procedures for 
constructing the ABB sentences were not described and because the simulations were so 
deviant from the Marcus et al. (1999) infant studies which did not contain the confound 
between contour and grammar. These findings could make an interesting prediction for 
infants, who might in fact show the same sensitivity to sonority contours as these Vilcu 
and Hadley networks. If so, this would provide additional support for the Shultz and Bale 
(2001) model.  

Generalization 
Vilcu and Hadley (2003, 2005) based much of their critique of the grammar-learning 
capacity of the Shultz and Bale (2001) model on simulation extensions that seemed to 
show that the model cannot interpolate or extrapolate. Simulations 3-5 investigate this 
claim in more detail.  

Simulation 2: Interpolation 

Interpolation refers to the ability to generalize within the range of the training patterns. 
Vilcu and Hadley (2003, 2005) tested interpolation by introducing a phonemic change to 
one of the four test patterns in each experiment. The original and new test patterns are 
shown in Table 4, where the syllables changed by Vilcu and Hadley are identified by a 
solid underline. With these changes, Vilcu and Hadley reported that networks could no 
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longer distinguish consistent from inconsistent test patterns, although they do not report 
any testing of statistical significance.  

 

Table 4 Original and new test patternsa 
Experiment Original tests New tests 
 Sentence Sonority sums Sentence Sonority sums
1 wo fe wo  4  1  4 vo fe vo  2  1  2
 de ko de  0 -1  0 de ko de  0 -1  0
 wo fe fe  4  1  1 vo fe fe  2  1  1
 de ko ko  0 -1 -1 de ko ko  0 -1 -1
2 ba po ba  1 -1  1 ma po ma  4 -1  4
 ko ga ko -1  1 -1 ko ga ko -1  1 -1
 ba po po  1 -1 -1 ma po po  4 -1 -1
 ko ga ga -1  1  1 ko ga ga -1  1  1
3 ba ba po  1  1 -1 ma ma po  4  4 -1
 ko ko ga -1 -1  1 ko ko ga -1 -1  1
 ba po po  1 -1 -1 ma po po  4 -1 -1
 ko ga ga -1  1  1 ko ga ga -1  1  1
aOriginal test patterns are those used in the Marcus et al. (1999) infant experiments, the 
Shultz and Bale (2001) simulations, and the Vilcu and Hadley (2003, 2005) simulation 
replications. Solid underlines indicate changes to the test patterns by Vilcu and Hadley. 
Dashed underlines indicate additional changes to test patterns in the present Simulation 2 
to eliminate confounding of phoneme and syntactic pattern.  

Notice that by changing only one test pattern in each experiment, Vilcu and Hadley 
confounded phoneme and syntactic pattern. In all previous simulations, researchers 
followed the Marcus et al. (1999) experimental design in avoiding such confounding by 
using exactly the same phonemes in both the consistent and inconsistent test sentences. 
Whenever experimental conditions differ on more than one independent variable (in this 
case, syntax and phonology) and there are differences in some dependent variable (in this 
case, network error or infant interest), one cannot be sure that observed variation in the 
dependent variable is due to one independent variable or the other. This is because 
variation in the two independent variables is confounded, or correlated. Accurate causal 
inference requires elimination of such confounds, as in the design of the Marcus et al. 
(1999) experiments and our simulations (Shultz & Bale, 2001).  

Here we eliminate the Vilcu-Hadley confound in each experiment by extending the 
same phonemic change to a test sentence in the alternate grammar. These additional 
changes are marked in Table 4 by dashed underlines. Importantly, these additional 
changes ensure that comparisons across syntactic patterns reflect only syntactic 
differences, unconfounded with phonemic differences.  

Under these more controlled conditions, there are robust differences between 
consistent and inconsistent test patterns as in the original Shultz and Bale (2001) 
simulations. In each experiment, run with only eight networks per condition as in the 
infant experiments, consistent test patterns generated less network error than did 
inconsistent test patterns. Results regarding the key consistency effect are shown in Table 
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5. In each case, there was a strong main effect of test-pattern consistency and no other 
significant effects.  

Table 5 Mean network error to consistent and inconsistent test patterns in Simulation 2, a 
controlled extension of the Vilcu and Hadley simulations involving all of the underlined 
changes in test patterns marked in Table 4 
Experiment Consistent Inconsistent F(1, 14) p < 
1 7.39 13.17 37 .0001
2 12.49 24.31 123 .0001
3 13.68 24.44 63 .0001

Simulation 3: Interpolation, version 2 

Reasoning along similar lines, Vilcu and Hadley (2003, 2005) briefly reported a 
simulation in which they changed /f/ to /v/ in both the first ABA test sentence and the 
first ABB test sentence of Experiment 1, thus unconfounding phonemes and syntax. They 
reported that the networks failed to discriminate consistent test sentences from 
inconsistent test sentences, but provide no statistical significance test. We tried to 
replicate this simulation with only eight networks per condition, as in the infant 
experiments, and found a significant main effect of consistency, F(1, 15) = 5.52, p < .05, 
reflecting more error to inconsistent test sentences (M = 11.69) than to consistent test 
sentences (M = 9.30). There was no main effect of familiarization pattern and no 
interaction.  

To be more certain, we ran the simulation again with 20 networks per condition to 
increase statistical power. Here there was a strong main effect of consistency, F(1, 38) = 
87, p < .0001, and an interaction of consistency with familiarization pattern, F(1, 38) = 
9.32, p < .005. Mean network error for the various conditions is plotted in Figure 6. 
Importantly, there was clearly more error to inconsistent test patterns than to consistent 
test patterns in each condition, t(19) = 4.96, p < .0001.  
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Figure 6. Mean network error to consistent and inconsistent test patterns in Simulation 3, 
an extension of the Vilcu and Hadley simulation of Experiment 1 involving an /f/ to /v/ 
change in test sentences, with 20 networks per condition. 
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 So once again, there is strong, replicated evidence that the Shultz and Bale networks 
can capture the familiarity effect seen with infants when there is no confounding between 
phonology and syntax.  

Simulation 4: Interpolation with confounded changes 

Moreover, we could not replicate Vilcu and Hadley’s (2003, 2005) finding of a lack of 
discrimination between consistent and inconsistent test patterns even using their single-
pattern changes that confound phoneme with syntactic pattern. Results are presented in 
Table 6. In Experiment 1, there was the typical main effect of test-pattern consistency and 
no other significant effects. In Experiments 2 and 3, there were main effects of test-
pattern consistency and familiarization pattern and an interaction between them. 
Importantly, in every condition of these experiments, run with 20 networks per condition 
to increase statistical power, there was significantly less network error to the consistent 
test patterns than to the inconsistent test patterns, p < .001 by paired-sample t test.  

Table 6 
Mean network error to consistent and inconsistent test patterns in Simulation 4, an 
attempted replication of Vilcu and Hadley’s simulations involving only the solid 
underlined changes in test patterns marked in Table 4 
Experiment Consistent Inconsistent F(1, 38) p < 
1 8.56 13.68 67 .0001
2 13.93 20.17 101 .0001
3 13.79 19.59 198 .0001

The results of simulations 2, 3, and 4 indicate that Vilcu and Hadley’s claim that the 
Shultz and Bale networks do not interpolate successfully is incorrect. With properly 
controlled tests, the interpolation ability of these networks is very strong. And even with 
the confounding introduced by Vilcu and Hadley, the networks still interpolate well. The 
lack of statistical significance tests in Vilcu and Hadley’s research appears to have 
obscured real differences between test patterns.  

Simulation 5: Extrapolation 

To test the Shultz and Bale (2001) model for ability to extrapolate outside of the sonority 
training range, Vilcu and Hadley (2003, 2005) assigned four consonant values beyond the 
anchor value of -6, i.e., values of -7, -8, -9, and -10, and combined them with two vowel 
values beyond the anchor value of 6, i.e., 7 and 8. Vilcu and Hadley reported that 
networks had more error to consistent test patterns than to inconsistent test patterns. No 
statistical significance results were presented.  

A major problem with testing outside the range of the sonority anchors is that it is 
unclear what such extreme values might correspond to, either in English or in other 
languages. As noted in Table 1, the sonority scale starts with voiceless stops /p/, /t/, and 
/k/ and ends with back low vowels /a/ and /æ/. That is to say the scale covers the entire 
sonority range of human speech sounds. Arbitrarily picking sonority values outside this 
range does not map to human speech sounds in any known language on our planet. The 
relevance of testing network generalization in this way is thus questionable. At best, it 
could be said that such predictions are not testable with psychological evidence. This is 
also true of Shultz and Bale’s (2001) extrapolation values of -7, -6.5, 6.5, and 7, although 



Shultz and Bale     14 

those values are not as far from the realistic boundaries of -6 and 6 as most of Vilcu and 
Hadley’s extrapolation values are.  

In making the argument that networks fail to extrapolate beyond the training range of 
-6 to 6, Vilcu and Hadley (2003, 2005) ignored the Shultz and Bale (2001) results 
showing that with less extreme deviations beyond the anchors of the training range, 
networks do successfully extrapolate, with the consistency effect growing significantly 
larger with more extreme (i.e., +-7) as compared to less extreme (i.e., +-6.5) sonority 
values. Here we report on a replication of the Shultz and Bale extrapolation results, and 
also extend the study of extrapolation to the extreme sonority values used by Vilcu and 
Hadley.  

The sonority values used in this study are shown in Tables 7 and 8, along with a 
reminder of the original anchor values used by Shultz and Bale to simulate the Marcus et 
al. (1999) experiments. As in Shultz and Bale (2001), there were test values inside the 
training range (by +-0.5) and values that were outside of this range but close to it (by +-
0.5) or far from it (by +-1.0). In addition there were three additional sonority values 
ranging farther outside of the training range in steps of +-1.0, labeled in Tables 7 and 8 as 
farther, even farther, and farthest. Sonority values termed farthest were as far outside the 
training range as the most extreme values used by Vilcu and Hadley. Thus we used 
several sonority gradations, selected them systematically, and systematically applied 
them to both consistent and inconsistent test sentences. Because Vilcu and Hadley’s 
procedural descriptions of their extrapolation experiments are incomplete, it is unclear 
whether they applied extreme sonority values to both consistent and inconsistent test 
sentences. In other words, they may have introduced confounds between syntax and 
phonology as they had in other simulations.  

Table 7 Test patterns for evaluating extrapolation in Simulation 5: Highest vowel paired 
with lowest consonant and vice versa 
 Category A Category B 
Distance from training range Consonant Vowel Consonant Vowel 
Original anchors -6.0 6.0 -1.0 4.0 
Inside (+-0.5) -5.5 5.5 -1.5 4.5 
Close (+-0.5) -6.5 6.5 -0.5 3.5 
Far (+-1.0) -7.0 7.0 0.0 3.0 
Farther (+-2.0) -8.0 8.0 1.0 2.0 
Even farther (+-3.0) -9.0 9.0 2.0 1.0 
Farthest (+-4.0) -10.0 10.0 3.0 0.0 

In one set of our new simulation experiments, the highest vowel was paired with the 
lowest consonant, creating a negative correlation between consonant and vowel sonorities 
in both the A and B categories and keeping the sonority sums for syllables at a constant 
value of 0.0 in the A category and 3.0 in the B category (see Table 7). In another set of 
simulations, the vowel columns in Table 7 were switched so as to pair the highest vowel 
with the highest consonant, creating a negative correlation between consonant and vowel 
values in category A and a positive correlation in category B. In this set of simulations, as 
shown in Table 8, the sonority sums of the syllables were allowed to vary with distance 
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from the training range. Both sets of simulations mimicked Experiment 1 with only eight 
networks per condition as in the infant study.  

Table 8 Test patterns for evaluating extrapolation in Simulation 5: Highest vowel paired 
with highest consonant and vice versa 
 Category A Category B 
Distance from training range Consonant Vowel Consonant Vowel 
Original anchors -6.0 4.0 -1.0 6.0 
Inside (+-0.5) -5.5 4.5 -1.5 5.5 
Close (+-0.5) -6.5 3.5 -0.5 6.5 
Far (+-1.0) -7.0 3.0 0.0 7.0 
Farther (+-2.0) -8.0 2.0 1.0 8.0 
Even farther (+-3.0) -9.0 1.0 2.0 9.0 
Farthest (+-4.0) -10.0 0.0 3.0 10.0 

In each experiment, the amount of error to these test patterns was subjected to a 
mixed ANOVA in which familiarization condition served as a between-network factor 
and consistency and distance served as repeated measures. In both experiments there 
were significant main effects of consistency and distance and an interaction between 
them, p < .0001. The relevant means are presented in Figures 7 and 8 for the case where 
sonority sums were constant and where they were allowed to vary, respectively. As in 
Shultz and Bale (2001), error increased with distance from the training range, error was 
greater to inconsistent than to consistent test patterns at every distance, and this 
consistency effect grew larger with increasing distance, p < .0001.  
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Figure 7. Mean error to consistent and inconsistent test patterns at various distances from 
the training range in Simulation 5, where sonority sums were constant.  

Thus this new evidence confirms that the Shultz and Bale networks generalize well 
both outside and inside of the training range. The reason that error increases with distance 
outside the training range is because the network does not recognize the particular novel 
phonemes and syllables being presented. Importantly, however, even with wildly novel 
sounds, the networks readily identify the relative syntactic novelty of the sentences. 
Outside of the training range where there are no human speech sounds, it is difficult to 
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design realistic tests of the model’s predictions, but in-principle evidence of network 
extrapolation ability is incontrovertible. These results, and those in the extrapolation 
simulation of Shultz and Bale (2001), underscore network capability of understanding 
both syntax and sonority.  
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Figure 8. Mean error to consistent and inconsistent test patterns at various distances from 
the training range in Simulation 5, where sonority sum was allowed to vary. 

Knowledge-representation analyses 
An important question for this debate is whether a learning system, infant or artificial 
neural network, would discover and use identity relations in representing sentences. 
Several results of Shultz and Bale’s (2001, Appendix 2) knowledge-representation 
analyses suggest that their networks do, in fact, learn and use near-identity relations to 
recognize the grammatical patterns of both new and old sentences. But Vilcu and Hadley 
(2003, 2005) criticized these analyses arguing that the Shultz and Bale networks fail to 
learn “abstract grammatical relationships.” Here we discuss three types of knowledge-
representation analyses of the Shultz and Bale networks, dealing respectively with 
connection weights, unit activations, and contributions. Contributions are products of 
connection weights and sending activations.  

Simulation 6: Connection weights 

Analyses of network connection weights showed that networks learned to encode the 
duplicate word before they learned to encode the single word in these artificial three-
word sentences (Shultz & Bale, 2001). The reason for this is that twice as much error was 
generated by the duplicate words as by the single word. Importantly, networks learned to 
decode the representations of the two duplicate words using similar sets of weights 
entering the output units that represent the duplicate words. This nearly identical pattern 
of weights entering the output units representing the duplicate words allowed the network 
to recognize the near identity of these words. For example, Figure 9 shows the connection 
weights from a newly replicated network in the ABA condition of Experiment 1 at the 
end of training, when it had two hidden units.  
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Figure 9. Weights in a network with two hidden units in Simulation 6 of the ABA 
condition of Experiment 1 after training was completed. Input units are labeled 1-6, 
hidden units are labeled 7–8, and output units are labeled 9-14. The letters A, B, and A to 
the right of output-unit pairs indicate the syntactic category of each word. The bias unit is 
0, 1 and 9 represent the consonant of the first word, 2 and 10 represent the vowel of the 
first word, 3 and 11 represent the consonant of the second word, 4 and 12 represent the 
vowel of the second word, 5 and 13 represent the consonant of the third word, and 6 and 
14 represent the vowel of the third word.  

In such diagrams, connection weights entering a receiving unit are represented within 
a rectangular band placed just to the right of the index number of the receiving unit. 
Inside of each rectangular band, the weights are labeled by the sending unit and are 
pictured by the color and size of a square. White squares indicate excitatory weights, and 
black squares indicate inhibitory weights. The size of each weight is represented by the 
relative size of the square.  

In Figure 9, the patterns of output weights for the two A-category words, represented 
by units 9-10 and 13-14, were highly similar, reflecting the common category of these 
two words. The relatively large weights to these outputs from unit 7 indicated that this 
first hidden unit had the task of recognizing the category of the first and third words. The 
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second hidden unit (unit 8) had the task of recognizing the category of the second word 
(B), as indicated by its relatively large weights to outputs 11 and 12. At the end of 
training, when these weights were recorded, the network was accurately recognizing the 
sentences in the training set. Similar patterns in the relative sizes of connection weights 
can be found in each network from each experiment. Importantly, they all show that the 
two duplicate words in a sentence are treated in virtually identical fashion with nearly 
identical connection weights entering the output units, serviced mainly by the first hidden 
unit.  

Notice that the bias unit (unit 0) has the job of distinguishing vowels from 
consonants. The bias unit is always on, with an input of 1.0, regardless of what particular 
input is being presented. The bias unit has trainable connection weights to all downstream 
units, i.e., non-input units. Bias weights to the outputs encoding consonants are large and 
negative, consistent with the idea that consonants have negative sonority values. In 
contrast, bias weights to the outputs encoding vowels are large and positive, consistent 
with the idea that vowels have positive sonority values. 

In their peaks-and-valleys simulation, Vilcu and Hadley (2005) reported that 5 of the 
16 networks learned connection weights that deviated from this replicated pattern. 
Presumably, their other 9 networks did conform to this replicated pattern, but the degree 
of fit to the prescribed pattern was not quantified, plotted, or statistically analyzed. In any 
case, the confounding of phoneme differences with syntactic category in their 
simulations, which deviates from both the infant experiments (Marcus et al., 1999) and 
the replicated simulations (Shultz & Bale, 2001 and the present simulations), renders 
Vilcu and Hadley’s connection-weight deviations of questionable relevance to issues of 
data coverage and generalization.  

Simulation 7: Hidden-unit activations  

Another analysis examined hidden-unit activation patterns in response to different input 
patterns (Shultz & Bale, 2001). Relations were plotted between hidden-unit activation 
and sonority sums of the A and B categories in the training patterns. These plots showed 
that the first hidden unit learned to encode the sonority sum of the duplicate word, and 
the second hidden unit learned to encode the sonority sum of the single word. Once 
again, it was clear that the two duplicated words were being treated in nearly identical 
fashion.  

Analyses of connection weights in simulation 6 clearly indicate the impact of hidden 
units on network outputs. What they do not illuminate is how the hidden units integrate 
input coming from the bias unit, the input units, and the earlier hidden units. Indeed, 
connection weights entering hidden units had complex and variable patterns. There were 
suggestions, from connection-weight diagrams that the first hidden unit represented 
sonority variation in the duplicated word and that the second hidden unit represented 
sonority variation in the single word, but that is about all we could discover from 
examining weights alone.  

To more directly investigate how hidden units integrate their inputs, we examined the 
activation patterns that the hidden units exhibited in response to different input patterns. 
Such activation patterns essentially summarize the knowledge representations of the 
hidden units. We ran a few networks in each condition of each experiment in a full 
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replication of the Shultz and Bale (2001) networks, while recording hidden-unit 
activations at the end of training. For each network, we plotted the relation between 
hidden-unit activation and sonority sums of the A and B categories in the 16 training 
sentences. Figure 10 provides such a plot for a network in the ABA condition of 
Experiment 1. It shows a negative relation between activation of the first hidden unit and 
the sum of sonority values (consonant plus vowel) for the category-A words. Some of the 
points of this plot at the activation extremes of -0.5 and 0.5 are highly overlapping, 
reflecting very consistent performance. Figure 11 shows a negative relation between 
activation of the second hidden unit of this same network and the sum of sonority values 
for the category-B words.  
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Figure 10. Relation between sonority sums and activation of the first hidden unit in a 
network at the end of training in Simulation 7.  
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Figure 11. Relation between sonority sums and activation of the second hidden unit in the 
same network as in Figure 10 at the end of training in Simulation 7.  

As with the other network analysis techniques, one could equally well substitute 
sonority differences for sonority sums in such plots. The results and conclusions would 
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be essentially the same. Plots of sonority variation in either consonants or vowels alone 
also produce similar results.  

It can be concluded from these results that the first hidden unit represents sonority 
variation in the duplicate-word category, whereas the second hidden unit represents 
sonority variation in the single-word category. Again, this is a natural result of networks 
focusing on the largest current source of error. Because duplicate words initially generate 
about twice as much total error as do single words, networks deal first with the duplicate-
word category.  

Thus, the highly variable pattern of connection weights entering a hidden unit 
implements a function representing sonority variation in the word category that is 
generating the currently largest source of error. Each network implements such functions 
in a somewhat distinct way, but the functions themselves appear critical to a successful 
solution of this grammar-recognition problem. Sonority variation within each word 
category must be accurately represented by the hidden units because this variation needs 
to be reproduced on the output units. Importantly once again, these networks achieve a 
compact representation on the hidden units such that both of the duplicate words in a 
sentence are represented on the same, first hidden unit, thus allowing a network to realize 
the near equivalence of these duplicate words. All of the networks we have analyzed 
show this pattern, although sometimes the relation between hidden-unit activation and 
sonority sums is positive rather than negative.  

Hidden-unit activations correlate with vowel and consonant sonorities 

Vilcu and Hadley (2005) undertook similar analyses of hidden-unit activations and 
claimed instead that these activations correlated only with consonant, but not with vowel, 
sonorities. However, they did not report the values of any such correlations or evaluate 
their statistical significance. Moreover, their plots of vowel sonorities against hidden-unit 
activations for one network (their Figure 8) suggest negative correlations between the two 
variables rather than no correlation. 

To investigate this issue more systematically, we reanalyzed some networks from the 
initial Shultz and Bale (2001) simulations, computing Pearson product-moment 
correlations between hidden-unit activations and word-category sonorities of consonants 
and vowels and their sums and differences. Results for two representative networks from 
the ABA-familiarization condition of Experiment 1 are presented in Tables 9 and 10. The 
network portrayed in Table 9 finished with two hidden units. The network in Table 10 
finished with three hidden units. Correlations significant at p < .01, df = 15 are indicated 
in these Tables in bolded font. The rest of the correlations in Tables 9 and 10 are not 
statistically significant.  

The patterns of correlations in both networks reveal that activation of the first hidden 
unit correlated strongly with sonority of the A-word category, whereas activation of the 
second hidden unit correlated strongly with sonority of the B-word category. These 
correlations were about equally strong for vowel sonority as for consonant sonority, and 
for the sum and difference of vowel and consonant sonority. The third hidden unit in the 
network shown in Table 10 had activations that correlated somewhat with both word 
categories, but more strongly with the A category.  
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Table 9 Pearson product-moment correlations between hidden-unit activations and word-
category sonorities of consonants and vowels and their sums and differences for a 
representative network with two hidden units 
Sonority variable Hidden 1 Hidden 2
Consonant A -0.97 0.01
Vowel A 0.94 -0.01
Sum A -0.95 0.01
Difference A 0.97 -0.01
Consonant B -0.19 0.98
Vowel B -0.18 0.99
Sum B -0.19 0.99
Difference B 0.18 -0.91

Table 10 Pearson product-moment correlations between hidden-unit activations and 
word-category sonorities of consonants and vowels and their sums and differences for a 
representative network with three hidden units 
Sonority variable Hidden 1 Hidden 2 Hidden 3
Consonant A 0.93 0.00 -0.81
Vowel A -0.91 0.00 0.79
Sum A 0.90 0.00 -0.79
Difference A -0.92 0.00 0.81
Consonant B -0.29 -0.98 -0.41
Vowel B -0.28 -1.00 -0.41
Sum B -0.29 -0.99 -0.41
Difference B 0.29 0.92 0.39

It is unclear why Vilcu and Hadley (2005) concluded that vowel sonority was 
unimportant in this context. Our analysis shows that vowel sonority correlates as highly 
with hidden-unit activation as does consonant sonority or any linear combination of 
vowel and consonant sonority. This is despite the fact that vowel sonority has a more 
restricted range (4 to 6) than does consonant sonority (-1 to -6) as shown in Table 1. A 
negative correlation is just as important as a positive correlation of the same size. Visual 
examination of bivariate plots can be a good technique for exploring correlations, but this 
must be done carefully. Actually computing the numerical values of correlations and 
examining their statistical reliability, as here, is even more definitive.  

Again, a more general conclusion is that the first-recruited hidden unit represents 
sonority variation in the duplicate-word category, whereas the second-recruited hidden 
unit represents sonority variation in the single-word category. Such representations form 
the basis for discriminating category-A words from category-B words and discriminating 
grammatical patterns like ABA from patterns like ABB. Both vowels and consonants 
figure importantly in these representations of sonority.  

Simulation 8: Contribution analysis 

A third type of knowledge-representation analysis incorporates both unit activations and 
connection weights. Network contributions are products of sending-unit activations and 
connection weights going into the network’s output units (Sanger, 1989). Because net 
input to a unit is the sum of such products, there is a sense in which contributions 
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represent all of the influence on the output units. These considerations make contribution 
analysis an important tool because occasionally the effects of connection weights can be 
swamped by large activations, or conversely the effects of unit activations can be 
swamped by large connection weights.  

Large contribution matrices (of input patterns x contributions) are typically simplified 
by subjecting them to a Principal Component Analysis (PCA) (Sanger, 1989). PCA is a 
data-reduction method for detecting the major independent features of variation in a 
dataset by taking advantage of the correlations between variables (Jolliffe, 1986). Here 
the variables are network contributions. PCA often provides a revealing picture of 
knowledge representations in cross-connected CC networks (Shultz, Oshima-Takane, & 
Takane, 1995). Typically we apply PCA to the covariance matrix of contributions, 
employ a varimax rotation in order to better interpret the principal components, and retain 
only eigenvalues greater than the mean eigenvalue. We record contributions from a few 
networks in each condition of each experiment at the close of each output phase, by 
which time networks have fully adjusted to each newly recruited hidden unit.  

Figures 12 and 13 show PCA results for a single representative network run in a new 
replication of the original Shultz and Bale simulations. This particular network was 
familiarized with ABA sentences in Experiment 1. Figure 12 shows the network’s 
knowledge structure after adapting to a single hidden unit; Figure 13 shows the 
knowledge structure at the end of training after adapting to a second hidden unit.  
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Figure 12. Mean sonority sums in A-category words as a function of component scores 
for the 16 ABA training sentences in a network with a single hidden unit at the end of the 
second output phase in Simulation 8. The single component represents sonority variation 
of the duplicated (A) word. 

As shown in Figure 12, this network with one hidden unit had a single-component 
solution emphasizing sonority variation in the category-A words. The figure plots 
sonority sums (consonant plus vowel) of the A-category words against component scores 
on each of the 16 training sentences. The steady increase in these sonority sums with 
increases in component scores indicate that this single component is sensitive to variation 
in sonority of the A-category words. Remembering the analysis of connection weights, 
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this makes sense because this network was familiarized to ABA sentences, where 
category-A words would receive more initial attention because they are twice as frequent. 
This single component accounts for 100% of the variance in network contributions. At 
this point, the network does not possess enough computational power to also represent 
sonority variation in the B-category words.  
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Figure 13. Component scores on the 16 ABA training sentences for the same network in 
Figure 12 with two hidden units after training was completed, along with mean sonority 
sums for the A- and B-category words in each sentence. Sonority variation of A-category 
words is represented by Component 2, explaining 29.3% of the variance. Sonority 
variation of B-category words is represented by Component 1, explaining 70.2% of the 
variance. 

At the end of training, after adapting to the second hidden unit, the PCA revealed two 
principal components as shown in Figure 13. Together the two components accounted for 
100% of the variance in contributions. Figure 13 plots Component 2 scores against 
Component 1 scores for each of the 16 training sentences. Notice that the 16 training 
sentences cluster into four groups of four sentences each. The nature of these clusters can 
be understood by noting the mean sonority sums for the A and B categories. Component 
1, with a large loading from the second hidden unit, reflects sonority variation in the B-
category words, while Component 2, with a large loading from the first hidden unit, 
reflects sonority variation in the A-category words. Both Figures 12 and 13 again provide 
strong evidence that the networks learned to treat the duplicate words nearly identically. 
Networks do not need separate representations for the duplicate A-category word – a 
single representation is sufficient.  

Component scores correlate with vowel and consonant sonorities 

These PCAs of network knowledge representations precisely replicate those reported for 
the original simulation (Shultz & Bale, 2001). Vilcu and Hadley (2005) criticized the 
original PCA analyses on the same basis that they criticized the analysis of hidden-unit 
activations, namely by claiming that the components reflect variation in consonant, but 
not vowel, sonority. In this case they presented plots of sonority sums (their Figures 2 
and 4) and consonants (their Figures 3 and 5) against component scores for two networks. 
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But unlike their critique of the hidden-unit-activation analysis, they did not provide any 
plot of the relation between vowel sonority and component scores. As in their critique of 
the hidden-unit-activation analysis, they did not actually report the values of the 
correlations that they described.  

To investigate this issue more systematically, we reanalyzed data from several 
networks in the original simulations (Shultz & Bale, 2001). For each network we 
computed Pearson product-moment correlations between component scores and word-
category sonorities of consonants and vowels and their sums and differences. Results for 
two representative networks, both from the ABA-familiarization condition of Experiment 
1, are presented in Tables 11 and 12. In both of these Tables, the Only component column 
lists correlation coefficients at the end of output-phase two when the network had 
adjusted to the first hidden unit; the columns labeled Component 1 and Component 2 list 
correlation coefficients at the end of training when the network had adjusted to two 
hidden units. As before, those correlations that are statistically reliable, p < .01, df = 15, 
are highlighted in bold typeface. The pattern of correlation coefficients confirms that 
component scores from the PCAs correlate highly with vowel, as well as consonant, 
sonorities, and with linear combinations of the two, namely sums and differences. These 
results contradict Vilcu and Hadley’s contention that vowel sonorities have no impact on 
network contributions. Vowel sonority, despite having a relatively restricted range, has at 
least as much impact as does consonant sonority.  

Table 11 Pearson product-moment correlations between component scores and word-
category sonorities of consonants and vowels and their sums and differences for a 
representative network 
Sonority variable Only component Component 1 Component 2
Consonant A 0.98 -0.02 0.98
Vowel A -0.99 0.02 -0.99
Sum A 0.92 -0.01 0.92
Difference A -0.99 0.02 -0.99
Consonant B 0.10 0.98 0.01
Vowel B 0.11 1.00 0.02
Sum B 0.10 1.00 0.01
Difference B -0.09 -0.92 -0.01

Table 12 Pearson product-moment correlations between component scores and word-
category sonorities of consonants and vowels and their sums and differences for a second 
representative network 
Sonority variable Only component Component 1 Component 2
Consonant A -0.98 0.05 -0.98
Vowel A 0.99 -0.05 0.99
Sum A -0.92 0.05 -0.92
Difference A 0.99 -0.05 0.99
Consonant B 0.11 0.98 0.06
Vowel B 0.10 1.00 0.05
Sum B 0.11 0.99 0.06
Difference B -0.12 -0.91 -0.08
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The reason that we (Shultz & Bale, 2001) argued that networks were integrating 
vowel and consonant sonorities into a syllable-level representation is that only one PCA 
component was required to summarize sonority variation for each word category (A or 
B). If networks had to represent each syllable’s consonant and vowel separately, then 
PCA results would show separate components for consonants and for vowels, which has 
never happened in our analyses.  

As noted earlier, networks develop even more efficient representations than that by 
including the duplicate word (e.g., A in ABA familiarization, B in ABB familiarization) 
on the same component. Again, this underscores that networks discover a near-identity 
relation between the duplicate words.  

Summary of knowledge-representation analyses 

Results of these network-knowledge-representation analyses can be summarized as 
follows:  

1. These networks learn to encode syllables as a linear combination of consonant and 
vowel sonority, i.e., as either the sum or difference of the sonorities of the consonant 
and vowel.  

2. Despite the relatively limited range of vowel sonority, vowels are equally as 
important as consonants in network knowledge representations.  

3. Because these networks always try to reduce as much error as possible, the first-
recruited hidden unit focuses on the two duplicate words and the second-recruited 
hidden unit focuses on the single word in each three-word sentence.  

4. Bias weights in these networks learn to encode the distinction between consonants 
and vowels.  

5. These networks learn to decode duplicate words with very similar sets of weights to 
the output units that represent the duplicate words.  

These results and conclusions replicate and extend those presented in Shultz and Bale 
(2001). Taken together these different analytical techniques provide replicated and 
consistent evidence that the Shultz and Bale networks learn to distinguish the Marcus et 
al. (1999) grammars by recognizing the near identity of duplicate words in simple three-
word sentences. This involves discovering a somewhat abstract relationship, something 
that is different than mere contour matching.  

Simulation 9: The role of sonority contours in syllabification 

It may be that Vilcu and Hadley (2003, 2005) considered contours in an over-
compartmentalized way, by pitting contour following against syntactic discrimination, as 
if by learning about sonority contours a system cannot also learn about syntax. Sonority 
contours are generally important in language acquisition because they are one of the keys 
to identifying syllables and words. Infants (and presumably network simulations) listen to 
speech-sound sequences and the information gained can be useful for a variety of 
language issues, including syllable and word identification and acquisition of syntactic 
rules. These language functions are eventually dealt with by one integrated computational 
system and cannot always be easily separated into abstract linguistic partitions. Indeed, 
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identifying syllables and words is arguably of central importance in acquiring sentential 
syntax.  

To see why this is true, it is useful to review the standard linguistic interpretation of 
syllables. A syllable is the smallest pronounceable unit in a language. More formally, as 
portrayed in Figure 14, a syllable is a unit of sound composed of an optional onset 
(normally a consonant or consonant cluster) followed by a required rime (Kaye, 1989). A 
rime, in turn, is defined as having a required nucleus (normally a vowel) followed by an 
optional coda (normally a consonant or consonant cluster).  

 
 
Figure 14. General scheme for a syllable. 

As an example, the syllabic structure of the word simulate is shown in Figure 15. 
Here the first two syllables possess an onset and a rime containing an onset but no coda. 
The third syllable also has an onset and a rime, but this rime contains both a nucleus and 
a coda.  

Syllables are known to affect psychological processing of speech input in adults 
(Mehler, Dommergues, Frauenfelder, & Segui, 1981; Vroomen & de Gelder, 1997). But 
for infants, the syllables of their particular language are not provided for free – rather 
they must be learned. Because the speech stream that infants hear is often continuous, this 
learning can be quite difficult, but there is evidence that infants as young as eight months 
are able to learn about syllables from the statistics available in continuous speech 
(Saffran, Aslin, & Newport, 1996).  

There is an emerging view that some of the important clues to syllable detection are 
provided by the sonority contours of human speech (Vroomen et al., 1998). The sonority 
principle states that, within a syllable, sonority starts low at the onset, increases to a peak 
at the nucleus, and decreases into the coda (Selkirk, 1984). This notion of sonority is 
compatible with the way it is used in our work because we based our sonority scale on 
this linguistic research (Shultz & Bale, 2001).  

Syllable 

Onset (optional) Rime (required) 

Nucleus (required) Coda (optional) 

V C 

 

C 
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Figure 15. Syllable structure of the word simulate. 

To see whether networks like ours could learn syllable boundaries from sonority 
contours, we ran an exploratory simulation using the three most common phonemic 
sequences defining syllables: CV, CVC, and V, where C refers to a consonant and V to a 
vowel. All six orders of these common sequences were used to construct three-syllable 
words, as shown in Table 13, where periods indicate syllable boundaries. We created 100 
token words of each of these six sequence types with random assignments of integer 
values: C from -1 to -6 in steps of 1 and V from 4 to 6, also in steps of 1, as in the 
sonority scale in Table 1. There were six input units to code this sonority information, 
and six output units to code a binary decision about the location of syllable endings at 
each of the six positions: -0.5 for no, 0.5 for yes. This target information would be akin to 
infants hearing pauses between syllables, syllables at the beginning or end of single 
words, or isolated monosyllabic words.  

Table 13 Syllable Strings Used in Simulation 9a  
CV.CVC.V CV.V.CVC CVC.CV.V
CVC.V.CV V.CV.CVC V.CVC.CV
aTarget boundaries are marked with a period.  

Such information is not always available in language input, but it is likely to be often 
available and particularly useful in helping to identify syllables based on sonority 
contours. Random assignment of sonority values reflects the fact that we were not 
simulating any particular words in this exploratory simulation, but rather three-syllable 
words in general. Importantly though, all of the syllable boundaries in these words 
conformed to the three common syllable types of CV, CVC, or V. Note that these are not 
encoder networks as in simulations 1-8, but rather pattern-associator networks that learn 
a function mapping input patterns to (different) output patterns.  

Instead of standard CC, we used an interesting variant called sibling-descendant 
cascade-correlation (SDCC) that dynamically decides whether to install each new hidden 
unit on the current highest layer (as a sibling) or on its own separate layer as a descendant 

Word 

Syllable 1 Syllable 2 Syllable 3 

Onset Rime Onset Rime Onset Rime 

 Nucleus 

V 

/I/ 

Nucleus 

V 

/jə/

 

C 

Nucleus Coda 

V 

/e/ 

C 

/t/ 

C 

 

C 

/m/ /s/ /l/ 
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(Baluja & Fahlman, 1994). Correlations of network error with activations of descendant 
candidates were penalized by being multiplied by 0.8, a value that has been found to 
reduce network depth while maintaining good generalization. We have recently come to 
prefer SDCC over standard CC because it creates a greater variety of network topologies 
of a more biologically realistic depth (Shultz, 2006). Otherwise though, the performance 
and functionality of SDCC is quite similar to that of standard CC.  

Twenty SDCC networks were trained until all output units on all 100 training patterns 
were within 0.4 of their target values or a maximum of 1000 epochs was reached. That 
value of 0.4 is the standard score-threshold used to signal successful training with binary 
output units (Shultz, 2003). Each network was trained on a randomly-selected 100 
training patterns and tested on another randomly-selected 100 test patterns, none of which 
were used in training.  

The hidden-unit structures created by these 20 networks are shown in Table 14. For 
example, a structure of 3-3-1 refers to three hidden units on each of the first two layers 
and one hidden unit on the third layer. As is typical of SDCC, the network topologies 
here range from entirely flat to quite deep.   

Table 14 Hidden-unit structures developed by 20 SDCC networks in Simulation 9  
3  3  1 5 3  1  3 5  1  3 1  1  4 
2  3 5  1 7 3  3 3  2 
3  1  3  1 4  1 1  3  3 2  3 1  2  1 
1  7 1  1  3 5  1  1 1  2  2  2 1  1  4 

Mean results for these systematically-trained networks are presented in the 
penultimate row of Table 15, where it can be seen that these networks were virtually 
perfect on the training patterns and generalized very well to the test patterns. To make 
sure that these networks had really learned about syllable boundaries, a control set of 20 
networks was trained on randomly-selected input values in the sonority range of -6 to 6. 
These input patterns were each paired with sets of six binary output values, a randomly-
selected three of which indicated a syllable boundary (0.5), the other three indicating no 
syllable boundary (-0.5). For these control networks, then, there were no systematic 
relations between sonority contours and syllable boundaries, but the actual input and 
output values used in training were in the same range used with the systematically-trained 
networks. These control networks were additionally tested on 100 randomly selected, but 
systematic test patterns of exactly the same type that the systematically-trained networks 
were tested on. The mean performance of these control networks is presented in the last 
row of Table 15. None of the control networks mastered the training patterns within the 
limit of 1000 epochs, but some learning of the random training patterns did occur, as 
indicated by their mean success rate of 45%. However, because there was no 
generalization to the systematic test patterns (2% success), it is clear that this learning 
involved memorization of the training patterns rather than function abstraction as in the 
systematically-trained networks. This is one case where a statistical test of the differences 
between conditions is not required because the differences are so clear.  

These results show that systematically-trained networks learned to find syllable 
boundaries in streams of speech based on realistic sonority contours. The abysmal 
performance of the randomly-trained networks indicates that the performance of the 
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systematically-trained networks was based on genuine function abstraction and not on 
sheer memorization of the training patterns. This is not a definitive simulation of any 
psychological experiment but rather a proof of concept to show that our networks can do 
this kind of thing. Similar simulations with words in real or artificial languages, rather 
than randomly-constructed words as here, could be used to generate predictions for new 
psychological research.  

Table 15 Mean performance of 20 SDCC networks in Simulation 9 (Standard deviations 
in parentheses) 
Training Epochs Proportion correct 
  Train Test
Systematic 868 (122) .99 (.01) .73 (.06)
Random 1000 (0) .45 (.06) .02 (.01)

Another demonstration of this sort would be to examine whether output sonority 
peaks at the position of the nucleus (represented by a vowel) and decreases on either side 
of the nucleus in encoder networks like those used in simulations 1-8. This has already 
been found with simple recurrent networks learning to predict the next phoneme in 
continuous speech (Vroomen et al., 1998). Such a hat-shaped sonority profile, with 
sonority falling off on either side of a vowel-defined nucleus, essentially reflects the 
sonority principle. It may not actually be necessary to test this hypothesis with our 
networks because previous and present network analyses suggested that our networks 
employ the bias (always on) unit for this task, creating positive weights to vowels and 
negative weights to consonants. The Marcus et al. (1999) words are all composed of CV 
syllables, which with our coding scheme creates a sawtooth-shaped sonority contour 
across the sentence (see Figure 1). Simulating this pattern would be unnecessary to show 
and quite easy to achieve. With more complex varieties of syllables, as in the present 
syllable-detection simulation, bias weights alone won’t suffice, and hidden-units become 
critical, making simulations more interesting.  

A general point is that there is no need to expect perfect syntactic generalization in 
either infants or networks from sonority contours alone, as Vilcu and Hadley (2003, 
2005) apparently require. This is partly because sonority contours are used for multiple 
purposes in language acquisition: detecting syllable boundaries (and then perhaps using 
these to detect word boundaries), discriminating syntactic forms, and maybe other 
functions that are not necessarily incompatible.  

Discussion 

Vilcu and Hadley’s (2003, 2005) critique of neural-network models of infant learning of 
artificial grammars is important because it goes to the heart of a debate that has 
dominated cognitive science for the last 20 years – whether human cognition is better 
explained by symbolic rules or by subsymbolic connections. Their papers focused on the 
Shultz and Bale (2001) model because that is the one that could cover the Marcus et al. 
(1999) infant data according to Vilcu and Hadley’s replication methods. Vilcu and 
Hadley focused in particular on whether the Shultz and Bale model actually learns the 
artificial grammars to which the infants were exposed. Because their extensions of the 
Shultz and Bale model failed to generalize to novel sentences, in terms of both 
interpolation and extrapolation, Vilcu and Hadley concluded that this model does not 
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really learn the grammars. Instead Vilcu and Hadley argued that the Shultz and Bale 
model only learns the numerical sonority contours of the artificial sentences, and not 
grammatical relationships involving the near identity of duplicated words.  

Results presented here show that Vilcu and Hadley seriously underestimated the 
ability of the Shultz and Bale model to discover the somewhat abstract near-identity 
relations that are key to distinguishing the Marcus et al. grammars and to generalizing 
both outside and inside of the training range. Our results confirm that the numerical 
contours actually used by the networks to discriminate syntactic patterns are not raw 
sonority values (input to the network) as Vilcu and Hadley had suggested, but rather 
sonority sums (or equivalently sonority differences). Furthermore, the contours of these 
sonority sums learned by the networks and represented on hidden units are not simply 
peaks (or valleys, or other simple patterns), but rather a complex combination of contours 
involving peaks, valleys, increases, decreases, and plateaus in various experimental 
conditions. Faced with this complex mix of contours, the networks discovered and used 
near-identity relations to recognize the grammatical patterns of both new and old 
sentences. This analysis of the actual sonority-sum contours enabled simulation of 
apparent differences between the Marcus et al. (1999) experiments. Experiments 2 and 3, 
containing flat sonority-sum profiles which made it difficult to distinguish monosyllabic 
words, and thus the syntactic categories of these words, were more difficult to learn than 
Experiment 1 which contained only more discriminating profiles.  

The networks learned to decode the representations of the two duplicate words in a 
sentence by using similar sets of weights entering the output units that represent the 
duplicate words. This nearly identical pattern of weights entering the output units 
representing the duplicate words allowed the network to recognize the near-identity of 
these words.  

The relatively large connection weights to the duplicated-word outputs from the first 
hidden unit indicated that this hidden unit had the task of recognizing the category of 
these duplicate words. The second hidden unit had the complementary task of 
recognizing the category of the single word, as indicated by its relatively large weights to 
outputs representing that single word.  

Analyses of hidden-unit activations showed that the first hidden unit learned to 
encode the sonority sum of the duplicated words, and the second hidden unit learned to 
encode the sonority sum of the single word. Again, it is clear that the two duplicated 
words were being treated in identical fashion.  

Networks learned to take the raw sonority values that constituted network inputs and 
re-represent them as sums (or equivalently as differences) on the hidden units. A 
significant advantage of neural networks over symbolic rule-based learners is the ability 
of networks to build such novel representations. A leading symbolic rule-learning 
algorithm was unable to build such representations and unable to simulate the infant data 
considered here (Shultz, 2001).  

PCAs of network contributions revealed two components, one representing sonority 
variation in the duplicate-word category and the other representing sonority variation in 
the single-word category. Once again this is evidence that the networks learned to treat 
the duplicate words identically. Analyses of both hidden-unit activations and network 
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contributions confirmed that sonority variation in both vowels and consonants was 
important in network representations.  

Under well controlled conditions, without confounding phoneme and syntactic pattern 
as in Vilcu and Hadley’s experiments, there were robust differences between consistent 
and inconsistent test patterns as in the original Shultz and Bale simulations and the infant 
data. Moreover, even with Vilcu and Hadley’s confounds left in, these effects were still 
robust as assessed by conventional statistical tests. The introduction of experimental 
confounds and lack of statistical significance tests in Vilcu and Hadley’s research 
appeared to obscure real differences between test patterns and thus underestimated their 
networks’ ability to distinguish these simple grammars. It is commonplace in 
experimental work to eliminate confounds in conditions in order to make accurate causal 
inferences about the effects of conditions on dependent variables. If the goal is to 
determine whether infants have learned the syntax of a language they are exposed to, and 
this will be determined by their interest in novel test sentences with familiar or alternate 
syntax, then these test sentences should vary only in syntax, not in phonology or any 
other characteristics.  

Vilcu and Hadley’s tests of network extrapolation beyond the training range used 
sonority values that do not map onto human speech sounds in any known language, thus 
invalidating their simulations as realistic tests of grammar-learning ability. Even with 
sonority values as extreme as those introduced by Vilcu and Hadley, the networks did 
successfully extrapolate beyond their training range. We demonstrated this with 
experimental designs that systematically varied sonority values without confounding 
them with syntactic differences. If generalization by interpolation and extrapolation is the 
criterion for grammar learning, then these networks indeed learned to distinguish these 
simple grammars.  

Rather than accepting Vilcu and Hadley’s view that tracking sonority contours is 
inconsistent with syntactic discrimination, we supported the emerging view that sonority 
contours provide important clues to the identification of syllables in speech streams. Our 
exploratory simulation showed that SDCC networks can detect syllables using sonority-
contour cues. Syllable identification, in turn, may help to identify words, an essential step 
in acquiring syntax.  

It is important to be realistic about what is happening in the infant experiments. There 
are 7-month-olds listening to recorded speech in a nonsense language. They have no idea 
the experiment concerns syntax or even that they are in an experiment. The speech 
sounds they hear have a variety of phonemes and sonorities. Measures taken from these 
infants are not explicit judgments about syntactic correctness, as might be done with adult 
linguists or occasionally with ordinary adults. Instead, the experimenters measured mere 
looking time towards an audio speaker that was emitting words with one of two different 
syntactic patterns. The infants showed a slight, but significant preference for listening to 
sentences from the more novel of the two languages, suggesting some sort of ability to 
distinguish one syntactic pattern from another. There is no compelling reason to assume 
these infants were focused only or even mainly on syntax. They may equally well have 
focused on sonority contours in the syllables they were hearing. Indeed, such processing 
of phonological content would have been important to their ability to distinguish 
syntactic patterns. In other words, like adult listeners, these infants might be expected to 
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process spoken language in a variety of different linguistic aspects. Thus, it would not be 
surprising to find evidence that the infants were processing phonology as well as syntax. 
If so, a computational model that includes and remains sensitive to phonological 
variation, as the Shultz and Bale model does, will likely fare better than a purely 
syntactic, symbolic model of the sort favored by some others (Marcus et al., 1999; Vilcu 
& Hadley, 2005). As infant researchers test predictions of some of the computational 
models of these initial data, a more complete description and explanation will doubtless 
emerge.  

Vilcu and Hadley (2005) reported that Marcus (2001) does not regard the arbitrarily-
coded model of Shultz (1999) as a counterexample to Marcus’ own claims about the need 
for rules with variables. Marcus’ (2001) argument is based on the supposed presence of 
identifiable variables in the input and output layers of the network, an argument that 
could also, according to Vilcu and Hadley, be applied to the sonority-coded model of 
Shultz and Bale (2001). This argument ignores two important considerations. One is that 
all computational models that learn from examples, whether connectionist or symbolic, 
require some systematic coding of the inputs and outputs. If inputs and outputs cannot be 
described in terms of their essential features, no mapping from inputs to outputs can be 
learned. The other consideration is that to characterize such input and output coding in 
networks as variable binding ignores fundamental differences between symbolic and 
neural systems in terms of how knowledge is represented and processed. Even if some 
researchers are uncertain about how neurons or connectionist units might encode 
variables, the functioning of symbolic and neural computational systems has been well 
understood in the computational literature for some time. The most popular type of 
symbolic system is implemented in what are called production systems. Here long-term 
knowledge is represented in symbolic if-then rules, which are formed out of propositions 
often containing variables. These rules are selected and used (fired) when their conditions 
match the contents of a working-memory buffer containing propositions describing the 
current state of the problem being worked on. During that matching process, considerable 
computational machinery makes sure that the binding of values to variables is consistent 
across rule clauses and instances. Without consistent variable binding, performance of 
production systems falls apart. Unstructured neural networks (such as CC and SDCC), in 
contrast, represent long-term knowledge in connection weights, and process information 
by passing activation from unit to unit without regard for whether input values are bound 
to variables in a consistent fashion. Importantly, in unstructured neural networks there are 
no variables, no propositions, no if-then rules, no matching of rule conditions, no rule 
firing, and no separate working-memory buffer. Any assignment of values to input nodes 
are lost as soon as activation is passed forward from the input layer to other layers of the 
network. These fundamental differences between symbolic and neural systems are well 
known to modelers and non-modelers on both sides of the symbols vs. connections 
debate (e.g., Anderson, 1993; Pinker, 1997; Shultz, 2003). Not only do symbolic and 
neural models operate differently, they often make different predictions for the same 
phenomena (Shultz, 2003). A single example that forms the basis for the current 
controversy is that symbolic rules predict perfect generalization to all instances whose 
descriptive values can be consistently bound to rule variables (Vilcu & Hadley, 2005), 
whereas neural networks predict contextualized generalization, depending in part on the 
content of the items (see, for example, Simulations 1 and 5). To argue that ordinary, 
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unstructured neural networks such as CC are binding values to variables is to offer a 
bizarre and incorrect interpretation of what is transpiring in these very different 
computational systems.  

The current successful coverage of these data by the Shultz and Bale (2001) model 
does not imply that these rather simple networks could acquire the full grammar of a 
human language. Much more needs to be understood about such abilities and how they 
emerge in children before more general models can be built. It is likely that some aspects 
of human language acquisition would require different and more powerful models. But 
the ability of these networks to master the simple artificial grammars used by Marcus et 
al. (1999) with infants is well established. Indeed, these unstructured neural networks can 
learn these grammars more effectively and generalize better than a leading symbolic rule-
learning method provided with the same training and test patterns (Shultz, 2001). That 
algorithm, called C4.5 (Quinlan, 1993), is arguably the most successful existing 
technique for learning symbolic rules from examples, and yet it failed to learn the rules 
specified by Marcus et al. (1999), completely failed to generalize to test patterns, and 
covered none of the phenomena observed with infants.  

In their footnote 4, Vilcu and Hadley (2005) assert without proof or argument that the 
learning rules used in the CC models by Shultz and Bale (2001) are difficult to justify 
biologically. Of interest to this issue is a recent demonstration that these learning rules 
are mathematically equivalent to slightly extended versions of the so-called Hebb rule 
that is widely considered to be biologically plausible (Rivest & Shultz, 2005). Other new 
evidence for the constructive learning implemented in CC and SDCC networks has been 
summarized elsewhere (Shultz, Mysore, & Quartz, 2006). The many brain and neuronal 
features implemented in CC and other connectionist learning algorithms are detailed by 
Shultz (2003). This is not to say that CC mimics actual neural circuits, just that it is 
roughly compatible with current understanding of the principles of brain-style 
computation. In contrast, production systems and other symbolic computational methods 
are considered even by their proponents as purely functional models having no biological 
plausibility. Symbolic algorithms may work on some problems, although not apparently 
in the present case, but it is unknown how they might be implemented in real brains.  

Even successful scientific models typically enjoy only a brief life before they are 
overturned by new evidence or replaced by better models that capture more phenomena 
in a more principled way. Indeed, precisely formulated, working models that generate 
testable predictions often speed the way towards better understanding of natural 
phenomena (Shultz, 2003). However, the evidence presented here suggests that the life of 
the Shultz and Bale (2001) model in covering the Marcus et al. (1999) infant data is not 
yet over. Moreover, this model looks fairly healthy in a field of connectionist models, 
some of whose results cannot be replicated, and one symbolic rule-based model that 
cannot learn the correct rules or cover any of the infant phenomena.  

There are a number of more general lessons that the present controversy provides. 
One is that it can be surprisingly difficult to replicate computer simulations. Vilcu and 
Hadley (2001, 2003, 2005) reported that they were unable to replicate the basic results of 
two of the connectionist simulations of the Marcus et al. infant data. Notice also that we 
could not replicate the results of some of the Vilcu and Hadley simulations. Although it is 
not surprising that human or animal behavioral results do not always replicate, one might 
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have thought that this would not be a problem with computer simulations because of their 
mathematical and computational precision. Apparently simulations are not immune from 
replication problems. Perhaps researchers should start replicating simulations just as they 
already do with behavioral studies. Modelers could routinely run substantial numbers of 
networks in each condition and report statistical analyses of all of the networks they run, 
not just the successful ones. In this context, it should not be forgotten that there are 
several other unstructured network simulations of the Marcus et al. data that have not 
been shown to be difficult to replicate (Christiansen & Curtin, 1999; Negishi, 1999; 
Sirois, Buckingham, & Shultz, 2000). These simulations as well as the Marcus et al. 
(1999) infant data do not have either a published replication or a replication failure at this 
point.  

Another important lesson of this exercise is to avoid introducing inadvertent 
confounds that obscure interpretation of results. In this case, changing phonemes in one 
syntactic type of test sentence, but not in the other syntactic type, confounds syntax and 
sound in a way that can invalidate evidence of syntactic discrimination. With such 
confounds, it cannot be determined whether a difference or lack of difference is due to 
variation in syntactic type or in speech sounds. Conventional experimental design takes 
care to eliminate such confounds (Campbell & Stanley, 1963), as was done in the Marcus 
et al. (2001) infant experiments and in the simulations reported here.  

Yet another lesson is that, even with computer simulations, it is important to use 
statistical tests to evaluate the significance and reliability of results. Particularly with 
neural network models, with their stochastic properties and individual differences, such 
tests are critical. It is not always sufficient to rely on visual comparisons of means and 
visual plots or verbal descriptions of correlations. Important correlation coefficients 
should be computed and tested for statistical significance, and it should be remembered 
that a significant negative correlation is not the same as an absence of correlation.  

In reviewing this work, Vilcu and Hadley requested that we remind readers on the 
substantial sample sizes they employed. Vilcu and Hadley’s (2005) sample sizes were 
quite large. But of course large samples are not an adequate substitute for tests of 
statistical significance. Regardless of sample size, we cannot know whether mean 
differences are different from chance variation without tests of significance. ANOVAs, 
such as we used here, take account of variance within conditions (also known as error 
variance), as well as means and sample sizes, to determine whether mean differences are 
significantly larger than those differences that could be expected by chance alone (e.g., 
Winer, 1962). Major segments of the field of statistics address proper techniques for 
doing just that, and should not be ignored by experimenters.  

Rather than simply striving for large sample sizes, we feel it is better to match sample 
sizes in simulations to those in the psychology experiment being simulated in order to 
equate statistical power as we do here. It is well known that increasing sample size 
increases the likelihood of statistical significance. Or to put it another way, the smaller 
the sample size, the more difficult it is to reach statistical significance. From a simulation 
point of view, it is more interesting to reach about the same level of statistical 
significance using the same sample size as in the experiment being simulated. In this 
way, statistical analysis can become part of the simulation.  
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