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Abstract

Feedforward neural network models of cognitive
development are reviewed within the framework of a
functional distinction between learning and development.
This analysis suggests that static architecture networks
implement a learning theory, whereas generative architecture
networks combine learning and development. Both types of
networks are then evaluated in terms of genetic costs. Within
a levels-of-innateness framework, generative architectures are
viewed as more plausible than static ones. Static architecture
networks appear to implement a form of nativistic elicitation.

Introduction
Feedforward neural networks process information through
brain-inspired principles: excitatory and inhibitory
stimulation, activation summation, activation threshold, unit
activation, and massively parallel and distributed processing.
Although much simpler than neural tissue found in most (if
not all) animals, these networks can process complex
information and provide an alternative framework to rule-
based symbolic approaches to the study of cognition. The
fact that such networks can learn also provides researchers
with powerful tools for the study of human learning and
development (Elman, Bates, Johnson, Karmiloff-Smith,
Parisi, & Plunkett, 1996; Shultz & Mareschal, 1997). This
paper is an expansion on work by Quartz (1993), who
studied assumptions of PDP models within the framework of
Valiant’s probably approximately correct (PAC) model of
learning. The first section proposes a formal distinction
between learning and development, which serves to evaluate
the theoretical implications of developmental work using
different neural network architectures. The second section
evaluates underlying assumptions of different types of neural
network algorithms within the levels-of-innateness
framework outlined by Elman and his colleagues (1996).
Each of the two arguments that can be formulated to support
static neural networks as models of human cognition are
inconsistent with the neurological evidence.  The discussion
stresses that static networks implement a form of nativistic
elicitation, as suggested by their inability to escape Fodor’s
paradox. Overall, static networks do not seem to be good
candidates for modeling cognitive development.

A Distinction Between Learning and
Development

In order to evaluate the possible contribution of neural
network modeling to our understanding of human cognitive
development, it is important to distinguish it from learning.
As Carey (1985) suggested, attempts to differentiate
between learning and development often confound two
distinctions: whether knowledge acquisition requires
restructuring, and whether changes are domain-general or
domain-specific. This paper focuses on the former.

How knowledge acquisition may or may not require
restructuring is a question that was not directly addressed by
Elman and his colleagues in their landmark book on the
connectionist perspective of cognitive development (1996).
Although they do provide justification for the study of
development above and beyond learning, they do not
commit to a formal distinction between these two processes.
Because of the substantial impact their book has on the
study of cognitive development, a clarification appears
timely as it bears on the theoretical implications of different
types of neural network research.

In this paper, the following functional distinction is
proposed. Learning is defined as a change within an existing
processing structure in order to adapt to information from
the environment. This broad description is compatible with
general statements about learning, such as found in nativistic
accounts (e.g., Fodor, 1980) and developmental models
(e.g., Carey 1985; Piaget, 1982). In contrast, development is
defined as change of an existing structure to enable more
complex and adaptive cognitive activity. This general
statement highlights the key idea underlying most theories of
development; that is, a qualitative change in the structure
supporting cognition. Such a general definition of a
developmental mechanism can be found explicitly or
implicitly in Piaget’s (1982) abstraction, Karmiloff-Smith’s
(1992) representational redescription, and Carey’s (1985)
conceptual change, for example. These functional
definitions of learning and development allow a distinction
between the two processes, removing overlap between them
and constraining their individual contribution to cognitive
change. Learning is viewed as parameter adjustment within a
given structure; development as change of structure within



which learning (as well as other cognitive processes) takes
place.

The outlined distinction between learning and
development is also useful in the evaluation of neural
network models of cognitive development. A simple
example that illustrates this point is the XOR Boolean
operator. Implemented as a function, XOR takes two
arguments that can be either true or false and returns true if
one and only one argument is true, otherwise it returns false.
Figure 1 presents two different networks that solve the XOR
problem. Given that the network on the left is a typical static
feedforward network and the one on the right is a generative
cascade-correlation network, how they achieve these
indistinguishable solutions at the output level from initially
random weights requires two different stories.

At the onset of training, the static network of Figure 1 has
the representational power to solve the problem. Within the
multidimensional weight space determined by its topology,
there is a region that will produce the correct output. Only
quantitative changes are required to move the network from
its initially random position in weight space to the region
that solves the problem. Because the learning algorithm
capitalizes on the nonlinear properties of hidden and output
units, these gradual weight changes will not be linear (i.e.,
the delta value for a weight is a function of the receiving
unit’s nonlinear activation, which changes from epoch to
epoch). Although these nonlinear changes qualify as
learning, they do not qualify as development, because only
parameters of the current structure are changed.

The learning history in the cascade-correlation network
from Figure 1 would be different. The initial two-layer
architecture of the network does not allow it to properly
solve the XOR problem. There is no region in its weight
space that will produce the correct output. Therefore error
reduction in output training will stagnate above a

satisfactory level (typically, the network will reduce all
weights to near-zero values in order to minimize error on all
patterns). This stagnation in error reduction spurs the
recruitment of a hidden unit that is then used for further
output training. This new unit increases the dimensionality
of the weight space, in which a solution region now exists.
For this network, both learning and development combine to
achieve a solution to the XOR problem. Learning (i.e.,
parameter adjustment) within the initial structure is
unsuccessful, prompting a modification of the architecture.
This qualifies as development because the structure within
which learning takes place is changed. Further learning
within the new structure finally solves the problem.

We are not arguing that a generic XOR function is a
human developmental problem. However, this basic
example highlights how static and generative networks tell a
different story about learning and development for nonlinear
problems. Namely, that the former network type is a learning
model, and that the latter is a developmental model (that
also incorporates learning).

Elman and his colleagues (1996), by not providing a clear
distinction between learning and development, make an
equivocal statement about connectionism as a model of
development. Even though they make a good case that there
is development and not just learning in human cognitive
change, the simulations they report consist of learning
models that capture developmental data. A good example is
their discussion of a balance-scale model by McClelland
(1989).

The balance-scale task consists of a beam with a series of
unit-spaced pegs on both of its sides, centered on a fulcrum.
On a given trial, a number of unit weights are placed on one
peg on each side. The participant is required to predict
which side of the beam (if any) would go down, provided
that the balance would be free to move. Robust and
replicable developmental effects have been observed in
children of various ages performing this task (Siegler, 1981).

Initially, younger children perform at chance level (stage
0). As they grow older, they begin to use weight information
in their predictions (stage 1). They predict that one side will
go down if it has more weight. At the next stage, they begin
to use distance information, only if there is equal weight on
both arms of the scale (stage 2). Stage 3 children use both
types of information yet fail to integrate them, so when
weight and distance conflict, they perform at chance level.
This is associated with a U-shaped effect on conflict
problems in which the side with larger weight would go
down. Stage 2 children make a correct prediction on these
problems whereas older, stage 3 children perform at chance
level. Finally, stage 4 is the level where performance is
correct on all problem types. At stage 4, children’s answers
appear to follow the torque-rule solution of the problem,
which states that if the products of weight and distance on
each side of the beam are different, the beam will not
balance but tip to the side with the larger product.

The balance-scale task provides modelers with a robust
target of stage-wise developmental data. Mathematical
models based on catastrophe theory maintain that such a
developmental profile is better described as discontinuous
(van der Maas & Molenaar, 1992). A neural network that

Figure 1: Two different solutions of the XOR problem.
The network on the left represents a static network. All
the weights and units depicted are there at the onset of
training. The solution of the XOR problem required only
gradual changes of the initially random weights. The
cascade-correlation network on the right differed at the
onset of training, with only bias, input, and output units.
The recruitment of a hidden unit being necessary at the
end of the first output training phase, the network
increased its representational power in order to solve the
problem. Whereas the output of both networks will be
indistinguishable on all four instances of the problem
after training, the static network learned and the
generative network both learned and developed.



claims to be an adequate model of human development
should replicate this ordered progression through the 5
stages of performance. According to Elman and colleagues
(1996), this is exactly what was accomplished by
McClelland’s (1989) model.

McClelland (1989) used static backpropagation networks
to model the balance-scale task. His results show that the
networks progress through all stages, without reliably
settling into stage 4 performance. At the end of training,
network behavior is between stage 3 and stage 4 levels of
performance. Because not all human adults spontaneously
reach stage 4 performance, the results were considered
satisfactory (McClelland, 1989).

Irrespective of the fact that some humans do reach stage 4,
the networks were viewed as apt developmental models,
exhibiting competence acquisition that follows qualitatively
distinct stages. However, Raijmakers, van Koten, &
Molenaar (1996) suggest that it is the evaluation method and
not network learning that is responsible for this stage-wise
progression. In McClelland's simulations, network
performance was assessed at every training epoch. The
performance categories were mutually exclusive, so at any
point in training, network performance could be associated
with only one stage. Because of the binary decision involved
in determining whether a network is at one stage or not,
Raijmakers and colleagues (1996) suggest that stage-like
discontinuous progression in these networks is an artifact of
the evaluation procedure that was applied to the continuous,
gradual learning taking place in the networks.

Elman and colleagues did not discuss a cascade-
correlation model of the balance-scale task (Shultz,
Mareschal, & Schmidt, 1994). This model progresses
through all stages in an orderly fashion, and performs at
stage 4 by the end of training. Moreover, there are genuine
discontinuities in network learning, as it needs to alter its
topology to solve the task.

Although it is possible that the discontinuities observed in
child performance are due to measurement intervals too
broad to assess continuous change taking place at a smaller
intervals (Siegler, 1998), this appears unlikely (van der
Maas & Molenaar, 1992). If this were the case, the static
network might be a better model. What is relevant for this
paper, though, is that a learning model may be construed as
capturing developmental phenomena if learning and
development are not formally distinguished. The ability of a
network to mimic developmental data does not, in itself,
make it a developmental model. Static backprop models
only implement learning, even when one observes nonlinear
changes during learning. As we argue in the next section,
they also offer a different view of innateness than generative
networks.

Elman (1993) reports an interesting simulation using the
simple recurrent network architecture (SRN). SRN networks
are similar to static feedforward networks, with the addition
of a bank of context units. These units take as activation
values the activations of the hidden units at one time step,
and are fed back to the hidden units at the following time
step. Such context units provide the network with a working
memory, essential for sequential problems such as language.
Elman (1993) found that he could improve the performance

of SRN networks on complex problems that they failed to
learn by enabling the context units to deal with progressively
longer strings. Elman (1993) actually implemented a sort of
sequential generative architecture. However, the rest of the
static architecture of the SRN is problematic from a
nativistic perspective, as is the case for all static models.

Levels of Innateness
One important contribution of the Elman and colleagues’
(1996) book is their review of innateness. They identify
three levels at which concepts could have an innate basis:
representations, architectures, and timing. The focus is not
as much towards identifying what is or is not innate, but
rather towards defining how things could be innate.

Hardwired concepts or knowledge would be at the
representational level. This level of innateness implies that
specific synapses in the brain must be designed in order to
represent concepts before experience could have shaped
such connections. Spelke’s (1994) suggestion of innately
specified core theories in infants would fall in this category
of innateness, for example. So would a language acquisition
device for a universal grammar (Chomsky, 1975). For nature
to implement such information prior to any experience, a
large amount of precisely designed connections need to be
made.

Elman and his colleagues reject such a level of cognitive
innateness based on two observations: human DNA cannot
encode such a large amount of precise information, and the
human cortex exhibits a significant equipotentiality that is
incompatible with pre-specified representations. Both
observations also have implications for the evaluation of
neural network models.

Human DNA is found on twenty-three pairs of
chromosomes. It is estimated that it can carry up to 109 bits
of information on base pairs (Elman et al., 1996). This is not
enough data to specify the specific location and
configuration of each cell in the body (i.e., mosaic
development), so nature must rely on heuristics to generate a
viable being from minimal information (i.e., regulatory
development). Elman and colleagues (1996) provide an
extensive review of known mechanisms through which cells
organize themselves functionally and spatially through an
interaction between their DNA and the environment.

Their conclusion is that the different processes through
which nature makes use of minimal DNA to build humans
argues against representational innateness. The information
in genes operates at a more abstract level than is required for
innate representations, so other constraints are suggested to
account for species specific stereotypical behavior.

The plasticity or equipotentiality of the cortex also argues
against representational innateness (Elman et al., 1996).
Compelling evidence from studies of brain rewiring in small
mammals is reported to highlight the plasticity of neural
tissue, even in species for which behavior is typically
considered more rigid (i.e., innately specified). First,
redirecting the visual input of mice to the auditory cortex
and vice-versa has the resulting effect that the auditory
cortex will process visual signals and the visual cortex will
process auditory signals. Moreover, the auditory cortex will



develop receptive fields and ocular dominance columns as
would normally take place in the visual cortex. Second,
transplanting cortical columns from one cortical area to
another has a similar effect on the transplanted tissue. Rather
than processing the type of information it would have
initially, it will process information from its new location
and develop to be indistinguishable from its neighbor
columns. Both these effects argue against innate constraints
on representation, because the cortex will learn to process
whatever it is fed and will be strongly influenced by its
neighbors.

One justification that is invoked to sustain the idea of
innate knowledge in humans is that it would be unreasonable
to assume it in all animals but humans (e.g., Karmiloff-
Smith, 1992). Quartz and Sejnowski (1997) reviewed the
literature on brain development, and concluded that
plasticity is most often found in species that are
phylogenetically recent and proximal to humans. They
suggest that it may be more appropriate to speak of human
evolution as moving towards maximal plasticity rather than
towards hyperspecialization. Like Elman and colleagues
(1996), they suggest that plasticity may be the more adaptive
solution, that it is more compact than innately specified
knowledge, and that it is sustained by comparative data
(Quartz & Sejnowski, 1997).

The next level of innateness is architectural. According to
Elman and his colleagues (1996), this is the level where
innate constraints on the brain can have a plausible effect on
knowledge. Architectural constraints themselves can be
divided into three levels. Unit level architectural constraints
deal with the specific properties of neurons (e.g., neuron
types, response characteristics, type of transmitter). Local
architectural constraints, as the name implies, deal with the
local organization of neural tissue (e.g., layers, density,
degree and nature of connectivity). Finally, global
architectural constraints concern the global organization of
the local areas. According to the view of the brain as a
network of networks, global constraints specify how
networks are interconnected.

In these architectural forms of innateness, knowledge is
not innate, but the overall structure of the brain constrains
how, where, and what information will be processed. This
embodies species specific aspects of cognition, without
requiring representational innateness. The almost universal
specific localization of many important cognitive processes
(e.g., Broca’s area) is guaranteed by specifying what input is
sent to different areas. For Elman et al. (1996), architectural
constraints are not only a reasonable way through which
genes may constrain cognition: connectionist models
implement this level of innateness.

The final level at which something cognitive can be innate
is with chronotropic constraints. These affect the timing of
maturational events, from cell division in neurogenesis to
waves of synaptic growth and pruning, as well as the
temporal development of different cortical areas (Elman et
al., 1996).

Whereas architectural constraints deal with what and
where information is processed, chronotopic constraints add
a when dimension to the equation. The order in which
information can be processed and integrated over

development will have an important impact on the nature of
cognitive processes (Elman et al., 1996).

This revised interpretation of innateness leaves one
important question unanswered, though: What is implied by
different neural network algorithms with respect to innate
specification? Elman et al. (1996) took the opposite
perspective: What do innate specifications imply? Their
answer is that only architectural and chronotopic constraints
are reasonable forms of innateness, and consequently so are
neural networks with unspecified weights. However, we
argue that different architectures have different genetic costs
and theoretical implications.

Neural Networks and Innateness
Quartz (1993) has shown that a static network cannot learn
what is beyond its representational power (defined by the
number of weights, the activation functions of units, and the
topology of the network). However, too powerful a network
may correctly produce output without having abstracted any
relevant information through training. What is implied for
the human brain by these results? The exact topology of a
network is crucial for its learning behavior. Therefore an
important issue, in order to consider static architecture
networks as models of human cognition, is sustaining that
the brain would have the appropriate topology beforehand as
an experience-independent given.

Using static networks as models of human cognitive
development would require one of the following two
assumptions. The first assumption would be that the large
number of neurons in the brain are highly interconnected in
such a way that for anything humans need to (and can) learn,
the probability of an appropriately connected network
existing in advance is extremely high. We call this the
probable-network assumption. The second assumption is
that the brain is provided a priori knowledge of what will
have to be learned, and has the appropriately connected
networks before any experience, which would be a form of
representational innateness (Quartz, 1993). We refer to this
as the knowledgeable-network assumption, because
networks are specified from a priori knowledge about tasks.
Let us consider each of these assumptions.

The Probable-Network
There is indeed a very large number of neurons in the brain,
estimated at about 1011, and with an average of 103 connec-
tions per neuron, it is safe to say that it is a powerful com-
puter (Churchland, 1989). But like a supercomputer with an
operating system that would allow only single digit arithme-
tic, such power is useless if not properly wired. According to
the probable-network assumption, a great deal of computa-
tional power in the human brain is wasted. Only those neu-
rons organized in the appropriate topology for a given task
will be of use, the others discarded. Elman and colleagues
(1996) refer to the observation that there is an initial prolif-
eration of neurons in young children, followed by substantial
pruning. The problems with this approach are three-fold.

First, the simulations reported by Elman and his
colleagues should not be understood as making a one-to-one
correspondence between neurons in the brain and units in



the networks. Rather, units in neural network models should
be viewed as analogous to groups of neurons in the brain
(columns, modules, regions...), and weights as pathways.
This implies that the unit cost of a given network is greater
at the level that implements it, namely neurons. In order for
the brain to make sure that there is somewhere a network
appropriate for the task at hand, a huge number of neurons
must go to waste. Such a costly solution does not appear
adaptive (Quartz & Sejnowski, 1997).

Second, given that learning and development occur across
the lifespan and that most of the neural pruning takes place
in childhood (Elman et al., 1996), the implication is that in
order to learn a new task in later life, the brain will have
kept the appropriate network from childhood. This would be
at best odd, because a) pruning was understood as an
experience-driven process by which useless neurons are
removed whereas their usefulness has not yet been
evaluated, and b) the brain would require some mysterious
access to the solutions of yet to be encountered problems to
keep suitable solutions for future learning.

Finally, support for the probable-network assumption
would go against recent findings in neuroscience research
(Quartz & Sejnowski, 1997). It is suggested that the
overproduction/pruning model of development is overstated
in the literature, and that flexibility in the brain provided by
synaptogenesis, the generation of new synapses, has a
greater role in cognitive change. Moreover, this flexibility
available through synaptogenesis is more often found in
species that are close to humans phylogenetically.

For these reasons, static neural networks do not appear a
tenable approach to modeling human cognition, unless one
commits to the second assumption, that networks are already
properly connected.

The Knowledgeable-Network
The problem with this suggestion is that it implies more than
architectural innateness, unlike what is suggested by Elman
and colleagues (1996). They argue that representations need
not be innate because a network with initially random con-
nections will find its way to the appropriate representation
through weight adjustment. Representational innateness
would imply that the weights, and not just the topology,
would be pre-specified. This suggestion masks the fact that
in order to generate the appropriate static topology, the brain
would still require some a priori representation of the prob-
lem it will come to learn, because network topology deter-
mines what can be learned, and how. If an appropriate to-
pology is not available beforehand, the organism could fail
to learn, or learn inappropriately. Given that the appropriate
topology is defined as a function of the problem, networks
with initially random weights still imply representational
innateness (if only a relaxed version). In which case the net-
works implement elicitation of knowledge through parame-
ter adjustment. Elicitation is a nativistic synonym of learn-
ing, where only parameter values need to be derived through
experience, because the organism was provided with the
required parameters. So the suggestion the authors raise
about the implausibility of genetically specified representa-
tions, presented earlier, should be taken a step further and

would argue against genetically specified topologies for
each problem humans will come to learn.

Conclusion
Overall, static neural networks do not fare well in light of
the reasonable objections to some forms of innateness
highlighted by Elman and his colleagues (1996). Either they
imply a costly and mysterious use of neurons that clashes
with data from developmental neuroscience (the probable-
network assumption), or they require a disguised form of
representational innateness for their implementation (the
knowledgeable-network assumption). This is not the case
with generative networks such as cascade-correlation. These
are cost efficient, because they will develop the architecture
required as they learn. Because of this generative property,
there is no requirement, through either overproduction of
neurons or innately specified architectural maps, for an
appropriate topology to be present prior to learning. And
generative networks are more consistent with developmental
observations in neuroscience (Quartz & Sejnowski, 1997).

As a final note, generative networks can escape the
nativistic paradox of development formulated by Fodor
(1980), whereas static networks cannot (Mareschal &
Shultz, 1996; Shultz & Mareschal, 1997). Fodor’s paradox
states that a system with a given level of logical power will
be unable to generate a logical system at a higher level
(Fodor, 1980). This implies that it is impossible to represent
something for which one does not already have the
representational power. Formulated in the context of
computational approaches to learning, this is a strong
argument, and it has been used to argue against development
and in favor of nativistic ideas.

Cascade-correlation escapes Fodor’s paradox through its
principled recruitment of additional units during the learning
process (Mareschal & Shultz, 1996). Recall the XOR
example from the first section. Initially, with its two-layer
topology, a cascade-correlation network cannot represent a
logical operator of the XOR level. Only linear functions like
OR and AND could be learned. XOR, a combination of
AND and OR, can only be represented in the network
through recruiting an additional, hidden unit. The algorithm
does just that when error reduction stagnates, and the new
unit is trained to track the network’s residual error. The
solution is not given to the network, it develops and learns
one. Static networks, at the onset of training, must have an
appropriate topology in order to succeed. To some extent,
the solution is thus built in because networks are powerful
enough to represent it. No matter what the initial weight
values are, the number and arrangement of these weights
determines what the networks can and cannot learn (Quartz,
1993). As such, they fail to escape Fodor’s paradox.
Moreover, given the implications at the implementational
level discussed in the previous section, the learning model
implied by static networks may not only fail to realize
development, but may very well succeed at implementing
nativism as elicitation. Elicitation implies that mere
exposure to stimuli will produce the predetermined behavior
through parameter tweaking. A priori topologies do exactly
that by constraining the representations of a network.



The ideas presented in this paper are not meant to be
definitive. The purpose is to raise awareness to a common
confound between learning and development, as well as to
the biological implications associated with different neural
network models. Because of the immense potential of neural
network tools for the study of human development, it would
be of great disservice to ignore the basic questions that
pertain to theoretical assumptions and implications
associated with these models.
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