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Abstract 

Cognitive modeling with neural networks 
unrealistically ignores the role of knowledge in 
learning by starting from random weights. It is 
likely that effective use of knowledge by neural 
networks could significantly speed learning. A 
new algorithm, knowledge-based cascade-
correlation (KBCC), finds and adapts its relevant 
knowledge in new learning. Comparison to 
multi-task learning (MTL) reveals that KBCC 
uses its knowledge more effectively to learn 
faster.  

1.  Existing Knowledge and New Learning 

Neural networks typically learn de novo without the 
benefit of existing knowledge. However, when people 
learn, they routinely use their knowledge (Pazzani, 1991; 
Wisniewski, 1995). Such use of prior knowledge in 
learning is likely responsible for the ease and speed with 
which people learn, and for interference with new 
learning. The technical reason that neural networks fail to 
use knowledge is that they begin learning from initially 
random connection weights. This implements a tabula 
rasa view of each distinct learning task that very few 
cognitive psychologists would accept. In this paper, we 
compare two algorithms (KBCC and MTL) for their 
ability to use knowledge to speed learning. 

KBCC is an extension of cascade-correlation (CC), a 
generative learning algorithm often used in the simulation 
of cognitive development (Buckingham & Shultz, in 
press; Mareschal & Shultz, 1999; Oshima-Takane, 
Takane, & Shultz, 1999; Shultz, 1998, 1999; Shultz, 
Mareschal, & Schmidt, 1994; Sirois & Shultz, 1998). CC 
constructs its own network topology by recruiting new 
hidden units into the network as needed in order to reduce 
error (Fahlman & Lebiere, 1990). KBCC recruits 
previously learned networks in addition to the single 
hidden units recruited by CC (Shultz & Rivest, 2000). 

Following terminology in the literatures on analogy and 
transfer, we refer to existing networks as potential source 
knowledge and to a current learning task as a target. 
Previously learned source networks compete with each 
other and with single hidden units to be recruited into the 
target network.  

Caruana (1993, 1995, 1997) developed multi-task 
learning (MTL) in which he trained a network on several 
tasks taken from the same domain in parallel, with a 
single output unit for each task. Such networks typically 
learned a common hidden-unit representation, which 
produced better generalization than learning the same 
single tasks one at a time (STL). MTL can be adapted to 
sequential learning by having a source network generate 
responses to input values from a new task. These 
responses can then serve as target output values in parallel 
MTL of the new task.  

This paper reports a comparison of KBCC and MTL on 
the same sequential learning task. The goals are to 
determine whether each algorithm can use source 
knowledge to speed learning and to study of the effects of 
knowledge relevance on learning speed.  

2.  Previous Work on Knowledge and Learning 

Other previous neural network research on knowledge 
and learning has included studies of transfer (Pratt, 1993), 
sequential learning (Silver & Mercer, 1996), lifelong 
learning (Thrun & Mitchell, 1993), knowledge insertion 
(Shavlik, 1994), modularity (Jordan & Jacobs, 1994), and 
input re-coding (Clark & Thornton, 1997).  

Pratt (1993) pioneered the study of knowledge and 
learning in neural networks with a technique called 
discriminability-based transfer (DBT). DBT uses the 
weights from a previously trained network to initialize a 
new network. This seems the most straightforward idea 
for using knowledge in new neural learning. Because it 
did not actually work very well, Pratt re-scaled the 
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previous network's hyper-planes so that useful ones had 
large weights and less useful ones had small weights.  

Silver and Mercer (1996) extended MTL to sequential 
learning in a method called task rehearsal (TRM). Here, 
old tasks are pseudo-rehearsed during new learning. In 
pseudo-rehearsal, a network generates its own target 
vectors, using its current weights, rather than merely 
accepting them from the environment (Robins, 1995). In a 
variation of MTL, separate learning rates for each task are 
used to control the impact of each source task, ensuring 
that the most related tasks have the most impact on 
learning.  

Thrun and Mitchell (1993) proposed a technique they 
called lifelong learning, in which a network meta-learns 
the slope of the desired function at each training example. 
This is the derivative of the function at an example output 
with respect to the input attribute vector. Then, in new 
learning, a meta-network predicts slopes and estimates its 
accuracy for each new training example. This technique 
would seem to trade not so much on knowledge 
representations as on search knowledge.  

Clark and Thornton (1997) emphasized the importance of 
networks being able to re-code their input in the learning 
of difficult, so-called Type-2 problems. Type-1 problems 
are those that can be solved by sampling the originally 
coded input data. Type-2 problems need re-coding in 
order to use Type-1 knowledge. Re-coding may require 
incremental learning, modularity, and representational re-
description (Karmiloff-Smith, 1992), but no specific 
algorithm was proposed.  

Shavlik (1994) devised an algorithm for creating 
knowledge-based artificial neural networks (KBANN). 
KBANN converts a set of symbolic rules embodying a 
domain theory of a problem into a feed-forward neural 
network with the final rule conclusions as output units 
and intermediate rule conclusions as hidden units. 
Connection weights and biases are initialized to mimic the 
conjunctive and disjunctive structures of the original 
rules. Such knowledge-initialized networks are then 
trained with examples to refine the network's knowledge. 
Training with KBANN is typically faster than using 
standard networks with random weights and leads to 
better generalization. Following training, the modified 
rules can be extracted from the network.  

Jordon and Jacobs (1994) devised the Hierarchical 
Mixture of Experts (HME) model to decompose problems 
into separate network modules. Distinct network modules 
become expert on subtasks, and cooperate on an overall 
solution via gating networks that learn to weight the 
modular expert contributions for particular parts of a 
problem. HME was found to learn the dynamics of a four-
degree-of-freedom robot arm faster than a multi-layer 
back-propagation network did.  

Next we describe in some detail the two learning 
algorithms featured here: KBCC and MTL.  

3.  Knowledge-based Cascade -correlation  

KBCC learns like CC, except that KBCC treats its 
previously learned networks as if they were single 
candidate hidden units. Both single units and existing 
networks are candidates for recruitment into a target 
network. A candidate unit and a candidate network each 
define a function that can be differentiated, which is 
essential for weight adjustment by gradient descent. The 
connection scheme for a sample KBCC network is shown 
in Figure 1. This connection scheme is the same as in CC 
except that a recruited network can have multiple 
weighted sums as inputs and can have multiple outputs. In 
contrast, a single recruited unit, whether in CC or KBCC, 
has only one weighted sum as input and one output.  

Hidden 1

Output

Hidden 2

Inputs  

Figure 1 . Third output phase of a KBCC network in which the 
first recruited hidden unit is a previously learned source network 
with multiple inputs and outputs. Dashed lines indicate trainable 
weights; solid lines indicate frozen weights. Thin lines indicate 
single weights; thick lines indicate possible multiple weights to 
and from the recruited network.  

Some notational conventions in our formulation of 
KBCC:  

oou
w , :  Weight between output ou of unit u and output 

unit o. 

cu iow , : Weight between output ou of unit u and input ic 

of candidate c. 

pof
,
′ : Derivative of the activation function of output 

unit o with respect to its input at pattern p. 

poi cc
f ,∇ : Partial derivative of candidate c output oc with 

respect to its input ic at pattern p. 

poV , :  Activation of output unit o at pattern p. 

poc
V , : Activation of output oc of candidate c at pattern 

p. 

pou
V , : Activation of output ou of unit u at pattern p. 

poT , : Target value of output o at pattern p.  

KBCC networks begin and end their lives in the so-called 
output phase, just as CC networks do. In the output phase, 
weights entering the output units are trained with the 
quickprop algorithm (Fahlman, 1988) in order to reduce 
error. Weights entering output units are initialized with 
uniform random numbers within the range of -1 to 1. The 
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function to be minimized in the output phase is the sum-
squared error over all outputs and all training patterns: 
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Like other gradient descent algorithms, KBCC requires 
computation of the slope of the function to be minimized. 
The partial derivative of F with respect to the 
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Output units can have either sigmoid or linear activation 
functions. As in CC, an output phase continues until some 
number of epochs pass without solution, error reduction 
stagnates for some few consecutive epochs, or all output 
activations are within a specified range of their target 
values. In each of the first two cases, there is a shift to 
input phase. In the last case, learning stops and the system 
declares victory.  

In an input phase, a new hidden unit is recruited into a 
network and installed downstream of all existing hidden 
units. The recruited unit is selected from a pool of 
candidates. During the recruitment process, candidates 
receive input from all existing network units, except 
output units. Input weights are trained by trying to 
maximize a correlation between activation of the 
candidate and network error. The candidate that gets 
recruited is the one that is best at tracking the network's 
current error.  

In KBCC, candidates include, not only single units as in 
CC, but also previously learned source networks. There 
are N candidates per type -- single unit and source 
network. Weights entering the N single-unit candidates 
are initialized randomly in a uniform distribution within 
the range of -1 to 1. Activation functions of the single 
units are typically sigmoid, but can be asigmoid or 
Gaussian. For each source network, input weights for N-1 
instances are initialized in the same way. In addition, one 
instance of each source network has weights of 1 between 
corresponding inputs of the target and source networks 
and 0s elsewhere. These identity weights are designed to 
enable quick use of exact knowledge.  

The function to maximize with quickprop in an input 
phase is the average covariance of the activation of each 
candidate c (independently) with the error at each output, 
normalized by the sum squared error.  
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In this formula, OE  is the mean error at output unit o, 

and COV  is the mean activation output of candidate C. Gc 

gets standardized by the number of outputs for the 
candidate c (#Oc) and by the number of outputs for the 
main network (#O). 

Again, the slope of this function is required for weight 
adjustment. The partial derivative of Gc with respect to 

the weight 
cu iow ,  between output ou of unit u and input ic 

of candidate c is  
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Here, oo c ,σ  is the sign of the covariance between the 

output oc of candidate c and the activation of output unit 
o.  

An input phase continues until some numb er of epochs 
passes without solution, or at least one correlation reaches 
a minimum value (default value = 0.2) and correlation 
maximization stagnates for some few consecutive input 
phase epochs. When there is a shift back to output phase, 
weights are created from the output(s) of the best 
candidate to each output unit in the target network. Other 
candidates are discarded and the new weights are 
initialized using small random values with sign opposite 
to that in the correlation.  

4.  Multi-task Learning 

The basic idea underlying MTL is that it can be easier to 
learn several tasks at once than to learn them separately 
(Caruana, 1993). MTL has been demonstrated to improve 
generalization by biasing networks to learn hidden unit 
representations that are common to several related tasks 
(Caruana, 1993, 1995, 1997). Baxter (1995) proved that 
the number of examples required for learning any one 
task in a multi-task paradigm decreases as a function of 
total number of tasks learned in parallel.  

Caruana (1997) suggested that MTL could be applied to 
sequential learning by using an existing source network to 
generate synthetic data that could be added to the training 
set of a new, related target task. Assuming that the source 
and target tasks have identical input units and a single 
output unit, MTL training can then occur in the usual 
parallel fashion, as shown in Figure 2. 

The new training patterns are passed through the source 
network to generate target output values for the output 
unit representing the source task in the new MTL 
network. Because of the requirement that all MTL tasks 
be learned in parallel, it is not clear whether MTL would 
inevitably generate faster learning than no knowledge at 
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all, but Caruana (1995) asserted that "MTB also usually 
learns in fewer epochs than STB (p. 662)." In this context, 
MTB refers to multi-task back-propagation and STB 
refers to single-task back-propagation, more generally 
called single-task learning (STL). 

Target
task

Source
task

Hiddens

Outputs

Inputs
 

Figure 2. MTL network for two tasks. Arrows indicate 
full layer-to-layer connectivity. 

In any case, Silver and Mercer (1996) applied MTL to 
sequential learning in this fashion (calling it TRM), and 
found better generalization and faster learning with MTL 
than with no knowledge using impoverished training sets, 
regardless of whether separate learning rates were used 
for each MTL task. Their problem domain was similar to 
ours, learning to distinguish the inside vs. the outside of a 
band in various orientations.  

5.  Learning Task 

To assess the impact of source knowledge on learning a 
target task, we varied the relevance of a single source of 
knowledge. The idea was to determine whether KBCC 
and MTL networks would learn faster if they had source 
knowledge that was more relevant and to assess the 
degree of speedup. The task involved learning whether a 
pair of Cartesian coordinates fell inside or outside of a 
particular geometric shape. Source networks varied in 
terms of shape and translation.   

The input space was a square centered at the origin with 
sides of length 2. Networks were trained with a set of 225 
patterns forming a regular 15 x 15 grid covering the 
whole input space including the boundary. There were 
200 randomly determined test patterns distributed 
uniformly over the input space but not used in training.  

We ran 20 networks in each condition of each experiment 
in order to assess the statistical reliability of results. 
Learning speed was measured by epochs to learn, where 
an epoch is a pass through all of the training patterns.  

Knowledge relevance was varied by changing the posit ion 
or shape of the source knowledge. The target shape in the 
second phase of knowledge-guided learning was a 
rectangle sized 0.4 x 1.6 centered at (-4/7, 0) in the input 
space (see Figure 3).  

 

Figure 3. Output activation diagram showing the target 
problem (left rectangle). 

In the target phase, networks had to learn this  left-
positioned rectangle after having previously learned a 
rectangle, two rectangles, or a circle centered at the 
origin, or to the left, or to the right in the input space. The 
various experimental conditions are shown in Table 1. 

Table 1 . Source knowledge conditions. 

Name Centered at Relation to 
target 

Left 
rectangle 

 -4/7, 0 Exact  

Left & 
center 
rectangles 

 (-4/7, 0) & (0, 0) Exact/near, 
overly complex  

Center 
rectangle 

 0, 0 Near relevant  

Right 
rectangle 

 4/7, 0 Far relevant  

Center & 
right 
rectangles 

 (0, 0) & (4/7, 0) Near/far, overly 
complex  

Circle  0, 0 with radius 0.5 Irrelevant  

None No knowledge  No relation 
 

Our rectangles are similar to the bands used by Silver and 
Mercer (1996) except that their bands were not bounded 
on each end as our rectangles were. Thus, our rectangles 
might be expected to be more difficult to learn because of 
their greater non-linearity. In a control condition, 
networks had no source knowledge when beginning the 
target task, essentially similar to ordinary CC networks 
and STL networks. Learning stopped when all output unit 
activations were within 0.4 of their target values for all 
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training patterns. Target values for points inside the shape 
were 0.5; for points outside the shape, -0.5.  

5.1  Procedure for KBCC 

KBCC networks first learned one of the source problems 
in Table 1 and then learned the target problem (left 
rectangle). In the case of the no-knowledge control 
condition, there was no source to learn so the network just 
learned the target problem, essentially as a CC network.  

In input phases of target learning, the control condition 
had 8 single-unit candidates; the other conditions each 
had 4 single-unit candidates and 4 source-network 
candidates. In any given KBCC network, the source 
networks were identical except for having four different 
sets of initially random input weights. This is perfectly 
analogous to how several different single candidate units 
are treated in CC.  

5.2  Procedure for MTL 

For MTL, we used the quickprop algorithm (Fahlman, 
1988) because ordinary back-propagation, customarily 
used in MTL and TRM, could not learn our source tasks 
within a reasonable time frame. Typically, back-
propagation networks ran for over 2000 epochs without 
making a noticeable drop in error, using any of several 
different combinations of learning rate and momentum. 
Quickprop is a weight training algorithm that uses the 
slope of error with respect to weight at the last two epochs 
to estimate curvature, the rate at which slope changes as a 
function of weight change. Thus armed with both slope 
and an estimate of curvature, quickprop moves more 
decisively to change weights in order to minimize error 
than back-propagation, which uses only slope. Moreover, 
using quickprop to learn weights in MTL ensures a closer 
comparison to KBCC, which also uses quickprop.  

We trained a source network in one of the knowledge 
conditions in Table 1, and then constructed an MTL 
network to learn both the source and target tasks in 
parallel, using outputs from the source network as the 
target training signal for the source output unit in the 
MTL network. Training targets for the other output unit in 
the MTL network were provided by the target task (left 
rectangle). In the no-knowledge condition, a network was 
simply trained on the target task in STL fashion.  

Twelve hidden units were required to get successful 
learning of the source and target shapes. Learning rate 
was 0.5. If source networks failed to learn their shape 
within 2000 networks, they were discarded and replaced. 
The stopping criterion was identical for KBCC, STL, and 
MTL networks -- victory was declared when all output 
units had activations within 0.4 of their target values for 
all training patterns.  

We next analyze the learning speed results separately for 
each algorithm to determine whether and to what extent 
each algorithm benefits from knowledge.  

6.  KBCC Results 

A factorial ANOVA of the epochs to victory in KBCC 
produced a main effect of knowledge condition, F(6, 133) 
= 33.15, p < .0001. The mean epochs to victory, along 
with standard deviation bars and homogeneous subsets, 
based on the LSD post hoc comparison method, are 
shown in Figure 4. The pattern of mean differences 
reveals that exact knowledge, whether alone or 
embedded, produced the fastest learning, followed by 
relevant knowledge, distant and overly complex 
knowledge and irrelevant knowledge, and finally the 
control condition without any knowledge. Every 
knowledge condition was significantly faster than no 
knowledge at all.  
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Figure 4 . Mean epochs to victory in the t arget phase for KBCC 
networks.  

Generalization tests with the 200 randomly determined 
test patterns showed less than 5% misclassification errors 
in every condition. There were no condition effects on 
error, indicating that target problems were successfully 
learned in every condition.  

Number of hidden units recruited in the target phase 
ranged from 3.95 in the center rectangle condition to 7.60 
in the center and right rectangle condition, with an overall 
mean of 5.63. All but two of these recruited units were 
source networks.  

Output activation diagrams were drawn to understand the 
knowledge representations achieved after source- and 
target-training phases. Some examples of these diagrams 
are shown in Figures 5-7. In interpreting these figures, 
recall that a network learns a shape by distinguishing 
points within it from points outside of it. In Figures 5-7, 
white regions of the input space are classified as being 
inside the shape, black regions outside of the shape, and 
gray areas are uncertain, meaning that the network gives a 
borderline, unclassifiable response (in the range -0.1 to 
0.1). The horizontal and vertical lines seen in these 
figures are the x- and y-axes, respectively, of the input 
space.  
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During target learning, the network can recruit single 
hidden units or already-learned source networks, such as 
those in Figures 5 and 6. Figure 5 shows a source 
network's solution to the circle problem. We predicted 
that the circle would constitute an irrelevant source of 
knowledge that would not help target learning very much 
because of the large difference in shape. Figure 6 shows a 
source network's solution to the left and center rectangles 
problem. This contains an exact solution to the left 
rectangle target problem, but is embedded in an overly 
complex source. Figure 7 shows a KBCC solution to the 
left rectangle target problem based on recruitment of the 
network whose knowledge representation is shown in 
Figure 6. Sources like that in Figure 6 were very effective 
in speeding up learning, whereas sources like that in 
Figure 5 were less effective, as reported in Figure 4. 

 

 

Figure 5. Output activation diagram showing a source 
network's solution to the circle problem. 

The points in each of Figures 5-7 are the 225 target 
training patterns, which form a 15 x 15 grid covering the 
whole input space. The learned solutions are irregular 
because they result from testing the network on a fine grid 
of 220 x 220 input patterns. 

7.  MTL Results 

Even with quickprop to adjust weights, many networks 
failed to learn within a reasonable number of epochs in 
both STL and MTL phases. STL networks were discarded 
and replaced if they did not learn the source knowledge 
task within 2000 epochs. There were 3 discarded STL 
networks in the left rectangle condition, 25 in the 
center/right condition, 16 in the left/center condition, and 
7 in the circle condition. All remaining networks 
successfully learned their source problem and were thus 
carried forward to the target phase. 

Smaller numbers of MTL networks failed to learn the 
target problem within 2000 epochs: 1 in the left condition, 
1 in the center condition, 5 in the left/center condition, 4 

in the center/right condition, and 3 in the no-knowledge 
condition. Each of these networks was given a score of 
2001 epochs. 

 

 

Figure 6. Output activation diagram showing a source 
network's solution to the left and center rectangles 
problem. 

A factorial ANOVA of the epochs to victory in MTL 
networks produced a main effect of knowledge condition, 
F(6, 133) = 3.26, p < .005. The mean epochs to victory, 
along with standard deviation bars and homogeneous 
subsets, based on the LSD post hoc comparison method, 
are shown in Figure 8. The pattern of mean differences 
reveals that the no-knowledge condition did not differ 
significantly from any knowledge condition, except exact, 
overly complex knowledge (left and center rectangles). In 
that comparison, networks without any knowledge 
learned faster than networks with exact, but overly 
complex knowledge. 

 

 

Figure 7 . Output activation diagram showing a KBCC solution 
to the target problem in Figure 3 after recruiting the source 
problem in Figure 6.   



 

877 

0 500 1000 1500

Left, center

Center, right

Right

None

Center

Circle

Left

C
on

di
tio

n

Mean epochs to victory
 

Figure 8. Mean epochs to victory in the target phase for 
MTL networks.  

8.  Discussion 

These results show that only KBCC networks were able 
to find and adapt their existing knowledge in new 
learning, significantly shortening the learning time. When 
exact knowledge was present, KBCC recruited it for a 
quick solution. The more relevant the source knowledge, 
the more likely it was that KBCC recruited it for solution 
of a target problem and the faster that new learning was 
likely to be. From any viewpoint, these are desirable 
properties for a system that effectively uses its knowledge 
in new learning. 

On the other hand, MTL networks did not show any 
benefits of knowledge for learning speed. They had 
particular difficulty extracting exact knowledge from an 
overly complex source network. Moreover, STL networks 
often failed to learn their assigned source problem and 
were replaced before MTL could be assessed.  MTL may 
not speed learning of new tasks because it requires both 
old and new tasks to be freshly learned in parallel. KBCC 
differs by recruiting, not relearning, old knowledge.  

In contrast to all previous methods for using knowledge in 
learning, KBCC uses established techniques from 
generative learning (Fahlman & Lebiere, 1990). KBCC 
treats its existing networks like single-unit candidates, 
training weights to the inputs of existing source networks 
to determine whether their outputs correlate with the 
target network's error.  

Network recruitment and integration in KBCC may 
accomplish the input re-coding needed to convert difficult 
problems into easier problems (Clark & Thornton, 1997). 
Inputs to a target network are re-coded onto the inputs to 
a source network in a way that could help to solve the 
target problem. In addition, KBCC trains the output 
weights from a recruited network so as  to incorporate the 
recruited network into a solution of the target problem. 
Consequently, KBCC is able to use knowledge that is 
only partly relevant to the target task.  

Unlike many of the previous knowledge-based techniques 
in which both inputs and outputs of the source and target 
task must match precisely, KBCC can recruit any sort of 
function to use in a target task. In KBCC, source network 
inputs and outputs can be arranged in different orders and 
numbers and use different coding methods than those in 
the target network. The wide range of recruitment objects 
offers more power and flexibility than most knowledge-
based learners provide.  In contrast, MTL requires that the 
number and ordering of the inputs for each task match 
precisely and that there is a single output for each task.  

KBCC allows for a combination of learning by analogy 
and induction. It learns by analogy to its current 
knowledge whenever it can and switches to a more 
inductive mode if needed. Recruiting a network can be 
considered as learning by analogy, whereas recruiting a 
single unit can be regarded as learning by induction. Both 
kinds of learning are seamlessly integrated as KBCC 
learns a new target task. KBCC derives its power from the 
fact that it can learn to use its existing knowledge to solve 
a target task rather than having to learn the target task 
from scratch.  

In other experiments, we studied what sources KBCC 
selects when it possesses more than one source of 
knowledge in its background (Shultz & Rivest, 2000). 
When present, exact knowledge was always preferred, 
even when embedded within overly complex knowledge. 
Simple exact knowledge was preferred to embedded, 
overly complex knowledge. Occasionally, knowledge that 
we had predicted to be irrelevant (circle) was recruited 
more often than knowledge that we had predicted to be 
relevant though distant (right rectangle). One reason that 
so many irrelevant sources were recruited was that they 
were not particularly helpful in learning the new problem 
(left rectangle), and thus prolonged learning. 

There are still significant limitations to KBCC. One is that 
single hidden units are rarely recruited. Although further 
study is warranted, our intuition is that humans might be 
somewhat more likely than this to learn novel tasks from 
scratch. One solution would be to penalize the complexity 
of the recruited knowledge in some way.  

Another limitation is that search through memory for 
relevant knowledge rapidly becomes more expensive as 
knowledge realistically expands. If other, more tractable 
problems with KBCC can be solved, making memory 
search more efficient will become a major goal for us.  

Current and future work is designed to explore a wider 
range of applications of KBCC -- to other kinds of shape 
transformations such as rotation and sizing, psychological 
simulations of knowledge and learning, and larger-scale 
realistic problems . We are also testing whether KBCC can 
improve quality of learning with impoverished training 
sets, and whether and when knowledge interferes with 
learning.  
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