
871

Using Knowledge to Speed Learning: A Comparison of Knowledge-based
Cascade-correlation and Multi-task Learning

Thomas R. Shultz SHULTZ@PSYCH.MCGILL.CA
Department of Psychology, McGill University, Montreal, QC H3A 1B1 Canada

Francois Rivest FRIVES@PO-BOX.MCGILL.CA
Department of Computer Science, McGill University, Montreal, QC H3A 1B1 Canada

Abstract

Cognitive modeling with neural networks
unrealistically ignores the role of knowledge in
learning by starting from random weights. It is
likely that effective use of knowledge by neural
networks could significantly speed learning. A
new algorithm, knowledge-based cascade-
correlation (KBCC), finds and adapts its relevant
knowledge in new learning. Comparison to
multi-task learning (MTL) reveals that KBCC
uses its knowledge more effectively to learn
faster.

1. Existing Knowledge and New Learning

Neural networks typically learn de novo without the
benefit of existing knowledge. However, when people
learn, they routinely use their knowledge (Pazzani, 1991;
Wisniewski, 1995). Such use of prior knowledge in
learning is likely responsible for the ease and speed with
which people learn, and for interference with new
learning. The technical reason that neural networks fail to
use knowledge is that they begin learning from initially
random connection weights. This implements a tabula
rasa view of each distinct learning task that very few
cognitive psychologists would accept. In this paper, we
compare two algorithms (KBCC and MTL) for their
ability to use knowledge to speed learning.

KBCC is an extension of cascade-correlation (CC), a
generative learning algorithm often used in the simulation
of cognitive development (Buckingham & Shultz, in
press; Mareschal & Shultz, 1999; Oshima-Takane,
Takane, & Shultz, 1999; Shultz, 1998, 1999; Shultz,
Mareschal, & Schmidt, 1994; Sirois & Shultz, 1998). CC
constructs its own network topology by recruiting new
hidden units into the network as needed in order to reduce
error (Fahlman & Lebiere, 1990). KBCC recruits
previously learned networks in addition to the single
hidden units recruited by CC (Shultz & Rivest, 2000).

Following terminology in the literatures on analogy and
transfer, we refer to existing networks as potential source
knowledge and to a current learning task as a target.
Previously learned source networks compete with each
other and with single hidden units to be recruited into the
target network.

Caruana (1993, 1995, 1997) developed multi-task
learning (MTL) in which he trained a network on several
tasks taken from the same domain in parallel, with a
single output unit for each task. Such networks typically
learned a common hidden-unit representation, which
produced better generalization than learning the same
single tasks one at a time (STL). MTL can be adapted to
sequential learning by having a source network generate
responses to input values from a new task. These
responses can then serve as target output values in parallel
MTL of the new task.

This paper reports a comparison of KBCC and MTL on
the same sequential learning task. The goals are to
determine whether each algorithm can use source
knowledge to speed learning and to study of the effects of
knowledge relevance on learning speed.

2. Previous Work on Knowledge and Learning

Other previous neural network research on knowledge
and learning has included studies of transfer (Pratt, 1993),
sequential learning (Silver & Mercer, 1996), lifelong
learning (Thrun & Mitchell, 1993), knowledge insertion
(Shavlik, 1994), modularity (Jordan & Jacobs, 1994), and
input re-coding (Clark & Thornton, 1997).

Pratt (1993) pioneered the study of knowledge and
learning in neural networks with a technique called
discriminability-based transfer (DBT). DBT uses the
weights from a previously trained network to initialize a
new network. This seems the most straightforward idea
for using knowledge in new neural learning. Because it
did not actually work very well, Pratt re-scaled the

872

previous network's hyper-planes so that useful ones had
large weights and less useful ones had small weights.

Silver and Mercer (1996) extended MTL to sequential
learning in a method called task rehearsal (TRM). Here,
old tasks are pseudo-rehearsed during new learning. In
pseudo-rehearsal, a network generates its own target
vectors, using its current weights, rather than merely
accepting them from the environment (Robins, 1995). In a
variation of MTL, separate learning rates for each task are
used to control the impact of each source task, ensuring
that the most related tasks have the most impact on
learning.

Thrun and Mitchell (1993) proposed a technique they
called lifelong learning, in which a network meta-learns
the slope of the desired function at each training example.
This is the derivative of the function at an example output
with respect to the input attribute vector. Then, in new
learning, a meta-network predicts slopes and estimates its
accuracy for each new training example. This technique
would seem to trade not so much on knowledge
representations as on search knowledge.

Clark and Thornton (1997) emphasized the importance of
networks being able to re-code their input in the learning
of difficult, so-called Type-2 problems. Type-1 problems
are those that can be solved by sampling the originally
coded input data. Type-2 problems need re-coding in
order to use Type-1 knowledge. Re-coding may require
incremental learning, modularity, and representational re-
description (Karmiloff-Smith, 1992), but no specific
algorithm was proposed.

Shavlik (1994) devised an algorithm for creating
knowledge-based artificial neural networks (KBANN).
KBANN converts a set of symbolic rules embodying a
domain theory of a problem into a feed-forward neural
network with the final rule conclusions as output units
and intermediate rule conclusions as hidden units.
Connection weights and biases are initialized to mimic the
conjunctive and disjunctive structures of the original
rules. Such knowledge-initialized networks are then
trained with examples to refine the network's knowledge.
Training with KBANN is typically faster than using
standard networks with random weights and leads to
better generalization. Following training, the modified
rules can be extracted from the network.

Jordon and Jacobs (1994) devised the Hierarchical
Mixture of Experts (HME) model to decompose problems
into separate network modules. Distinct network modules
become expert on subtasks, and cooperate on an overall
solution via gating networks that learn to weight the
modular expert contributions for particular parts of a
problem. HME was found to learn the dynamics of a four-
degree-of-freedom robot arm faster than a multi-layer
back-propagation network did.

Next we describe in some detail the two learning
algorithms featured here: KBCC and MTL.

3. Knowledge-based Cascade -correlation

KBCC learns like CC, except that KBCC treats its
previously learned networks as if they were single
candidate hidden units. Both single units and existing
networks are candidates for recruitment into a target
network. A candidate unit and a candidate network each
define a function that can be differentiated, which is
essential for weight adjustment by gradient descent. The
connection scheme for a sample KBCC network is shown
in Figure 1. This connection scheme is the same as in CC
except that a recruited network can have multiple
weighted sums as inputs and can have multiple outputs. In
contrast, a single recruited unit, whether in CC or KBCC,
has only one weighted sum as input and one output.

Hidden 1

Output

Hidden 2

Inputs

Figure 1 . Third output phase of a KBCC network in which the
first recruited hidden unit is a previously learned source network
with multiple inputs and outputs. Dashed lines indicate trainable
weights; solid lines indicate frozen weights. Thin lines indicate
single weights; thick lines indicate possible multiple weights to
and from the recruited network.

Some notational conventions in our formulation of
KBCC:

oou
w , : Weight between output ou of unit u and output

unit o.

cu iow , : Weight between output ou of unit u and input ic

of candidate c.

pof
,
′ : Derivative of the activation function of output

unit o with respect to its input at pattern p.

poi cc
f ,∇ : Partial derivative of candidate c output oc with

respect to its input ic at pattern p.

poV , : Activation of output unit o at pattern p.

poc
V , : Activation of output oc of candidate c at pattern

p.

pou
V , : Activation of output ou of unit u at pattern p.

poT , : Target value of output o at pattern p.

KBCC networks begin and end their lives in the so-called
output phase, just as CC networks do. In the output phase,
weights entering the output units are trained with the
quickprop algorithm (Fahlman, 1988) in order to reduce
error. Weights entering output units are initialized with
uniform random numbers within the range of -1 to 1. The

873

function to be minimized in the output phase is the sum-
squared error over all outputs and all training patterns:

()∑∑ −=
o p

popo TVF 2

,,

Like other gradient descent algorithms, KBCC requires
computation of the slope of the function to be minimized.
The partial derivative of F with respect to the

weight oou
w , is

()∑ ′−=
∂

∂

p
popopopo

oo
u

u

VfTV
w

F
,,,,

,

2

Output units can have either sigmoid or linear activation
functions. As in CC, an output phase continues until some
number of epochs pass without solution, error reduction
stagnates for some few consecutive epochs, or all output
activations are within a specified range of their target
values. In each of the first two cases, there is a shift to
input phase. In the last case, learning stops and the system
declares victory.

In an input phase, a new hidden unit is recruited into a
network and installed downstream of all existing hidden
units. The recruited unit is selected from a pool of
candidates. During the recruitment process, candidates
receive input from all existing network units, except
output units. Input weights are trained by trying to
maximize a correlation between activation of the
candidate and network error. The candidate that gets
recruited is the one that is best at tracking the network's
current error.

In KBCC, candidates include, not only single units as in
CC, but also previously learned source networks. There
are N candidates per type -- single unit and source
network. Weights entering the N single-unit candidates
are initialized randomly in a uniform distribution within
the range of -1 to 1. Activation functions of the single
units are typically sigmoid, but can be asigmoid or
Gaussian. For each source network, input weights for N-1
instances are initialized in the same way. In addition, one
instance of each source network has weights of 1 between
corresponding inputs of the target and source networks
and 0s elsewhere. These identity weights are designed to
enable quick use of exact knowledge.

The function to maximize with quickprop in an input
phase is the average covariance of the activation of each
candidate c (independently) with the error at each output,
normalized by the sum squared error.

() ()
∑ ∑

∑∑ ∑

⋅⋅

−−

=

o p
poc

o o p
opoopo

c EOO

EEVV

G c
cc

2
,

,,

##

In this formula, OE is the mean error at output unit o,

and COV is the mean activation output of candidate C. Gc

gets standardized by the number of outputs for the
candidate c (#Oc) and by the number of outputs for the
main network (#O).

Again, the slope of this function is required for weight
adjustment. The partial derivative of Gc with respect to

the weight
cu iow , between output ou of unit u and input ic

of candidate c is

()
∑∑

∑∑ ∑

⋅⋅

∇−

=
∂

∂

o p
poc

o o p
popoiopooo

io

c

EOO

VfEE

w
G c

uccc

cu
2

,

,,,,

, ##

σ

Here, oo c ,σ is the sign of the covariance between the

output oc of candidate c and the activation of output unit
o.

An input phase continues until some numb er of epochs
passes without solution, or at least one correlation reaches
a minimum value (default value = 0.2) and correlation
maximization stagnates for some few consecutive input
phase epochs. When there is a shift back to output phase,
weights are created from the output(s) of the best
candidate to each output unit in the target network. Other
candidates are discarded and the new weights are
initialized using small random values with sign opposite
to that in the correlation.

4. Multi-task Learning

The basic idea underlying MTL is that it can be easier to
learn several tasks at once than to learn them separately
(Caruana, 1993). MTL has been demonstrated to improve
generalization by biasing networks to learn hidden unit
representations that are common to several related tasks
(Caruana, 1993, 1995, 1997). Baxter (1995) proved that
the number of examples required for learning any one
task in a multi-task paradigm decreases as a function of
total number of tasks learned in parallel.

Caruana (1997) suggested that MTL could be applied to
sequential learning by using an existing source network to
generate synthetic data that could be added to the training
set of a new, related target task. Assuming that the source
and target tasks have identical input units and a single
output unit, MTL training can then occur in the usual
parallel fashion, as shown in Figure 2.

The new training patterns are passed through the source
network to generate target output values for the output
unit representing the source task in the new MTL
network. Because of the requirement that all MTL tasks
be learned in parallel, it is not clear whether MTL would
inevitably generate faster learning than no knowledge at

874

all, but Caruana (1995) asserted that "MTB also usually
learns in fewer epochs than STB (p. 662)." In this context,
MTB refers to multi-task back-propagation and STB
refers to single-task back-propagation, more generally
called single-task learning (STL).

Target
task

Source
task

Hiddens

Outputs

Inputs

Figure 2. MTL network for two tasks. Arrows indicate
full layer-to-layer connectivity.

In any case, Silver and Mercer (1996) applied MTL to
sequential learning in this fashion (calling it TRM), and
found better generalization and faster learning with MTL
than with no knowledge using impoverished training sets,
regardless of whether separate learning rates were used
for each MTL task. Their problem domain was similar to
ours, learning to distinguish the inside vs. the outside of a
band in various orientations.

5. Learning Task

To assess the impact of source knowledge on learning a
target task, we varied the relevance of a single source of
knowledge. The idea was to determine whether KBCC
and MTL networks would learn faster if they had source
knowledge that was more relevant and to assess the
degree of speedup. The task involved learning whether a
pair of Cartesian coordinates fell inside or outside of a
particular geometric shape. Source networks varied in
terms of shape and translation.

The input space was a square centered at the origin with
sides of length 2. Networks were trained with a set of 225
patterns forming a regular 15 x 15 grid covering the
whole input space including the boundary. There were
200 randomly determined test patterns distributed
uniformly over the input space but not used in training.

We ran 20 networks in each condition of each experiment
in order to assess the statistical reliability of results.
Learning speed was measured by epochs to learn, where
an epoch is a pass through all of the training patterns.

Knowledge relevance was varied by changing the posit ion
or shape of the source knowledge. The target shape in the
second phase of knowledge-guided learning was a
rectangle sized 0.4 x 1.6 centered at (-4/7, 0) in the input
space (see Figure 3).

Figure 3. Output activation diagram showing the target
problem (left rectangle).

In the target phase, networks had to learn this left-
positioned rectangle after having previously learned a
rectangle, two rectangles, or a circle centered at the
origin, or to the left, or to the right in the input space. The
various experimental conditions are shown in Table 1.

Table 1 . Source knowledge conditions.

Name Centered at Relation to
target

Left
rectangle

 -4/7, 0 Exact

Left &
center
rectangles

 (-4/7, 0) & (0, 0) Exact/near,
overly complex

Center
rectangle

 0, 0 Near relevant

Right
rectangle

 4/7, 0 Far relevant

Center &
right
rectangles

 (0, 0) & (4/7, 0) Near/far, overly
complex

Circle 0, 0 with radius 0.5 Irrelevant

None No knowledge No relation

Our rectangles are similar to the bands used by Silver and
Mercer (1996) except that their bands were not bounded
on each end as our rectangles were. Thus, our rectangles
might be expected to be more difficult to learn because of
their greater non-linearity. In a control condition,
networks had no source knowledge when beginning the
target task, essentially similar to ordinary CC networks
and STL networks. Learning stopped when all output unit
activations were within 0.4 of their target values for all

875

training patterns. Target values for points inside the shape
were 0.5; for points outside the shape, -0.5.

5.1 Procedure for KBCC

KBCC networks first learned one of the source problems
in Table 1 and then learned the target problem (left
rectangle). In the case of the no-knowledge control
condition, there was no source to learn so the network just
learned the target problem, essentially as a CC network.

In input phases of target learning, the control condition
had 8 single-unit candidates; the other conditions each
had 4 single-unit candidates and 4 source-network
candidates. In any given KBCC network, the source
networks were identical except for having four different
sets of initially random input weights. This is perfectly
analogous to how several different single candidate units
are treated in CC.

5.2 Procedure for MTL

For MTL, we used the quickprop algorithm (Fahlman,
1988) because ordinary back-propagation, customarily
used in MTL and TRM, could not learn our source tasks
within a reasonable time frame. Typically, back-
propagation networks ran for over 2000 epochs without
making a noticeable drop in error, using any of several
different combinations of learning rate and momentum.
Quickprop is a weight training algorithm that uses the
slope of error with respect to weight at the last two epochs
to estimate curvature, the rate at which slope changes as a
function of weight change. Thus armed with both slope
and an estimate of curvature, quickprop moves more
decisively to change weights in order to minimize error
than back-propagation, which uses only slope. Moreover,
using quickprop to learn weights in MTL ensures a closer
comparison to KBCC, which also uses quickprop.

We trained a source network in one of the knowledge
conditions in Table 1, and then constructed an MTL
network to learn both the source and target tasks in
parallel, using outputs from the source network as the
target training signal for the source output unit in the
MTL network. Training targets for the other output unit in
the MTL network were provided by the target task (left
rectangle). In the no-knowledge condition, a network was
simply trained on the target task in STL fashion.

Twelve hidden units were required to get successful
learning of the source and target shapes. Learning rate
was 0.5. If source networks failed to learn their shape
within 2000 networks, they were discarded and replaced.
The stopping criterion was identical for KBCC, STL, and
MTL networks -- victory was declared when all output
units had activations within 0.4 of their target values for
all training patterns.

We next analyze the learning speed results separately for
each algorithm to determine whether and to what extent
each algorithm benefits from knowledge.

6. KBCC Results

A factorial ANOVA of the epochs to victory in KBCC
produced a main effect of knowledge condition, F(6, 133)
= 33.15, p < .0001. The mean epochs to victory, along
with standard deviation bars and homogeneous subsets,
based on the LSD post hoc comparison method, are
shown in Figure 4. The pattern of mean differences
reveals that exact knowledge, whether alone or
embedded, produced the fastest learning, followed by
relevant knowledge, distant and overly complex
knowledge and irrelevant knowledge, and finally the
control condition without any knowledge. Every
knowledge condition was significantly faster than no
knowledge at all.

0 200 400 600 800

None

Circle

Center, right

Right

Center

Left

Left, center

C
on

di
tio

n

Mean epochs to victory

Figure 4 . Mean epochs to victory in the t arget phase for KBCC
networks.

Generalization tests with the 200 randomly determined
test patterns showed less than 5% misclassification errors
in every condition. There were no condition effects on
error, indicating that target problems were successfully
learned in every condition.

Number of hidden units recruited in the target phase
ranged from 3.95 in the center rectangle condition to 7.60
in the center and right rectangle condition, with an overall
mean of 5.63. All but two of these recruited units were
source networks.

Output activation diagrams were drawn to understand the
knowledge representations achieved after source- and
target-training phases. Some examples of these diagrams
are shown in Figures 5-7. In interpreting these figures,
recall that a network learns a shape by distinguishing
points within it from points outside of it. In Figures 5-7,
white regions of the input space are classified as being
inside the shape, black regions outside of the shape, and
gray areas are uncertain, meaning that the network gives a
borderline, unclassifiable response (in the range -0.1 to
0.1). The horizontal and vertical lines seen in these
figures are the x- and y-axes, respectively, of the input
space.

876

During target learning, the network can recruit single
hidden units or already-learned source networks, such as
those in Figures 5 and 6. Figure 5 shows a source
network's solution to the circle problem. We predicted
that the circle would constitute an irrelevant source of
knowledge that would not help target learning very much
because of the large difference in shape. Figure 6 shows a
source network's solution to the left and center rectangles
problem. This contains an exact solution to the left
rectangle target problem, but is embedded in an overly
complex source. Figure 7 shows a KBCC solution to the
left rectangle target problem based on recruitment of the
network whose knowledge representation is shown in
Figure 6. Sources like that in Figure 6 were very effective
in speeding up learning, whereas sources like that in
Figure 5 were less effective, as reported in Figure 4.

Figure 5. Output activation diagram showing a source
network's solution to the circle problem.

The points in each of Figures 5-7 are the 225 target
training patterns, which form a 15 x 15 grid covering the
whole input space. The learned solutions are irregular
because they result from testing the network on a fine grid
of 220 x 220 input patterns.

7. MTL Results

Even with quickprop to adjust weights, many networks
failed to learn within a reasonable number of epochs in
both STL and MTL phases. STL networks were discarded
and replaced if they did not learn the source knowledge
task within 2000 epochs. There were 3 discarded STL
networks in the left rectangle condition, 25 in the
center/right condition, 16 in the left/center condition, and
7 in the circle condition. All remaining networks
successfully learned their source problem and were thus
carried forward to the target phase.

Smaller numbers of MTL networks failed to learn the
target problem within 2000 epochs: 1 in the left condition,
1 in the center condition, 5 in the left/center condition, 4

in the center/right condition, and 3 in the no-knowledge
condition. Each of these networks was given a score of
2001 epochs.

Figure 6. Output activation diagram showing a source
network's solution to the left and center rectangles
problem.

A factorial ANOVA of the epochs to victory in MTL
networks produced a main effect of knowledge condition,
F(6, 133) = 3.26, p < .005. The mean epochs to victory,
along with standard deviation bars and homogeneous
subsets, based on the LSD post hoc comparison method,
are shown in Figure 8. The pattern of mean differences
reveals that the no-knowledge condition did not differ
significantly from any knowledge condition, except exact,
overly complex knowledge (left and center rectangles). In
that comparison, networks without any knowledge
learned faster than networks with exact, but overly
complex knowledge.

Figure 7 . Output activation diagram showing a KBCC solution
to the target problem in Figure 3 after recruiting the source
problem in Figure 6.

877

0 500 1000 1500

Left, center

Center, right

Right

None

Center

Circle

Left

C
on

di
tio

n

Mean epochs to victory

Figure 8. Mean epochs to victory in the target phase for
MTL networks.

8. Discussion

These results show that only KBCC networks were able
to find and adapt their existing knowledge in new
learning, significantly shortening the learning time. When
exact knowledge was present, KBCC recruited it for a
quick solution. The more relevant the source knowledge,
the more likely it was that KBCC recruited it for solution
of a target problem and the faster that new learning was
likely to be. From any viewpoint, these are desirable
properties for a system that effectively uses its knowledge
in new learning.

On the other hand, MTL networks did not show any
benefits of knowledge for learning speed. They had
particular difficulty extracting exact knowledge from an
overly complex source network. Moreover, STL networks
often failed to learn their assigned source problem and
were replaced before MTL could be assessed. MTL may
not speed learning of new tasks because it requires both
old and new tasks to be freshly learned in parallel. KBCC
differs by recruiting, not relearning, old knowledge.

In contrast to all previous methods for using knowledge in
learning, KBCC uses established techniques from
generative learning (Fahlman & Lebiere, 1990). KBCC
treats its existing networks like single-unit candidates,
training weights to the inputs of existing source networks
to determine whether their outputs correlate with the
target network's error.

Network recruitment and integration in KBCC may
accomplish the input re-coding needed to convert difficult
problems into easier problems (Clark & Thornton, 1997).
Inputs to a target network are re-coded onto the inputs to
a source network in a way that could help to solve the
target problem. In addition, KBCC trains the output
weights from a recruited network so as to incorporate the
recruited network into a solution of the target problem.
Consequently, KBCC is able to use knowledge that is
only partly relevant to the target task.

Unlike many of the previous knowledge-based techniques
in which both inputs and outputs of the source and target
task must match precisely, KBCC can recruit any sort of
function to use in a target task. In KBCC, source network
inputs and outputs can be arranged in different orders and
numbers and use different coding methods than those in
the target network. The wide range of recruitment objects
offers more power and flexibility than most knowledge-
based learners provide. In contrast, MTL requires that the
number and ordering of the inputs for each task match
precisely and that there is a single output for each task.

KBCC allows for a combination of learning by analogy
and induction. It learns by analogy to its current
knowledge whenever it can and switches to a more
inductive mode if needed. Recruiting a network can be
considered as learning by analogy, whereas recruiting a
single unit can be regarded as learning by induction. Both
kinds of learning are seamlessly integrated as KBCC
learns a new target task. KBCC derives its power from the
fact that it can learn to use its existing knowledge to solve
a target task rather than having to learn the target task
from scratch.

In other experiments, we studied what sources KBCC
selects when it possesses more than one source of
knowledge in its background (Shultz & Rivest, 2000).
When present, exact knowledge was always preferred,
even when embedded within overly complex knowledge.
Simple exact knowledge was preferred to embedded,
overly complex knowledge. Occasionally, knowledge that
we had predicted to be irrelevant (circle) was recruited
more often than knowledge that we had predicted to be
relevant though distant (right rectangle). One reason that
so many irrelevant sources were recruited was that they
were not particularly helpful in learning the new problem
(left rectangle), and thus prolonged learning.

There are still significant limitations to KBCC. One is that
single hidden units are rarely recruited. Although further
study is warranted, our intuition is that humans might be
somewhat more likely than this to learn novel tasks from
scratch. One solution would be to penalize the complexity
of the recruited knowledge in some way.

Another limitation is that search through memory for
relevant knowledge rapidly becomes more expensive as
knowledge realistically expands. If other, more tractable
problems with KBCC can be solved, making memory
search more efficient will become a major goal for us.

Current and future work is designed to explore a wider
range of applications of KBCC -- to other kinds of shape
transformations such as rotation and sizing, psychological
simulations of knowledge and learning, and larger-scale
realistic problems . We are also testing whether KBCC can
improve quality of learning with impoverished training
sets, and whether and when knowledge interferes with
learning.

878

Acknowledgements

This work was supported by a grant from the Natural
Sciences and Engineering Research Council of Canada.
We are grateful for comments on an earlier draft from
David Buckingham, Jacques Katz, Sylvain Sirois, Yoshio
Takane, and anonymous reviewers.

References

 Baxter, J. (1995). Learning internal representations.
Proceedings of the Eighth International Conference on
Computational Learning Theory. Santa Cruz, CA: ACM
Press.

Buckingham, D., & Shultz, T. R. (in press). The
developmental course of distance, time, and velocity
concepts: A generative connectionist model. Journal of
Cognition and Development.

Caruana, R. (1993). Multitask learning: A knowledge-
based source of inductive bias. Proceedings of the Tenth
International Machine Learning Conference (pp. 41-
48). San Mateo, CA: Morgan Kaufmann.

Caruana, R. (1995). Learning many related tasks at the
same time with backpropagation. Advances in neural
information processing systems 7 (pp. 657-664). Los
Altos, CA: Morgan Kaufmann.

Caruana, R. (1997). Multitask learning. Machine
Learning, 28, 41-75.

Clark, A., & Thornton, C. (1997). Trading spaces:
Computation, representation, and the limits of
uninformed learning. Behavioral and Brain Sciences,
20, 57-97.

Fahlman, S. E. (1988) Faster-learning variations on back-
propagation: An empirical study. In D. S. Touretzky, G.
E. Hinton, & T. J. Sejnowski (Eds.), Proceedings of the
1988 Connectionist Models Summer School (pp. 38-51).
Los Altos, CA: Morgan Kaufmann.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-
correlation learning architecture. In D. S. Touretzky
(Ed.), Advances in neural information processing
systems 2 (pp. 524-532). Los Altos, CA: Morgan
Kaufmann.

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical
mixtures of experts and the EM algorithm. Neural
Computation, 6 , 181-214.

Karmiloff-Smith, A. (1992). Beyond modularity: A
developmental perspective on cognitive science.
Cambridge, MA: MIT Press.

Mareschal, D., & Shultz, T. R. (1999). Development of
children's seriation: A connectionist approach.
Connection Science, 11, 149-186.

Oshima-Takane, Y., Takane, Y., & Shultz, T. R. (1999).
The learning of first and second pronouns in English:
Network models and analysis. Journal of Child
Language, 26, 545-575.

Pazzani, M. J. (1991). Influence of prior knowledge on
concept acquisition: Experimental and computational
results. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 17, 416-432.

Pratt, L. Y. (1993). Discriminability-based transfer
between neural networks. Advances in neural
information processing systems 5 (pp. 204-211). San
Mateo, CA: Morgan Kaufmann.

Robins, A. V. (1995). Catastrophic forgetting, rehearsal,
and pseudorehearsal. Connection Science, 7 , 123-146.

Shavlik, J. W. (1994). A framework for combining
symbolic and neural learning. Machine Learning, 14,
321-331.

Shultz, T. R. (1998). A computational analysis of
conservation. Developmental Science, 1, 103-126.

Shultz, T. R. (1999). Rule learning by habituation can be
simulated in neural networks. Proceedings of the
Twenty-first Annual Conference of the Cognitive
Science Society (pp. 665-670). Hillsdale, NJ: Erlbaum.

Shultz, T. R., Mareschal, D., & Schmidt, W. C. (1994).
Modeling cognitive development on balance scale
phenomena. Machine Learning, 16, 57-86.

Shultz, T. R., & Rivest, F. (2000). Knowledge-based
cascade-correlation. Proceedings of the International
Joint Conference on Neural Networks. IEEE Computer
Society Press.

Silver, D., & Mercer, R. (1996). The parallel transfer of
task knowledge using dynamic learning rates based on a
measure of relatedness. Connection Science, 8 , 277-294.

Sirois, S., & Shultz, T. R. (1998). Neural network
modeling of developmental effects in discrimination
shifts. Journal of Experimental Child Psychology, 71,
235-274.

Thrun, S. & Mitchell, T. (1993). Integrating inductive
neural network learning and explanation-based learning.
In R. Bajcsy (Ed.), Proceedings of the Thirteenth
International Joint Conference on Artificial
Intelligence. San Mateo, CA: Morgan Kaufmann.

Wisniewski, E. J. (1995). Prior knowledge and
functionally relevant features in concept learning.
Journal of Experimental Psychology: Learning,
Memory, and Cognition, 21, 449-468.

