
110 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 2, AUGUST 2009

Connectionist Models of Reinforcement, Imitation,
and Instruction in Learning to Solve Complex

Problems
Frédéric Dandurand, Member, IEEE, and Thomas R. Shultz

Abstract—We compared computational models and human
performance on learning to solve a high-level, planning-intensive
problem. Humans and models were subjected to three learning
regimes: reinforcement, imitation, and instruction. We modeled
learning by reinforcement (rewards) using SARSA, a softmax
selection criterion and a neural network function approximator;
learning by imitation using supervised learning in a neural
network; and learning by instructions using a knowledge-based
neural network. We had previously found that human participants
who were told if their answers were correct or not (a reinforce-
ment group) were less accurate than participants who watched
demonstrations of successful solutions of the task (an imitation
group) and participants who read instructions explaining how to
solve the task. Furthermore, we had found that humans who learn
by imitation and instructions performed more complex solution
steps than those trained by reinforcement. Our models reproduced
this pattern of results.

Index Terms—Cognitive science, learning systems, neural net-
works, problem-solving.

I. INTRODUCTION

S OLVING problems is important for biological and artificial
agents alike to survive and adapt in ever changing environ-

ments. Agents can learn to solve problems by trial-and-error,
but this process is often inefficient and may expose agents to
fatal errors. An important evolution in biological agents has
been the ability to learn from observation and instructions
of other agents. Agents who can learn from peers have an
adaptive edge because they do not need to “reinvent the wheel.”
Imitation is perhaps the most universal mechanism for social
learning because mentors do not need to be aware, or even
willing in competitive settings, to play such a role. Most other
social learning mechanisms such as teaching, giving hints, etc.,
require mentors who have the time, motivation, and ability
(e.g., pedagogy) for transmitting knowledge, which may be
rare in many environments.

Manuscript received December 13, 2008; revised August 24, 2009. First pub-
lished August 28, 2009; current version published October 21, 2009. The work
of F. Dandurand was supported by a McGill Major scholarship. The work of
T. R. Shultz was supported by the Natural Sciences and Engineering Research
Council of Canada.

F. Dandurand was with the Department of Psychology, McGill University,
Montreal, QC H3A 1B1, Canada. He is currently with the Laboratoire de Psy-
chologie Cognitive, CNRS & Université de Provence, UMR 6146 Pôle 3 C, 3,
place Victor Hugo, 13331 Marseille Cedex 3, France.

T. R. Shultz is with the Department of Psychology and School of Computer
Science, McGill University, Montreal, QC H3A 1B1, Canada.

Digital Object Identifier 10.1109/TAMD.2009.2031234

Traditionally search, heuristics, hints, induction, and rea-
soning by analogy were among the main research interests
in problem solving [1]–[4]. Most computational models of
problem solving (e.g., SOAR: [3], ACT-R: [5], [6]) reflect
these emphases and typically involve symbolic processing,
although some recent work has introduced more biologically
plausible reinforcement-learning models [7], [8]. Most work on
problem solving is grounded in information processing theory
[9] and, despite the adaptive value of imitation, has shown
comparatively little interest in studying and modeling how
people learn to solve problems by watching demonstrations. In
fact, imitation learning of problem solving was often dismissed
as rote memorizing [10], which contrasts with the current views
of imitation as being cognitively complex and as possibly
involving understanding of intentions and goals, e.g., [11].

Imitation learning is currently an active research topic in cog-
nitive and social psychology. Most current work on imitation
learning focuses on motor tasks and there is comparatively little
work on high-level cognitive tasks like problem solving; one no-
table exception is a Bayesian model of imitation [12].

In the current paper, we present connectionist simulations
of psychological data presented in Dandurand et al. [13] on
learning in a planning-intensive problem we call the Gizmo
Problem Solving Task. We model three kinds of learning
regimes: imitation, instruction and reinforcement. We ask three
questions as follows. First, can neural-network-based com-
putational models be trained to solve gizmo problems under
these learning regimes? Second, do these models reproduce the
pattern of human performance in the gizmo task? Third, how do
models compare in learning efficiency? We compare humans
and models on their solution accuracy, and on the simplicity
and symmetry of the actions selected.

Computational models of problem solving are largely dom-
inated by symbolic approaches. Whereas associative learning
is fundamental to neural network processing, symbolic pro-
cessing is primarily based on search [3]. Nevertheless, symbolic
models can account for some learning in problem solving. For
instance, the ACT-R production system was used to model
how experience and practice affected planning in the Towers
of Hanoi problem [6]. With experience, human participants
gradually increased their tendency to plan longer sequences
of moves, with the optimal strategy gradually replacing a less
effective though easier one, and an ACT-R model reproduced
these data. Another rule-learning system, SOAR, like humans,
improves in speed and processing efficiency with practice [3].
SOAR production rules are learned by summarizing the results

1943-0604/$26.00 © 2009 IEEE

DANDURAND AND SHULTZ: CONNECTIONIST MODELS OF REINFORCEMENT, IMITATION, AND INSTRUCTION IN LEARNING 111

Fig. 1. Task analysis of the gizmo problem solving task.

of look-ahead search. Subsequent encounters with similar
conditions can activate those productions, thus replacing search
with memory access.

Similarly, most of the work in modeling instruction learning
has been done in symbolic systems, except for a few connec-
tionist models [14]. Recent work has investigated how advice
giving can be modeled within an extended reinforcement
learning framework [15].

Modeling instruction learning in neural networks faces two
important challenges. First, how can instructions be represented
in neural terms? Second, how does the system use those instruc-
tions to solve the task at hand? Our knowledge-based neural net-
work model of instruction learning offers a possible answer to
the first question: instructions are encapsulated into pretrained
neural networks capable of being recruited. Our model also par-
tially addresses the second question. If a rule correlates well
with residual network error, it may be recruited.

Research in human problem solving can greatly benefit from
modern computational modeling techniques in which learning
is central. There have already been some successful neural-net-
work models of problem solving, e.g., [16], [17]; see [18] for
a review. Here, we show how neural networks can be usefully
combined with the classical search-space approach to problem
solving, taking full advantage of the superior learning and gen-
eralization ability of these networks.

A. The Gizmo Problem Solving Task

We compared performance of human and artificial (compu-
tational model) problem solvers on a complex, well-defined
problem called the gizmo problem solving task. The task
consisted in finding, with three uses of a balance scale, the odd
gizmo in a set of twelve gizmos. Gizmos had uniform weights
except for the target gizmo, which could be either heavier or
lighter than the other gizmos. The goal was to reliably detect
the target gizmo and its relative weight in any of the 24 possible
cases (12 gizmos 2 weights). The target could only be identi-
fied based on its weight, as all gizmos looked exactly alike, and
thus could not be visually distinguished.

As shown in Fig. 1, solving this problem involved an alterna-
tion between two subtasks. First, problem solvers needed to se-
lect gizmos, that is, to decide which gizmos to weigh and where

to install them on the balance scale. Second, problem solvers up-
dated hypotheses they made about possible gizmo weights, after
seeing the scale result, by labelling gizmos. Problem solvers al-
ternated between selecting gizmos and updating labels until they
found a solution or until they used the scale three times. An op-
timal solution is presented in tree form in Fig. 2.

This task belongs to a class of so-called well-structured prob-
lems characterized by their clear initial and goal states, and by
their precisely defined operators and constraints [19]. A simpler
variant of this task, called the Coin problem, has been previ-
ously used in a psychological experiment. This variant involved
finding a lighter target object (a coin) among a set of eight coins
using at most two weighings on a balance scale [20]; see [21]
for a mathematical discussion of this class of problems.

B. Comparing Performance

To compare performance of humans and models on this task,
we first measured solution accuracy, defined as the proportion
of correct answers on trials. Second, we measured complexity
and asymmetry of the actions selected [22]. Optimal solutions
required complex and asymmetrical arrangements of gizmos
(see Fig. 2 and Fig. 4). Human problem solvers seldom spon-
taneously found an optimal solution, possibly because striving
for simplicity is a universal and pervasive principle across the
cognitive spectrum from low-level perception to high-level cog-
nition [23]. A related principle is the symmetry bias found, for
instance, in perception [24].

To measure complexity (the inverse of simplicity), we
summed the total number of labels present on each side of the
scale. Seven labels are available: unknown (U: heavy, light, or
normal), heavy or light (HL), heavy or normal (HN), light or
normal (LN), heavy (H), light (L), and normal (N). In simula-
tions, we drop the heavy or light (HL) label because humans
almost never used it. To measure asymmetry, we counted the
total number of differences in labels between left and right
sides of the scale, i.e., whenever a label was present on one side
of the scale but not on the other, one unit of asymmetry was
added. Table I shows examples of complexity and of asymmetry
measures.

The upper bound of complexity was 12, when items of each
of the six label categories (U, LN, HN, L, H, and N) were in-
stalled on both sides of the scale. The upper bound of asymmetry
was six when items of each category were installed on the scale
without a matching element on the other side.

We expected to measure relatively low complexity and asym-
metry scores in human solutions. Comparing detailed solution
steps was difficult because of the cascading effect of weigh-
ings—a small difference in the selection of gizmos at the first
weighing may have yielded a large difference in problem config-
uration at the third weighing. Likewise, we did not model errors
because human errors were rare and concerned misuse of the
GU interface (GUI) or distractions, having no apparent connec-
tion to problem solving strategies.

C. Human Performance on the Gizmo Task

In a previous laboratory experiment [13], we measured
human performance on the gizmo task. Participants were

112 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 2, AUGUST 2009

Fig. 2. An optimal solution to the gizmo problem solving task. Five demonstrations were shown to the imitation group participants. A demonstration consisted
of a randomly selected, complete branch (three weighings) leading to one of the leaves. Only 16 of the 24 leaves are shown because the branches can be grouped
together at Weighing 2. The nine gizmo selection rules can be found in the columns labeled as “Select”; one rule for Weighing 1, two for Weighing 2, and six for
Weighing 3.

TABLE I
EXAMPLES OF MEASURES OF COMPLEXITY AND ASYMMETRY

McGill undergraduate and graduate students. The 68 partici-
pants yielded 63 (17 males and 46 females) usable data samples
(21 per experimental group). Participants were excluded if they
could not finish the warm-up task within 30 min ,
or if they were identified as statistical outliers on a q-q plot

. Participants were randomly assigned to experimental
groups. The chance to win a $50 prize encouraged maximal
performance by keeping participants motivated.

Participants first performed a warm-up task to familiarize
with the use of the program. Second, some participants had a
learning session (details below). Finally, participants solved

gizmo problems for 30 minutes, or until they successfully
solved a complete block of 24 different trials consecutively.
They completed an average of 18.6 trials (min: 6, max: 37,

). A different combination of gizmo and weight
(light or heavy) was randomly selected for each trial from a
list of unsolved trials. When an error was made, the list was
reset back to the complete block of 24 trials. Participants got a
different trial each time, regardless of whether they successfully
resolved the previous one.

Participants could install any combination of gizmos (up to 12
on each side of the scale) on any given weighing. We explicitly
instructed participants to keep track of hypotheses they made
about gizmo weights based on information obtained using the
scale result (balanced, left heavier, or right heavier). To enforce
this labeling operation, gizmos were shuffled when the scale
was activated, so they could not be identified by their location,
only by their label. A screen shot from the program used for the
experiment1 is presented in Fig. 3.

1Available online at: http://lnsclab.org/html/BallsWeightExperiment/
PlayVersion/play.html.

DANDURAND AND SHULTZ: CONNECTIONIST MODELS OF REINFORCEMENT, IMITATION, AND INSTRUCTION IN LEARNING 113

Fig. 3. Screen shot of the gizmo problem solving task used in the laboratory experiment. Participants were asked to find, with three uses of a scale, the one gizmo
that was either heavier or lighter than the rest of a set of twelve gizmos. The screen was divided in three sections: the gizmo bank (on the top left), the balance
scale (at the bottom, to the left), and the “Color Selector Tool” (on the right). Participants were instructed to use labels available in the color selector tool to keep
track of their hypotheses about possible weights of gizmos. In this example, we see the first weighing in which four gizmos have been determined to be of Normal
weight, four of Heavy or Normal weight, and four of Light or Normal weight. Any number of gizmos (up to 12) could be installed on either side of the scale, as
gizmos can be piled or stacked on platters.

We manipulated the conditions under which participants
learned to solve gizmo problems. Participants were randomly
assigned to one of three learning groups: 1) in a reinforcement
learning group, they were simply told if their answers were
correct or not at the end of each trial, 2) in an imitation learning
group, they watched five problem-solving demonstrations
(different gizmo/weight combinations), and 3) in an instruction
learning group, they studied for 10 min verbal instructions
presented as if-then rules (see Fig. 4).

Demonstrations presented to participants in the imitation
learning group were five different, randomly selected branches
of the solution tree (see Fig. 2). The complete set of instructions
is presented in Fig. 4. Participants in the verbal instruction
learning group were presented with subsets of the complete
instructions in which information content was matched with
five random demonstrations. In other words, the instruction
group was a yoked control for imitation, where each subset of
instructions matched a randomly selected set of demonstrations.

We found that participants who watched demonstrations or
read instructions were more accurate than participants who were
simply given feedback about their answers [13]. Accuracy re-
sults are presented in Table II.2

II. METHODS

We present computational models of the first subtask, gizmo
selection, assuming an optimal agent to provide label updates.
First, we justify the use of such an optimal agent for label up-
dates. Second, we describe the common element of our models:

2In these group accuracies, participants are equally weighted regardless of
their speed or the number of trials they completed. In contrast, previously re-
ported accuracies were averaged across all trials in each group, giving more
weight to faster participants [13]. Regardless of weighting method, the pattern
of results was the same.

cascade-correlation neural networks. Finally, we introduce the
details of our computational models.

A. Optimal Agent for Label Updates

A detailed analysis of all labeling operations
provided support for using such an optimal, or ideal, agent. Hu-
mans provided correct labels 95.15% of the time. Incorrect or
inconsistent uses of labels amount to less than 3.0%, and for-
getting or neglecting to update labels for which additional in-
formation is available, less than 1.9%. Incorrect labeling did
not necessarily reflect a failure of the labeling strategy. Many
labeling errors could be explained by errors in GUI-interface
manipulation and inattention. Furthermore, participants did not
always overtly label gizmos despite being instructed to. Yet, in
many cases the logic of their solutions strongly suggests they
mentally kept track of the gizmo weights.

B. Cascade-Correlation Neural Networks

Cascade-correlation [25] is a constructive neural network al-
gorithm in which computational units, generally sigmoid units,
are recruited as necessary to solve a task. We chose cascade-
correlation because this family of algorithms has successfully
been used to model a number of learning and cognitive-develop-
mental tasks [26]. For this research, we used a variant called sib-
ling-descendant cascade-correlation (SDCC) [27] which has the
interesting property of limiting network depth by eliminating
some of the cascading weights of classical cascade-correlation.
Cascading weights may have little impact on performance, in-
cluding generalization [28].

Cascade-correlation learns by alternating between input and
output phases. In input phases, computational units (e.g., with
sigmoid activation functions) in a recruitment pool are trained

114 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 2, AUGUST 2009

Fig. 4. A complete set of instructions to solve the gizmo problem solving task with the same solution as shown in Fig. 3. A subset of those instructions was
selected to match the information content of each set of demonstrations.

TABLE II
ACCURACIES OF HUMAN PARTICIPANTS IN A GIZMO PROBLEM SOLVING

EXPERIMENT, EXPRESSED AS MEAN PROPORTION CORRECT

to maximize covariance with residual network error. At the
end of an input phase, when covariance stops increasing, the
unit with the highest covariance is inserted and connected to
the current network structure. In standard cascade-correlation
[25], units are always installed on new hidden layers, creating
deeply cascaded networks. In contrast, the sibling-descendant
cascade-correlation (SDCC) variant chooses to install units
on the current deepest hidden layer (sibling units) or on a
new layer (descendant units), again by selecting the candidate
whose activations track network error most accurately. To limit
network depth, SDCC typically slightly penalizes descendant
units. In output phases, connection weights feeding the output
units are trained to minimize network error using an algorithm
for training feed-forward networks such as QuickProp [29].

Knowledge-based cascade-correlation (KBCC) [30] is an-
other extension of cascade-correlation that allows for prior
knowledge to be included in the recruitment pool and to
compete with simple units. Prior knowledge can be previ-
ously trained networks or neurally-implemented rules [31].
Recruitment criteria are the same for complex prior knowledge

Fig. 5. Sample KBCC network. It has recruited a single sigmoid hidden unit
followed by a source function. Thick solid lines represent connection-weight
matrices, thin solid lines represent connection-weight vectors, and the dashed
line represents a single connection weight. All our models could recruit sig-
moid units, but source networks were only available to the instruction learning
models.

modules as for simple logistic units: CC selects the candidate
whose output values best co-vary with residual network error.
KBCC allows networks to recruit existing knowledge in the
service of new learning. It is used here to model the verbal
instruction group by including in the knowledge pool SDCC
networks pre-trained on each of a set of rules (instructions)
for selecting gizmos. Fig. 5 presents a sample KBCC network.
SDCC networks are built in a similar fashion, except they
recruit sigmoid units only.

C. Input and Output Encoding

Because gizmos were shuffled when the scale was activated,
participants could not identify gizmos based on their location.
They could only distinguish gizmos by their labels. Similarly,

DANDURAND AND SHULTZ: CONNECTIONIST MODELS OF REINFORCEMENT, IMITATION, AND INSTRUCTION IN LEARNING 115

in our simulations, gizmos were distinguished based on their
labels, not individually.

States were encoded as the proportion of gizmos with each
label. For example, six gizmos were coded as . Six
units coded the proportion of gizmos of each label type in order:
U, HN, LN, H, L, N.

Actions were encoded as the proportion of gizmos of each
label type to install in each container (bank, left side of scale,
and right side of scale) using 18 units (6 labels 3 containers).
For example, if the twelve gizmos were labeled as Unknown,
and the selection action consisted in weighing six gizmos on
the left side of the scale against six gizmos ()
on the right side, leaving no gizmo in the bank, the action was
encoded as: 0 0 0 0 0 0; 0.5 0 0 0 0 0; 0.5 0 0 0 0 0. When
computing proportions, the denominator was the total number
of gizmos (that is, always twelve).

D. Model Details

In this section, we present details of the three models used in
our simulations.

1) Reinforcement Learning: First, we modeled the reinforce-
ment learning group using an on-policy temporal-difference
(TD) learning technique called SARSA [32], previously used in
[33]. SARSA was named after the quintuple that the algorithm
uses :

(1)

where is the expected or predicted value (quality) of reward,
is a state, is an action, is a reward, and indices , and

are used for current and next states and actions, respectively;
is a learning rate (here, we use 0.1), and is a discount factor
(here, 1.0). This last value effectively means no discounting. In
other words, solutions were equally rewarded for their accuracy
regardless of whether they used the maximum number of weigh-
ings (here 3) allowed, or they used fewer weighings. This choice
was motivated by the fact that participants did not appear to ac-
tively attempt to achieve solutions involving fewer than three
weighings. In fact, humans produced short solutions in only
about 10%3 of trials. Second, the problem description made no
mention that shorter solutions should be preferred. In fact, cor-
rect solutions to this problem require the maximal number of
weighings allowed (see Fig. 2). Shorter solutions occur in cases
of fortunate guesses, and are thus unreliable.

SARSA was chosen for its neurological plausibility. Some
brain structures (e.g., basal ganglia and the striatum) may well
learn using a SARSA-like mechanism [34]–[36]. Our SARSA-
based model learned to accurately predict the reward resulting
from taking an action (that is, a selection of gizmos to install
on the scale) in a given state (that is, the current labeling of
gizmos). Lookup tables are typically used to exhaustively store
expected reward values for encountered states and actions. In
contrast, we used SDCC neural networks as function approxi-
mators mapping concatenations of states and actions as inputs

3This value includes GUI manipulation errors.

Fig. 6. Reinforcement model showing agent-environment interactions. From
the perspective of the agent making selection decisions, the optimal agent per-
forming label updates is part of the environment.

onto the expected reward for taking particular actions from par-
ticular states. These neural-based function approximators gen-
eralize better to unvisited states and actions, and are more neu-
rologically plausible than lookup tables.

The model improved initial inaccurate reward estimates by
trial-and-error exploration of the problem search space. Our ex-
perimental setup represented a typical scenario in which rein-
forcement learning occurred based on impoverished and infre-
quent information. Learners were only told if their answers were
correct or not (i.e., given a binary reward) in terminal states.
Learners did not get any rewards for gizmo selection actions
performed in non-terminal states, that is, for the first and second
weighings. More specifically, rewards were as follows: 1 for
a correct answer, 1 for an incorrect answer, 0.5 when the
system did not give any answer after three weighings, and 0 for
nonterminal states (i.e., no reward). Because TD-learning im-
plements a form of temporal back-propagation of rewards to
states and actions that lead to the reward, agents could even-
tually learn accurate estimates of states and actions associated
with the first and second weighings despite receiving no rewards
for those.

Similar to previous models of the reinforcement learning con-
dition [33], computational models of the selection subtask se-
lected only actions that had the same number of gizmos on both
sides of the scale because humans installed an equal number of
gizmos on the two platters of the scale in 98.6% of their ac-
tions. Fig. 6 shows the reinforcement learning framework for
this problem. The elements are essentially the same as those
of the task analysis for humans presented in Fig. 1. The only
minor difference between humans and models resides in the
“Not solved” terminal state for which a reward was directly
generated for models without the need to guess. Also note that
because the agent for providing label updates was performing
independently and outside the control of the selection agent, it
could be considered as part of the environment as far as the agent
learning selections was concerned.

Our SDCC networks had 24 inputs: six to code the state con-
catenated with 18 to code the action. They had a single output

116 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 2, AUGUST 2009

Fig. 7. Architecture of the selection agent. See Fig. 5 for an illustration of the
cascade-correlation function approximator.

coding the expected reward value from 1 to 1, and the output
sigmoid range was adjusted accordingly. To select actions to
take, we used a modified Softmax technique. We truncated the
number of alternatives considered to the five actions that have
the highest expected reward. We had previously found five to
yield good performance [33], and it is compatible with estimates
of human working memory size [37], [38]. An illustration of the
computational model architecture is given in Fig. 7 which essen-
tially expands the internal functioning of the selection agent in
Fig. 6.

2) Imitation Learning: We modeled the imitation learning
condition with SDCC neural networks using demonstrated
states as inputs and demonstrated actions as targets or out-
puts. Models were trained with five demonstrations of three
weighings, matching what participants watched in the imitation
learning condition. Because each weighing corresponded to a
different pair of state and action coded as one training pattern,
the training set contained 15 patterns (5 demonstrations 3
weighings). SDCC networks had 6 inputs coding the demon-
strated state and 18 outputs coding demonstrated actions. We
used the same coding for states and actions as for the rein-
forcement model just described. The recruitment pool included
only sigmoid units: four on the current deepest layer (sibling)
and four on a new cascaded layer (descendant), with each unit
having different random initial conditions. An illustration of
the computational model architecture is given in Fig. 5—note
that only sigmoid unit could be recruited, there were no prior
knowledge source networks in the models of imitation learning.

3) Instruction Learning: We modeled the instruction
learning condition using KBCC networks. While this model
resembled the imitation learning model (same task, inputs,
outputs and training data), the key difference resided in the
recruitment pool. The recruitment pool of the instruction
learning model included, in addition to sigmoid units, networks
pre-trained on all nine selection rules (see Fig. 2 under “Select”
columns). There was one selection rule for the first weighing,
two rules for the second one, and six rules for the last weighing.
Each rule was pre-trained in a SDCC network using a training
set containing a single pattern corresponding to the rule. Note
that networks saw the full set of rules, whereas humans only
saw a subset. We were interested in whether networks could
spontaneously focus on the subset of rules relevant for the prob-

lems they saw. As is customarily done with KBCC, we also
included a control for complexity. Each candidate rule had a
matching random network with the same topology but with con-
nection weights reset to random values to make sure rules were
recruited for knowledge, not mere complexity. As a result, the
recruitment pool for models of instruction learning contained
a total of 148 candidates: two sigmoid candidates as siblings,
two sigmoid candidates as descendants, four candidates of
each of the nine rules (two as siblings, two as descendants;

), and for each rule network, a matching
random network. An illustration of the computational model
architecture is given in Fig. 5 where source networks consisted
of selection rules and complexity-matched controls.

As previously mentioned, demonstrations consisted in ran-
domly selected branches of the tree presented in Fig. 2. For each
demonstration, the three rules traversed by the demonstrated
branch, one for each weighing, were necessary for solving the
problem. Thus which of the nine rules were necessary (and
therefore may be expected to be recruited) depended on the
random selection of demonstrations. As more demonstrations
were presented, additional demonstrations tended to become
more redundant and less informative. For instance, all demon-
strations show the same first weighing rule consisting of a four
versus four gizmo selection. Consequently, we expected dimin-
ishing returns as more demonstrations were presented.

E. Simulation Parameters

In CC networks (SDCC and KBCC alike), score threshold
controls how close network output values must be to target
values for learning to be successful. In output phases,
training finishes when, for all outputs and targets ,

threshold. In reinforcement models, we
set the score threshold to 2.5% of the reward range, that is,
0.05. In imitation and instructions models, the outputs encoded
proportions of gizmos, and thus range between 0 and 1, by
increments of 1/12 (because there were twelve gizmos). We
empirically found that tolerating a distance between the outputs
and the targets of 0.4 times those increments gave satisfying
results, and thus score threshold was set to ;
see Appendix for details.

Other cascade-correlation parameters were set as follows. No
weight change was allowed to be greater in magnitude than max-
imum growth factor times the previous step for that weight [29].
Here, maximum growth factor was set to 2.0. CC changes phase
if error reduction (or covariance increase) has been lower than
change threshold across patience epochs. Here we used a pa-
tience of eight epochs and change thresholds of 0.01 in output
phases and 0.03 in input phases. CC also switches phase after
having reached maximum epochs in the current phase, set here
to 100. The decay parameter, set to 0.0002 in output phases and
to 0 in input phases, was used to keep weights from growing
too big. Finally, the learning rate, which controls the amount of
gradient descent used in updating weights, was set to 0.175 in
output phases and to 1.0 in input phases.

F. Testing Technique

To test and evaluate models, we used our computational
models to select gizmos (first subtask) and used an optimal

DANDURAND AND SHULTZ: CONNECTIONIST MODELS OF REINFORCEMENT, IMITATION, AND INSTRUCTION IN LEARNING 117

agent to update gizmo labels (second subtask). Our test software
coordinated the two subtasks (see Fig. 1), provided appropriate
inputs to models and agents, read their outputs to determine
actions and label updates to perform, and kept track of gizmo
locations and the current state. For imitation and instruction
models, the current state was presented as the input and the se-
lected action was read at the output. For reinforcement models,
all valid actions from the current state were scored, and the
selection action with the highest expected reward was always
chosen in test mode (Hardmax4). The optimal agent updated
gizmo labels based on the following: 1) the current state, 2)
the gizmo selection that the model made, and 3) the scale state
result (balanced, right heavier, or left heavier). Because CC
function approximators output continuous values, we rounded
these values to the closest valid proportion. For example, if a
node representing a proportion of gizmos out of twelve outputs
a value of 0.238, the testing system would decide this repre-
sented an action involving three gizmos because
is the closest valid proportion value.

The test system verified answers given for each of the twenty-
four different problems (12 gizmos 2 weights) and computed
accuracy as the number of correct answers out of twenty-four.
An answer was correct if, after the third weighing, all gizmos
were labeled as Normal weight, except the target gizmo cor-
rectly labeled as Heavy or as Light. Note that although imita-
tion and instruction models were trained respectively using five
problem demonstrations or a corresponding set of instructions,
they were tested on all twenty-four possible problems. This al-
lowed us to evaluate how models generalize what they have
learned to problems unseen in training.

III. RESULTS

We measured models’ accuracy, selection complexity and
asymmetry, training effort, and network size. Training effort
was measured in epochs, and network size was measured in
number of recruited hidden units. To match variances of model
and human samples, we used the same number of simulations
as there were human participants per experimental condition,
that is, 21.

A. Comparison of Model and Human

1) Accuracy: First, we compared the accuracy pattern of
humans and models, illustrated in Fig. 8. Number of learning
episodes of the reinforcement learning models was matched
with overt human learning (18.6 trials or episodes). An epoch
is a pass through the 24 possible cases, one per episode. Thus
humans had less than one epoch of training. Prior to analyses,
we performed arcsine data transformations on accuracies to sta-
bilize variance [39].

A one-way ANOVA with model type as an independent
factor (three levels: reinforcement, imitation and instruction)
revealed a main effect, , . Tukey
HSD post-hoc tests revealed that the imitation and instructions

4We used Softmax in training to allow networks some exploration, but we
used Hardmax in testing to exploit the solution that the model currently con-
siders the best. A similar behavior may be expected of humans: when tested,
they would do their best (i.e., pick actions with highest expected reward), but
they would explore more alternatives when learning.

Fig. 8. Accuracy of human participants and models, with standard error bars.

Fig. 9. Accuracy as a function of training episodes in the SARSA-based model
of reinforcement learning (learning rate of 0.1 and discount factor of 1.0).

models formed a homogeneous subset of higher accuracy than
the reinforcement model, a pattern of result that is consistent
with human performance [13]. We confirmed the hypothesis
that imitation and instruction groups outperformed the rein-
forcement learning group using a planned comparison with
contrast coefficients of 2 1 1 for the reinforcement, imitation
and instruction groups respectively. The contrast was signif-
icant for both humans, , , and models,

, . In other words, for both models and
humans, learning by imitation and instructions yielded higher
accuracy than learning by environmental rewards alone. This
reflects the richness of information available to problem solvers
for learning. Whereas problem solvers trained by reinforcement
only receive a single binary piece of information per episode
after the third weighing, problem solvers trained by imitation
and instructions get fully specified targets on what to do for
every weighing.

Models trained by reinforcement were less accurate than
humans given equivalent training. In fact, models needed
about 500 epochs to reach human-level performance, as we
see on Fig. 9. This graph also shows that models learned well,
increasing in accuracy with training. As we will argue in the
discussion, this suggests humans likely engage other cognitive
processes, such as reasoning, when elaborating solutions.

2) Selection Complexity and Asymmetry: To compare
models and humans at a more precise level, we computed

118 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 2, AUGUST 2009

Fig. 10. Complexity of human and model gizmo selections for the second and
third weighings, with standard error bars.

Fig. 11. Asymmetry of human and model gizmo selections for the second and
third weighing with standard error bars.

complexity and asymmetry of gizmo selections. We ignored the
first weighing because all gizmos were labelled as Unknown in
the initial state which yielded a fixed and predictable selection
complexity of 2 (Labels U on each side) and an asymmetry of 0.

Fig. 10 and Fig. 11 present results of gizmo selection com-
plexity and asymmetry.

As we can see, demonstrations and instructions effectively re-
duced human’s simplicity bias at the second weighing, as argued
in [22]. More generally, we see that availability of demonstra-
tions (imitation) and instructions appeared to result in solution
steps that were more complex and asymmetrical in the second
weighing than the third weighing, whereas there was no such
drop in the reinforcement learning group.

We tested these hypotheses using planned comparisons with
contrast coefficients 1 2 2, 1 1 1 applied to the com-
plexity measure and 1 1 1, 1 2 2 to the asymmetry mea-
sure, for human and model solutions. All contrast analyses were
significant—model complexity, , ;
human complexity, , ; model asym-
metry, , ; and human asymmetry,

, .

TABLE III
TRAINING PERFORMANCE COMPARISON OF THE IMITATION AND

INSTRUCTIONS MODELS

B. Comparison of Imitation and Instruction Models

Table III summarizes training effort, as measured by the
number of training epochs, and network sizes for the imita-
tion and instruction models. To improve normality, we com-
pared log-transformed measures of size and training effort. Al-
though the instruction model appeared to train slightly faster,
the difference was not significant under the current sample size,

, . Similarly, network sizes did not differ
although there was a trend towards significance, ,

. In short, we could not reject the null hypotheses
stating that training efforts and network sizes were the same
irrespectively of the availability of selection rules. However,
rules (selected 23 times) were preferred to complexity-matched
controls (selected 5 times), suggesting they were neverthe-
less more useful to solve the task than complexity-matched
controls.

IV. DISCUSSION

To summarize, our models collectively captured the pattern
of human accuracy in the gizmo task: problem solvers in imi-
tation and instructions learning conditions were more accurate
than those in a reinforcement learning condition, as we can see
in Fig. 8. Models also captured the pattern of complexity and
asymmetry of human selection actions, namely that the imi-
tation and instruction groups exhibited larger complexity and
asymmetry than the reinforcement group in the second weighing
compared to the third.

We also found in knowledge-based neural learning that, when
available, selection rules were preferred as recruits over com-
plexity-matched controls. However, these selection rules had
little effect on learning efficiency. Our models suggest that in-
structions can be represented as pre-trained neural networks and
included as modules capable of being recruited. Rule networks
may be recruited, that is, used in a final solution, if they corre-
late well with residual network error.

A. Interpretation of Complexity and Asymmetry Results

The patterns of complexity and asymmetry found reflect the
fact that problem solvers in the imitation and instructions groups
generated better solutions than those in the reinforcement group.
As illustrated in Fig. 2, optimal solutions involved complex ar-
rangements on the second weighing to maximize the informa-
tion extracted. When done properly, there were at most three
possibilities left for the third weighing; leaving little room for
complex arrangements. In contrast, problem solvers who ex-
tracted less information from their second weighing were left
with more possibilities on their third weighing and thus more
potential for complex arrangements.

DANDURAND AND SHULTZ: CONNECTIONIST MODELS OF REINFORCEMENT, IMITATION, AND INSTRUCTION IN LEARNING 119

B. Connectionist Versus Symbolic Models of Problem Solving

These connectionist models represent valuable alternatives
to traditional symbolic models of problem solving, for at least
three important reasons. First, they are plausible—processing
in connectionist models and brains is distributed across highly
interconnected networks of nonlinear processing units (or neu-
rons). Second, connectionist models generalize to unseen or un-
visited problem states. Third, connectionist models are more
autonomous, as there is no need for the designer to create or
fine tune rules. Neural networks learn them from examples and
experience.

C. Relevance to Developmental Robotics

Our CC networks, in addition to being cognitive models,
could be used in artificial systems to solve problems. Learning
and development are critical to autonomous robots, in terms of
not requiring built in reasoning skills. Like our networks, robots
could start with knowledge of how to solve difficult problems
and learn how to do it through reinforcement, imitation, or
instruction, particularly the latter two [40].

D. Our Model in Reference to Other Techniques

Our work relates to that of Fu and Anderson [7], one of the
very few models of human problem solving concerned with
learning. The authors describe it as a model of rapid, nondeliber-
ative decision making. In contrast, we modeled a more complex
and planning-intensive task. The tasks investigated by Fu and
Anderson required only a few production rules to choose ac-
tions. This contrasts with the large number of possible actions
in our task, often on the order of hundreds from a given state.
The number of modeler-defined rules or productions may in-
crease as problem difficulty and complexity augment. Because
such productions need to be stored explicitly, production sys-
tems may have difficulty scaling up to difficult tasks, a problem
they share with lookup tables. In contrast, neural network func-
tion approximators only require a specification of the input and
output space. The “rules” that map the inputs (combination of
state and actions) onto the outputs (value of taking action from
state) are implicit in the nonlinear mapping function learned.
These mappings generalize to unseen or unvisited conditions
based on similarity. Generating responses to new states as a
graded function of their resemblance to known states is psycho-
logically plausible, and follows more naturally from the pro-
cessing of connectionist systems than rule-based or production
systems.

E. Notes About the Reinforcement Learning Model

Although our models exhibited a pattern of accuracy sim-
ilar to humans, models of the reinforcement learning condi-
tion were less accurate than human participants

. We should stress that this discrepancy does not
show a failure of the reinforcement learning system. As illus-
trated in Fig. 9, our SARSA-based system does indeed learn the
task, improving in accuracy over training episodes. Fu and An-
derson have reported training times on the order of hundreds
of trials [7]. The training times we found for the gizmo task, a
much more complex problem in terms of search space size, thus
appear reasonable.

Fig. 12. Mean accuracy of 20 imitation learning models trained with five
problem demonstrations as a function of score threshold. Error bars represent
SE.

One needs to appreciate how little overt opportunity humans
had for learning this problem (less than 20 episodes or trials;
that is, less than a single epoch). In future research, a number
of hypotheses could be explored to explain this discrepancy.
For instance, humans may well engage additional cognitive pro-
cesses when elaborating solutions to gizmo problems to speed
up learning, in addition to some form of temporal-difference
mechanism.

1) Reasoning or mental rehearsing. Models need to overtly
perform actions to obtain rewards and learn. In contrast,
humans can mentally play different alternatives and look
ahead. For instance, mental search over a certain number
of plies is well-documented in chess playing [41], [42]. A
similar mechanism may allow participants to predict re-
wards they would get without needing to take those ac-
tions. To model reasoning in a future model improvement,
we could use techniques such as TD-leaf which combines
search with reinforcement learning in a single system [43].

2) Means-ends analysis. In combination with reasoning,
means-ends analysis [9] can allow humans to select ac-
tions that move them closer to goal states. Humans might
get relatively rich information due to self-generated re-
wards based on distance to goals.

V. CONCLUSION

This work introduced learning-centric modeling techniques
to the study of problem solving. Problem solving has seldom
been studied from such a learning-centric perspective. For in-
stance, aside from [7] and [8], very few, if any, cognitive models
of complex problem solving with SARSA-based reinforcement
learning exist.

We have seen that models capture the accuracy, complexity
and asymmetry patterns of human solutions. This work has also
shown that concepts and representations used in information
processing theory (states, actions, and search spaces) can be
successfully used in a connectionist context for three different
kinds of learning models: imitation, instruction and reinforce-
ment. Because they all use connectionist function approxima-
tors, our models learn readily, generalize well and are neurolog-
ically plausible. KBCC neural networks are particularly pow-

120 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 2, AUGUST 2009

Fig. 13. Mean number of epochs to train 20 imitation learning models with five
problem demonstrations as a function of score threshold. Error bars represent
SE.

erful learners that grow as they learn and incorporate other, pre-
viously trained networks.

These models were concerned with the modeling of learning
in human adults. In future research, the developmental aspect of
learning to solve problems could be investigated.

Additional follow up work could explore how to account for
reasoning and means-ends analysis in these learning-centric
models. These additions would likely improve coverage of
human problem solving and may help us to better understand
a hallmark of intelligence: how humans learn to solve difficult
problems.

APPENDIX

EFFECT OF CASCADE-CORRELATION SCORE THRESHOLD IN

THE IMITATION LEARNING MODEL

We investigated the effect of CC score-threshold parameter
on the training of imitation learning models. We measured ac-
curacy, training epochs and recruits with score threshold values
equal to 0.1, 0.2, 0.4, 0.8, and 1.6 times the interval between
proportions.5 Twenty networks were trained per condition, for
a total of 100 networks. Mean accuracy (proportion of correct
answers) on the 24 test problems is shown in Fig. 12, number of
SDCC training epochs in Fig. 13, and number of SDCC recruits
in Fig. 14.

A one-way ANOVA revealed an effect of score threshold on
accuracy, , . Tukey HSD post-hoc
tests further revealed that accuracy was stable over a range
of low score thresholds (0.008, 0.016, and 0.03) and drops
significantly for score thresholds above 0.03. Furthermore,
score threshold had a significant effect on the number of
training epochs, , , and on the number
of recruited units, , . As we see
in the graphs, lower score thresholds, which result in deeper
training, increased the number of training epochs and recruit-
ments necessary to learn the task. Score threshold values of

minimize training time and number of
recruitments while maintaining a high accuracy. Therefore, we

5The [0,1] output interval codes proportions for 12 gizmos, thus is divided in
12, yielding score threshold values of about 0.008, 0.016, 0.3, 0.7, and 0.13.

Fig. 14. Mean number of cascade-correlation recruits after training of 20 im-
itation learning models with five problem demonstrations as a function of cas-
cade-correlation score threshold. Error bars represent SE.

used that value in simulations of the imitation and instruction
models.

ACKNOWLEDGMENT

The authors would like to thank François Rivest for his in-
sightful comments and suggestions. They also thank Kristine
H. Onishi for feedback on an early version of the manuscript.

REFERENCES

[1] J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. Thagard, Induc-
tion—Processes of Inference, Learning and Discovery. Cambridge,
MA: MIT Press, 1986.

[2] K. J. Holyoak and P. Thagard, Mental Leaps—Analogy in Creative
Thought. Cambridge, MA: MIT Press, 1996.

[3] A. Newell, Unified Theories of Cognition. Cambridge, MA: Harvard
University Press, 1990.

[4] G. Polya, How to Solve It, 2nd ed. Princeton, NJ: Princeton Univer-
sity Press, 1957.

[5] J. R. Anderson, D. Bothell, M. D. Byrne, D. Douglass, C. Lebiere, and
Y. Qin, “An integrated theory of mind,” Psychol. Rev., vol. 111, pp.
1036–1060, 2004.

[6] G. Gunzelmann and J. R. Anderson, “Problem solving: Increased plan-
ning with practice,” Cogn. Syst. Res., vol. 4, pp. 57–76, 2003.

[7] W.-T. Fu and J. R. Anderson, “From recurrent choice to skill learning:
A reinforcement-learning model,” J. Exper. Psychol.: General, vol.
135, pp. 184–206, 2006.

[8] S. Nason and J. E. Laird, “Soar-RL: Integrating reinforcement learning
with Soar,” in Proc. Sixth Int. Conf. Cogn. Modeling , Mahwah, NJ,
2004, pp. 208–213, Erlbaum.

[9] A. Newell and H. A. Simon, Human Problem Solving. Englewood
Cliffs, NJ: Prentice-Hall, 1972.

[10] G. Katona, Organizing and Memorizing. New York: Columbia Uni-
versity Press, 1940.

[11] M. Carpenter, J. Call, and M. Tomasello, “Understanding “prior inten-
tions” enables two-year-olds to imitatively learn a complex task,” Child
Dev., vol. 75, pp. 1431–1441, 2002.

[12] R. H. Cuijpers, H. T. Schie, M. Koppen, W. Erlhagen, and H.
Bekkering, “Goals and means in action observation: A computational
approach,” Neural Netw., vol. 19, pp. 311–322, 2006.

[13] F. Dandurand, M. Bowen, and T. R. Shultz, “Learning by imitation, re-
inforcement and verbal rules in problem solving tasks,” in Proc. Third
Int. Conf. Dev. Learning: Dev. Social Brains, J. Triesch and T. Je-
bara, Eds., La Jolla, CA, 2004, pp. 88–95, University of California,
San Diego, Institute for Neural Computation.

[14] D. C. Noelle and G. W. Cottrell, “A connectionist model of instruction
following,” in Proc. 17th Annu. Conf. Cogn. Sci. Soc., J. D. Moore
and J. F. Lehman, Eds., Hillsdale, NJ, 1995, pp. 369–374, Lawrence
Erlbaum.

DANDURAND AND SHULTZ: CONNECTIONIST MODELS OF REINFORCEMENT, IMITATION, AND INSTRUCTION IN LEARNING 121

[15] G. Biele, J. Rieskamp, and R. Gonzalez, “Computational models for the
combination of advice and individual learning,” Cogn. Sci., vol. 33, pp.
206–242, 2009.

[16] G. B. Kaplan and C. Güzelis, “Hopfield networks for solving Tower of
Hanoi problems,” ARI: An Interdiscipl. J. Phys. Eng. Sci., vol. 52, pp.
23–29, 2001.

[17] R. W. Parks and J. Cardoso, “Parallel distributed processing and ex-
ecutive functioning: Tower of Hanoi neural network model in healthy
controls and left frontal lobe patients,” Int. J. Neurosci., vol. 89, pp.
217–240, 1997.

[18] R. W. Parks, D. S. Levine, and D. L. Long, Fundamentals of Neural
Network Modeling: Neuropsychology and Cognitive Neuroscience.
Cambridge, MA: MIT Press, 1998, p. 428.

[19] H. A. Simon, “The structure of ill-structured problems,” Artif. Intell.,
vol. 4, pp. 181–202, 1973.

[20] M. L. Simmel, “The coin problem: A study in thinking,” Amer. J. Psy-
chol., vol. 66, pp. 229–241, 1953.

[21] L. Halbeisen and N. Hungerbuhler, “The general counterfeit coin
problem,” Discr. Math., vol. 147, pp. 139–150, 1995.

[22] F. Dandurand, T. R. Shultz, and K. H. Onishi, “Strategies, heuristics
and biases in complex problem solving,” in Proc. Twenty-Ninth
Meet. Cogn. Sci. Soc. (CogSci 2007), New York, 2007, pp. 917–922,
Lawrence Erlbaum Associates.

[23] N. Chater and P. Vitányi, “Simplicity: A unifying principle in cognitive
science?,” Trends Cogn. Sci., vol. 7, pp. 19–22, 2003.

[24] J. Freyd and B. Tversky, “Force of symmetry in form perception,”
Amer. J. Psychol., vol. 97, pp. 109–126, 1984.

[25] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning archi-
tecture,” in Advances in Neural Information Processing Systems 2.
Los Altos, CA: Morgan Kaufmann, 1990, pp. 524–532.

[26] T. R. Shultz, Computational Developmental Psychology. Cambridge,
MA: MIT Press, 2003.

[27] S. Baluja and S. E. Fahlman, Reducing Network Depth in the
Cascade-Correlation Carnegie Mellon University. Pittsburgh, PA,
CMU-CS-94-209, 1994.

[28] F. Dandurand, V. Berthiaume, and T. R. Shultz, “A systematic compar-
ison of flat and standard Cascade-Correlation using a student-teacher
network approximation task,” Connect. Sci., vol. 19, pp. 223–244,
2007.

[29] S. E. Fahlman, “Faster-learning variations on back-propagation: An
empirical study,” in Proc. 1988 Connect. Models Summer School, T.
J. Sejnowski, G. E. Hinton, and D. S. Touretzky, Eds., San Mateo, CA,
1988, Morgan Kaufmann.

[30] T. R. Shultz and F. Rivest, “Knowledge-based cascade-correlation:
Using knowledge to speed learning,” Connect. Sci., vol. 13, pp. 43–72,
2001.

[31] J. P. Thivierge, F. Dandurand, and T. R. Shultz, “Transferring domain
rules in a constructive network: Introducing RBCC,” in Proc. 2004
IEEE Int. Joint Conf. Neural Netw. (IJCNN ’04), 2004, vol. 2, pp.
1403–1408, IEEE.

[32] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[33] F. Dandurand, T. R. Shultz, and F. Rivest, “Complex problem solving
with reinforcement learning,” in Proc. Sixth IEEE Int. Conf. Dev.
Learning (ICDL-2007), 2007, pp. 157–162, IEEE.

[34] R. E. Suri and W. Schultz, “A neural network model with dopamine-
like reinforcement signal that learns a spatial delayed response task,”
Neuroscience, vol. 91, pp. 871–890, 1999.

[35] J. C. Houk, J. L. Adams, and A. G. Barto, “A model of how the basal
ganglia generate and use neural signals that predict reinforcement,” in
Models of Information Processing in the Basal Ganglia, J. C. Houk, J.
L. Davis, and D. G. Beiser, Eds. Cambridge, MA: MIT Press, 1995,
pp. 249–270.

[36] K. Samejima, Y. Ueda, K. Doya, and M. Kimura, “Representation of
action-specific reward values in the striatum,” Science, vol. 310, pp.
1337–1340, 2005.

[37] N. Cowan, “The magical number 4 in short-term memory: A recon-
sideration of mental storage capacity,” Behav. Brain Sci., vol. 24, pp.
87–125, 2000.

[38] G. A. Miller, “The magical number seven, plus or minus two: Some
limits on our capacity for processing information,” Psychologic. Rev.,
vol. 63, pp. 81–97, 1956.

[39] R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics.
Upper Saddle River, NJ: Prentice-Hall, 1995.

[40] T. R. Shultz, F. Rivest, L. Egri, J.-P. Thivierge, and F. Dandurand,
“Could knowledge-based neural learning be useful in developmental
robotics? The case of KBCC,” Int. J. Human. Robot., vol. 4, pp.
245–279, 2007.

[41] D. H. Holding, The Psychology of Chess Skill. New York: Lawrence
Erlbaum , 1985.

[42] D. H. Holding, “Theories of chess skill,” Psychologic. Res., vol. 54, pp.
10–16, 1992.

[43] J. Baxter, A. Tridgell, and L. Weaver, “TDLeaf(lambda): Combining
temporal difference learning with game-tree search,” in Proc. Ninth
Australian Conf. Neural Netw., 1998, pp. 168–172.

Frédéric Dandurand (M’08) completed the Ph.D.
degree in psychology at McGill University, Canada,
in 2007.

He is currently a Postdoctoral Researcher at the
French Centre National de la Recherche Scientifique
(CNRS). His principal research interest is the compu-
tational modeling of high-level cognitive processes
such as language and problem solving. He is also a
Professional Engineer in Canada and has worked as
a software engineer for two major computer equip-
ment companies.

Thomas R. Shultz received the Ph.D. degree in psy-
chology from Yale University, New Haven, CT.

He is Professor of Psychology and Associate
Member of the School of Computer Science at
McGill University, Canada. His current research
interests include connectionism, cognitive science,
cognitive development, cognitive consistency phe-
nomena, constraint satisfaction, relations between
knowledge, and learning, and evolution.

Dr. Shultz is a Member of the IEEE Neural Net-
works Society Autonomous Mental Development

Technical Committee and Chair of the IEEE Autonomous Mental Development
Task Force on Developmental Psychology.

