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Abstract 

Research with neural networks typically ignores the role of knowledge in learning by 
initializing the network with random connection weights. We examine a new extension of a well-
known generative algorithm, cascade-correlation. Ordinary cascade-correlation constructs its 
own network topology by recruiting new hidden units as needed to reduce network error. The 
extended algorithm, knowledge-based cascade-correlation (KBCC), recruits previously learned 
sub-networks as well as single hidden units. This paper describes KBCC and assesses its 
performance on a series of small, but clear problems involving discrimination between two 
classes. The target class is distributed as a simple geometric figure. Relevant source knowledge 
consists of various linear transformations of the target distribution. KBCC is observed to find, 
adapt, and use its relevant knowledge to significantly speed learning.  
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1. Existing Knowledge and New Learning 

Learning in neural networks is typically done "from scratch", without the influence of 
previous knowledge. However, it is clear that people make extensive use of their existing 
knowledge in learning (Heit 1994; Keil 1987; Murphy 1993; Nakamura 1985; Pazzani 1991; 
Wisniewski 1995). Use of knowledge is likely responsible for the ease and speed with which 
people are able to learn new material, although interesting interference of knowledge with 
learning can also occur. Neural networks fail to use knowledge in new learning because they 
begin learning from initially random connection weights.  

Here we examine a connectionist algorithm that uses its existing knowledge to learn new 
problems. This algorithm is an extension of cascade-correlation (CC), a generative learning 
algorithm that has proved to be useful in the simulation of cognitive development (Buckingham 
& Shultz, 1994; Mareschal & Shultz, 1999; Shultz 1998; Shultz, Buckingham, & Oshima-
Takane, 1994; Shultz, Mareschal, & Schmidt, 1994; Sirois & Shultz, 1998). Ordinary CC creates 
a network topology by recruiting new hidden units into a feed-forward network as needed in 
order to reduce error (Fahlman & Lebiere, 1990). The extended algorithm, called knowledge-
based cascade-correlation (KBCC), recruits whole sub-networks that it has already learned, in 
addition to the untrained hidden units recruited by CC (Shultz & Rivest, 2000a). The extended 
algorithm thus adapts old knowledge in the service of new learning. KBCC trains connection 
weights to the inputs of its existing sub-networks to determine whether their outputs correlate 
well with the network's error on the problem it is currently learning. Consistent with the 
conventional terminology of the literatures on analogy and transfer of learning, we refer to these 
existing sub-networks as source knowledge and to the current learning task as a target problem. 
These previously learned source networks compete with each other and with conventional 
untrained candidate hidden units to be recruited into the target network learning the current 
problem. As we discuss later, KBCC is similar in spirit to recent neural network research on 
transfer of knowledge, multitask learning, sequential learning, lifelong learning, input re-coding, 
knowledge insertion, and modularity, but it incorporates these ideas by learning, storing, and 
searching for knowledge within a generative network approach.  

We first describe the KBCC algorithm, show its learning speed performance on a number 
of learning problems that could potentially benefit from prior knowledge, and then discuss its 
advantages and limitations in the context of the current literature on knowledge and learning in 
neural networks.  

2. Description of KBCC 

2.1 Overview  

Because KBCC is an extension of CC, it uses many of CC's ideas and mathematics. As 
we describe KBCC, we note particular differences between the two algorithms. Both algorithms 
specify learning in feed-forward networks, adjust weights based on training examples presented 
in batch mode, and operate in two phases: output phase and input phase. In output phases, 
connection weights going into output units are adjusted in order to reduce error at the output 
units. In input phases, the input weights going into recruitment candidates are adjusted in order 
to maximize a modified correlation between activation of the candidate and error at the output 
units. Networks in both algorithms begin with only input and output units. During learning, 
networks alternate between input and output phases, respectively, depending on whether a new 
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candidate is being recruited or not. We begin with the contrasting features of networks and units, 
and proceed to discuss the output phase, input phase, and connection scheme.  

2.2 Networks and Units 

The major new idea in KBCC is to treat previously learned networks just like candidate 
hidden units, in that they are all candidates for recruitment into a target network. A sample 
KBCC network with two input units and a bias unit is pictured in Figure 1. This particular 
network has two hidden units, the first of which is a sub-network and the second of which is a 
single unit. Later hidden units are installed downstream of existing hidden units.  

===Insert Figure 1 about here=== 

A single unit and a network both describe a differentiable function, which is what is 
required for learning in most feed-forward learning algorithms. In the case of a single unit, such 
as hidden unit 2 in Figure 1, this is a function of one variable, the net input to the unit. Net input 
to a unit i is the weighted sum of its input from other units, computed as: 

∑=
j

jiji awx  (1) 

where i indexes the receiving unit, j indexes the sending units, a is the activation of each sending 
unit, and w is the connection weight between units j and i.  

The function for a single unit is often the centered logistic sigmoid function, in the range 
of -0.5 to 0.5:  
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where x is the net input to the unit. Other activation functions used in CC and KBCC are the 
asigmoid (logistic sigmoid) and Gaussian functions, both in the range 0.0 to 1.0.   

In the case of an existing sub-network, things are a bit more complicated because, unlike 
a single unit, there may be multiple inputs from each upstream unit and multiple outputs to each 
downstream unit, as illustrated by hidden unit 1 in Figure 1. For each such sub-network, the 
input weights and the output weights are each represented as a vector of vectors. Because the 
internal structure of a previously trained network is known, it can be differentiated in order to 
compute the slopes needed in weight adjustment, just as is commonly done with single hidden 
units. 

In KBCC, there is a list of current candidate networks, referred to as a parameter called 
CandidateNetworksList.  

We refer to the weights entering candidate hidden units and candidate networks as input-
side weights. The input-side weights are trained during input phases as explained in section 2.5.  

2.3 Notation 

Before presenting the algorithm in detail, it is helpful to describe the notation used in the 
various equations.  
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oou
w , : Weight between output ou of unit1 u and output unit o. 

cu iow , : Weight between output ou of unit u and input ic of candidate c. 

pof ,′ : Derivative of the activation function of output unit o for pattern p. 

poi cc
f ,∇ :    Partial derivative of candidate c output oc with respect to its input ic for pattern p. 

poV , :  Activation of output unit o for pattern p. 

poc
V , : Activation of output oc of candidate c for pattern p. 

pou
V , : Activation of output ou of unit u for pattern p. 

poT , : Target value of output o for pattern p. 

2.4 Output Phase 

In the output phase, all weights entering the output units, called output weights, are 
trained in order to reduce error. As in CC networks, KBCC networks begin and end their 
learning career in output phase. The weights that fully connect the network at the start of training 
are initialized randomly using a uniform distribution with range [-WeightsRange, 
WeightsRange]. The default value is WeightsRange = 1.0. A bias unit, with an activation of 1.0, 
feeds all hidden and output units in the network.  

The output weights are trained using the quickprop algorithm (Fahlman 1988). The 
quickprop algorithm is significantly faster than standard back-propagation because it 
supplements the use of slopes with second-order information on curvature, which it estimates 
with the aid of slopes on the previous step. Quickprop has parameters for learning rate ε, 
maximum growth factor µ, and weight decay γ. The learning rate parameter controls the amount 
of linear gradient descent used in updating output weights. The maximum growth factor 
constrains the amount of weight change. The amount of decay times the current weight is added 
to the slope at start of each output phase epoch.2 This keeps weights from growing too large. The 
default values for these three parameters are ε = 0.175 / n, µ = 2.0, and γ = 0.0002, respectively, 
where n is the number of patterns.  

The function to minimize in the output phase is the sum-squared error over all outputs 
and all training patterns: 

( )∑∑ −=
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The partial derivative of F with respect to the weight oou
w ,  is given by 
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1 We use unit to refer to any of the bias, input, or hidden units except when otherwise stated. Hidden units 

include both single units and sub-networks.   
2 An epoch is a batch presentation of all of the traning patterns.  
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The activation function for output units is generally the sigmoid function shown in 
Equation 2. Linear activation functions can also be used for output units. When the sigmoid 
function is used for output units, a small offset is added to its derivative to avoid getting stuck at 
the flat points when the derivative goes to 0 (Fahlman 1988). By default, this 
SigmoidOutputPrimeOffset = 0.1.  

An output phase continues until any of following criteria is satisfied:  

1. When a certain number of epochs pass without solution, there is a shift to the input phase. By 
default this number of epochs MaxOutputEpoch = 100.  

2. When error reduction stagnates for few consecutive epochs, there is a shift to the input phase. 
Error is measured as in Equation 3, and must change by at least a particular proportion of its 
current value to avoid stagnation. By default, this proportion, called 
OutputChangeThreshold, is 0.01. The number of consecutive output phase epochs over 
which stagnation is measured is called OutputPatience and is 8 by default.  

3. When all output activations are within some range of their target value, that is, when 
|Vo,p - To,p| ≤  ScoreThreshold for all o outputs and p patterns, victory is declared and learning 
ceases. By default, ScoreThreshold = 0.4, which is generally considered appropriate for units 
with sigmoid activation functions (Fahlman 1988). The ScoreThreshold for output units with 
linear activation functions would need to be set at the level of precision required in matching 
target output values.  

2.5 Input Phase  

In the input phase, a new hidden unit is recruited into the network. This new unit is 
selected from a pool of candidates. The candidates receive input from all existing network units, 
except output units, and these input weights are trained by trying to maximize the correlation 
between activation on the candidate and network error. During this training, all other weights in 
the network are frozen. The candidate that gets recruited is the one that is best at tracking the 
network's current error. In KBCC, candidates include not only single units as in CC, but also 
networks acquired in past learning.  

N is the NumberCandidatesPerType, which is 4 by default. Weights entering N single-
unit candidates are initialized randomly using a uniform distribution with range [-WeightsRange, 
WeightsRange] as in the output phase. Again, the default value is WeightsRange = 1.0. For each 
network in the CandidateNetworksList, input weights for N-1 instances are also initialized. Each 
input-side connection of these units is initialized using the same scheme as for the basic network 
weights, with one exception. The exception is that one instance of each stored network has its 
weight matrix initialized with weights of 1.0 connecting corresponding inputs of target networks 
to source networks and weights of 0.0 elsewhere. This is to enable use of relevant exact 
knowledge without much additional training. We call this the directly connected version of the 
knowledge source. Activation functions of the single units are generally all sigmoid, asigmoid, or 
Gaussian, with sigmoid being the default.  
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As in output phases, all of these input-side weights are trained with quickprop (with ε = 
1.0/nh,3 where n is the number of patterns and h is the number of units feeding the candidates, µ 
= 2.0, and γ = 0.0000). The function to maximize is the average covariance of the activation of 
each candidate (independently) with the error at each output, normalized by the sum-squared 
error. For candidate c, the function is given by 
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where oE is the mean error at output unit o, and coV  is the mean activation output oc of candidate 
c.  

The output error at pattern p is 
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Gc is standardized by both the number of outputs for the candidate c (#Oc) and the 
number of outputs in the main network (#O). By default, RawError = false.4  

The partial derivative of Gc with respect to the weight 
cu iow ,  between output ou of unit u 

and input ic of candidate c is given by 
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where ooc ,σ is the sign of the covariance between the output oc of candidate c and the activation 
of output unit o.  

An input phase continues until either of following criteria is met:  

1. When a certain number of input phase epochs passes without solution, there is a shift to 
output phase. By default this MaxInputEpoch = 100.  

2. When at least one correlation reaches a MinimalCorrelation (default value = 0.2) and 
correlation maximization stagnates for few consecutive input phase epochs, there is a shift to 
output phase. Correlation is measured as in Equation 5, and must change by at least a 
particular proportion of its current value to avoid stagnation. By default, this proportion, 
called InputChangeThreshold, is 0.03. The number of consecutive input phase epochs over 
which correlation stagnation is measured is called InputPatience and is 8 by default. 

                                                 
3 The 1/n (output phase) and 1/nh (input phase) fraction cannot be described as part of the objective 

function of their respective phases as in standard back-propagation because ε is not used in the quadratic estimation 
of the curve in quickprop. It is a heuristic from Fahlman (1988) to set ε dynamically. 

4 The variation of the error function Eo,p, which depends on RawError, comes from Fahlman's (1991) CC 
code.  
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When a criterion for shifting to output phase is reached, a set of weights is added from 
the outputs of the best candidate to each output of the network. All other candidate units are 
discarded, and the newly created weights are initialized with small random values (between 0.0 
and 1.0), with the sign opposite to that in correlation.  

2.6 Connection Scheme in KBCC 

Figure 2 shows the connection scheme for a sample KBCC network with two inputs, two 
outputs, one recruited network, and a recruited hidden unit. The recruited network, labeled H1 
because it was the first recruited hidden unit, has two input units, two output units, and a single 
hidden unit, each labeled with a prime (') suffix. The main network and the recruited sub-
network each have their own bias unit. Figure 2 reveals that the recruited sub-network is treated 
by the main network as a computationally encapsulated module, receiving input from the inputs 
and bias of the main network and sending output to later hidden units and the output units. Other 
than that, the main network has no interaction with the work of the sub-network.  

===Insert Figure 2 about here=== 

3. Applications of KBCC 

To evaluate the behavior of KBCC, we applied it to learning in two different paradigms. 
One paradigm tests whether KBCC can find and use its relevant knowledge in the solution of a 
new problem and whether this relevant knowledge shortens the time it takes to learn the new 
problem. A second paradigm tests whether KBCC can find and combine knowledge of 
components to learn a new, more complex problem comprised of these components, and whether 
use of these knowledge components speeds learning. In each paradigm there are two phases, one 
in which source knowledge is acquired and a second in which this source knowledge might be 
recruited to learn a target problem. These experiments are conducted with toy problems with a 
well-defined structure so that we can clearly assess the behavior of the KBCC algorithm. In each 
problem, networks learn to identify whether a given pattern falls inside a class that has a two-
dimensional uniform distribution. The networks have two linear inputs and one sigmoid output. 
The two inputs describe two real-valued features; the output indicates whether this point is inside 
or outside a class of a particular distribution with a given shape, size, and position. The input 
space is a square centered at the origin with sides of length 2. Target outputs specify that the 
output should be 0.5 if the point described in the input is inside the particular class and -0.5 if the 
point is not in the class. In geometric terms, points inside the target class fall within a particular 
geometric figure; points outside of the target class fall outside of this figure. Networks are 
trained with a set of 225 patterns forming a 15 x 15 grid covering the whole input space 
including the boundary. For each experiment, there are 200 randomly determined test patterns 
uniformly distributed over the input space. These are used to test generalization, and are never 
used in training. We used this task to facilitate design and description of problems, variation in 
knowledge relevance, and identification of network solutions (by comparing output plots to 
target shapes). These problems, although small and easy to visualize, are representative of a wide 
range of classifier and pattern recognition problems. Knowledge relevance involved differences 
in the position and shape of the distribution of patterns that fell within the designated class (or 
figure). Degree of relevance was indexed by variation in the amounts of translation, rotation, and 
scaling. So-called irrelevant source knowledge involved learning a class whose distribution has a 
different geometric shape than the target class.  



KBCC     9 

 

We ran 20 KBCC networks in each condition of each experiment in order to assess the 
statistical reliability of results, with networks differing in initial output and input weights. 
Learning speed was measured by epochs to learn. Use of relevant knowledge was measured by 
identifying the source of knowledge that was recruited during input phases.  

In these experiments, networks learning a target task have zero, one, or two source 
networks to draw upon in different conditions. In each input phase of single source experiments, 
there are always eight candidates, four of them being previously learned networks and four of 
them being single units. In control conditions without knowledge (no source networks), all eight 
candidates are single units. These control networks are essentially CC networks. In conditions 
with two source networks in memory, there are three candidates representing one source 
network, three candidates representing the other source network, and three single unit candidates. 
The reason for having multiple candidates for each unit and source network is to be able to 
provide a variety of initial input weights at the start of the input phase. This enables networks to 
try a variety of different mappings of the target task to existing knowledge.  

4. Finding and Using Relevant Knowledge 

We did two kinds of experiments to assess the impact of source knowledge on learning a 
target task. In one kind of experiment, we varied the relevance of the single source of knowledge 
the network possessed to determine whether KBCC would learn faster if it had source knowledge 
that was more relevant. In a second kind of experiment, we gave networks two sources of 
knowledge, varying in relevance to a new target problem, to discover whether KBCC would opt 
to use more relevant source knowledge. To assess the generality of our results, we conducted 
both types of experiments with three different sets of linear transformations of the input space: 
translation, size changes, and rotation. In all of these experiments, KBCC networks acquired 
source knowledge by learning one or two problems and then learned another, target problem for 
which the impact of the previously acquired source knowledge could be assessed. We first 
consider problems of translation, then sizing, and finally rotation.  

4.1 Translation5 

In translation problems, degree of knowledge relevance was varied by changing the 
position of two-dimensional geometric figures. The target figure in the second (or target) phase 
of knowledge-guided learning was a rectangle with width of 0.4 and height of 1.6 centered at (-
4/7, 0) in the input space. For translation problems, we first consider the effects of single-source 
knowledge on learning speed in the target phase and then the knowledge that is selected when 
two sources of knowledge are available.  

4.1.1 Effects of Single-source Knowledge Relevance on Learning Speed  

In this experiment, networks had to learn a rectangle (named RectL) positioned a bit to 
the left of center in the input space, after having previously learned a rectangle, or two 
rectangles, or a circle at particular positions in the input space. The various experimental 
conditions are shown in Table I, in terms of the name of the condition, a description of the 
stimuli that had been previously learned in phase 1, and the relation of those stimuli to the target 
rectangle (RectL). Previous, phase-1 (or source) learning created the various knowledge 
conditions for the new learning of the target rectangle in the target phase. Conditions included 
exact knowledge (i.e., identical to the target), exact but overly complex knowledge, relevant 
                                                 

5 A preliminary version of the translation results were presented in Shultz and Rivest (2000a).  
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knowledge that was either near to or far from the target, overly complex knowledge that was far 
from the target, and irrelevant knowledge. In a control condition, networks had no knowledge at 
all when beginning the target task, which is equivalent to ordinary CC.  

===Insert Table I about here=== 

A factorial ANOVA of the epochs required to reach victory yielded a main effect of 
knowledge condition, F(6, 133) = 33, p < .0001. Mean epochs to victory in each condition, with 
standard deviation bars and homogeneous subsets, based on the LSD post hoc comparison 
method, are shown in Figure 3. Means within a homogeneous subset are not significantly 
different from each other. Figure 3 reveals that exact knowledge, whether alone or embedded in 
an overly complex structure produced the fastest learning, followed by relevant knowledge, 
distant and overly complex knowledge and irrelevant knowledge, and finally the control 
condition without any knowledge.  

===Insert Figure 3 about here=== 

Some example output activation diagrams for one representative network from this 
simulation are shown in Figure 4. In these plots, white regions of the input space are classified as 
being inside the rectangle (network response > 0.1), black regions outside of the rectangle 
(network response < -0.1), and gray areas are uncertain, meaning that the network gives a 
borderline, unclassifiable response somewhere between -0.1 and 0.1. The 225 target training 
patterns, forming a 15 x 15 grid covering the whole input space, are shown as points in each plot. 
Figure 4a shows the source knowledge learned by this network in the exact but overly complex 
condition. The two white regions indicate the two rectangles constituting the target class for this 
condition. Such shapes are somewhat irregular, even if completely correct with respect to the 
training patterns, because they are produced by sampling the network on a fine grid of 220 x 220 
input patterns.  

===Insert Figure 4 about here=== 

Figure 4b shows this same KBCC system’s output at the end of the first output phase of 
target training. There are no white regions in this plot because the network has learned to classify 
most of the input patterns as being outside of the target class; the network is, on our definition, 
unsure of patterns within the first column of the input space. Because only 33 of the 225 training 
patterns fall within the target class, this is the best that the target network can do without any 
hidden units. Such behavior was common for the first output phase of learning a small 
rectangular target in every condition of every experiment reported in this paper.  

Figure 4c shows this network’s final solution at the end of the second output phase of 
target training, after having recruited the source knowledge shown in Figure 4a. In this single-
source experiment, exact but overly complex source knowledge was very effective in speeding 
up learning, as reported in Figure 3. Comparison of Figures 4a and 4c suggests that KBCC uses 
the recruited source network only when the input represented on the x-axis is less than about -
3/14; otherwise it uses its direct input-to-output weights. Examination of the output weights from 
the bias unit, the x-axis input unit, and the recruited hidden network confirmed that this is the 
case. These weights are such that the recruited hidden network can raise the weighted sum 
feeding the output unit above 0.0 only in the region of the target rectangle. Notice how closely 
the shape of the final solution in Figure 4c resembles that of the exactly correct portion of the 
source network in Figure 4a.   
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Because one of the candidate source networks is initialized using direct input connections 
(i.e., weights that map input i to source network input i are set to 1.0 and all others to 0.0), 
KBCC always recruits that candidate source first in exact knowledge conditions. For 65% of 
these exact source networks, no further recruitment was necessary; for the remaining 35%, some 
additional recruitment was necessary to adjust to a few borderline patterns. A directly connected 
source candidate network was much less likely to be recruited in the close (25%) and far (0%) 
relevant conditions.  

4.1.2 Selection of Relevant Knowledge from Two Sources 

In this experiment, networks first learned two tasks of varying relevance to the target task 
of learning RectL, the rectangle placed slightly to the left of the origin. The names of the various 
knowledge conditions, their relations to the target, and the mean times each network was 
recruited during input phases of target learning are shown in Table II. Descriptions of the figures 
designated by each condition name were provided in Table 1. The two recruitment means in each 
row were compared with a t-test for paired samples, except in the Exact vs. Relevant condition, 
where there was no variation in either variable. In every other case, the mean difference was 
significant at p < .001, df = 19. The pattern of differences shows that target networks preferred 
exact knowledge, even when it was embedded in overly complex knowledge. They also 
preferred simple exact knowledge to overly complex knowledge that had exact knowledge 
embedded within it. Interestingly, a circle source was more often recruited than a source 
rectangle positioned at the right. Only two single-hidden-units were recruited by the 120 
networks in this experiment.  

===Insert Table II about here=== 

The results of this dual-source experiment make sense given our analysis of the single-
source experiment. Exact source knowledge is preferred over inexact source knowledge because 
it makes a nearly perfect match when accessed with direct connections. Overly complex exact 
source knowledge is less apt to be recruited than is simple exact source knowledge because it 
correlates less well with error in the case of directly connected sources. Perhaps the circle source 
knowledge is recruited over the far source rectangle because the circle is closer to the target 
rectangle even though it is the wrong shape.  

4.2 Sizing 

In sizing problems, knowledge relevance was varied by changing the size of two-
dimensional geometric figures. The target figure in the second phase of knowledge-guided 
learning was a rectangle as were the figures in several of the knowledge conditions. Rectangles 
were always centered at (0, 0) in the input space and always had a height of 22/14.  

4.2.1 Effects of Single-source Knowledge Relevance on Learning Speed  

In this experiment, several knowledge conditions varied the width of the first-learned 
rectangle. Because scaling the width up and scaling the width down do not produce the same 
results, we included conditions with either small or large target rectangles. The various 
conditions, which also included irrelevant knowledge in the form of a circle and no knowledge at 
all, are shown in Table III.  

===Insert Table III about here=== 
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A factorial ANOVA of the epochs to victory when the small rectangle was the target 
yielded a main effect of knowledge condition, F(4, 95) = 103, p < .0001. The mean epochs to 
victory, with standard deviation bars and homogeneous subsets, based on the LSD post hoc 
comparison method, are shown in Figure 5. Relevant knowledge, regardless of distance from the 
target, produced faster learning than did irrelevant knowledge and no knowledge. This suggests 
that scaling down in size is not much affected by the amount of scaling required. The relatively 
few epochs required in phase 2 indicates that scaling down in size is relatively easy for these 
networks to learn.  

===Insert Figure 5 about here=== 

A factorial ANOVA of the epochs to victory when the large rectangle was the target also 
yielded a main effect of knowledge condition, F(4, 95) = 74, p < .0001, but with a somewhat 
different pattern of results. The mean epochs to victory, with standard deviation bars and 
homogeneous subsets, based on the LSD post hoc comparison method, are shown in Figure 6. 
Exact knowledge yielded the fastest learning, followed in turn by near relevant knowledge, far 
relevant knowledge, and finally by no knowledge and irrelevant knowledge. This means that 
scaling up in size gets more difficult with the amount of scaling required. In this case, irrelevant 
knowledge did not speed up learning, as compared to the no-knowledge control. Examination of 
phase-1 source acquisition results confirmed that small rectangles were easier to learn than large 
rectangles, in terms of both hidden units recruited and epochs to learn.  

===Insert Figure 6 about here=== 

When learning a small target rectangle, the percent of networks recruiting a directly 
connected source network decreased from 100% in the exact source knowledge condition to 80% 
in the near relevant source knowledge condition to 45% in the far relevant source knowledge 
condition. Figures 7 and 8 present output activation diagrams for networks learning a small 
target rectangle, recruiting either near relevant or far relevant directly connected source 
knowledge, respectively. Again, in both cases, there is a striking resemblance between the shape 
of the source knowledge and that of the final solution. As with translation experiments, the 
networks here learn to classify all patterns as being outside of the target class during the first 
output phase.  

===Insert Figures 7 and 8 about here=== 

However, when learning a large target rectangle, networks do the opposite; that is, they 
learn to classify all patterns as being inside of the target class during the first output phase. This 
is because many more of the training patterns (121 of 225) fall within the target class when the 
target is a large rectangle. The percent of networks recruiting the directly connected source 
network when learning a large target rectangle was 100% in the exact and near source 
knowledge conditions and 75% in the far relevant source knowledge condition. Figures 9 and 10 
show output activation diagrams for networks learning a large target rectangle, with either near 
relevant or far relevant source knowledge, respectively.  

===Insert Figures 9 and 10 about here=== 

Any lingering error during target learning, whether scaling down to a small rectangle or 
scaling up to a large rectangle, involves patterns near the four corners of the target rectangle, 
such corners being regions of intersecting hyper-planes being learned by the network. When 
scaling down to learn a small target rectangle, network recruitment sharpens these corners, 
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making target learning rather fast. In contrast, when scaling up to a large target rectangle, 
network recruitment smoothes these corners, thus prolonging target learning in order to re-
sharpen the corners. When scaling up to a large rectangle, the amount of corner smoothing and 
eventual re-sharpening grows with the degree of scaling. Because no additional sharpening of 
corners is required when scaling down to a small rectangle, learning speed is rather fast and does 
not vary with the degree of scaling required.  

Mean input connection weights for the critical x-axis input units learned in the sizing 
experiment while recruiting a directly connected source network are plotted in Figure 11. 
Because recruiting exact knowledge requires no rescaling of inputs, these connection weights are 
about 1, regardless of the size of the target rectangle. With a small target rectangle, these weights 
increase with the amount of scaling required; with a large target rectangle, these weights 
decrease with the amount of scaling required. Such trends make sense because when scaling 
down to a small target rectangle, the inputs to the small target would need to be scaled up with 
larger weights in order to effectively use the larger source network. In contrast, when scaling up 
to a large target rectangle, the inputs to the large target would need to be scaled down with 
smaller weights in order to effectively use the smaller source network. During these 
recruitments, connection weights for y-axis input units were always about 1 because rectangle 
height was constant, and all other connection weights were about 0 because they were 
unimportant.  

===Insert Figure 11 about here=== 

4.2.2 Selection of Relevant Knowledge from Two Sources 

In this experiment, networks first learned two tasks of varying relevance to the target 
task. The names of the various knowledge conditions, their relations to the target, and the mean 
times each network was recruited during input phases are shown in Table IV. The descriptions of 
the figures associated with each condition name were provided in Table III. The two means in 
each row were compared with a t-test for paired samples. Results are shown in the last two 
columns of Table IV. Exact knowledge was preferred over relevant or irrelevant knowledge. 
Relevant knowledge was preferred over irrelevant knowledge only when scaling down to a 
smaller rectangle. The large number of recruited networks in the relevant vs. irrelevant, scaling-
up condition reflects the relative difficulty of learning in this condition. Again, the longer that 
learning continues the more recruitment is required. In this experiment, two of the 120 networks 
each recruited 1 single-hidden-unit, and two others recruited 2 single-hidden-units, for a total of 
6. All six of these hidden units recruited were all in the scaling-up conditions of the experiment. 

===Insert Table IV about here=== 

The results of this dual-source sizing experiment make sense given our analysis of the 
single-source sizing experiment. Exact source knowledge is preferred over inexact source 
knowledge because it makes a nearly perfect match when accessed with direct connections. 
When scaling down to a small rectangle, relevant inexact source knowledge is preferred to 
irrelevant source knowledge because the recruitment sharpens the critical corners of the target 
figure, which is rectangular like the relevant sources. In contrast, when scaling up to a large 
rectangle, there is no advantage for relevant source knowledge because recruiting smoothes the 
critical target corners thus requiring additional re-sharpening through further learning.  

4.3 Rotation 
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In rotation problems, knowledge relevance was varied by rotating a rectangle of size 1.5 
x 0.5 or a cross comprising two such rectangles that were offset 90 degrees. All figures were 
centered at (0, 0). The target figure in the second phase of knowledge-guided learning was a 
vertically oriented rectangle (Rect90).  

4.3.1 Effects of Single-source Knowledge Relevance on Learning Speed  

In this experiment, networks had to learn a vertical rectangle (Rect90) after having 
previously learned a rectangle or a cross or a circle. The various experimental conditions are 
shown in Table V.  

===Insert Table V about here=== 

A factorial ANOVA of the epochs to victory yielded a main effect of knowledge 
condition, F(6, 133) = 20, p < .0001. The mean epochs to victory, with standard deviation bars 
and homogeneous subsets, based on the LSD post hoc comparison method, are shown in Figure 
12. Exact knowledge produced the fastest learning, followed by exact knowledge embedded in 
an overly complex structure and irrelevant knowledge, near and distant relevant knowledge, 
distant and overly complex knowledge, and finally the control condition without any knowledge.  

===Insert Figure 12 about here=== 

Figure 13 presents output activation diagrams for a network learning a vertical rectangle 
after recruiting directly connected, exact but overly complex source knowledge. The target 
solution is accomplished by gradually shrinking the horizontal arms of the recruited cross via  
more recruiting and adjusting of direct input-to-output weights. The top and bottom of the 
vertical portion of the recruited cross (Figure 13a) resemble those in the emerging (Figure 13b) 
and final target solutions (Figure 13c). The directly connected version of the source knowledge 
was recruited by 100% of networks in the exact knowledge condition and by 65% of networks in 
the exact but overly complex condition. This explains why these two conditions showed the 
fastest learning. In contrast, most networks in other conditions either failed to recruit the directly 
connected version of a knowledge source or failed to develop weights that could make effective 
use of that recruitment. Nonetheless, all knowledge-laden conditions were superior in learning 
speed to the condition without any previous knowledge. It is difficult to pinpoint the nature of all 
of these advantages of knowledge over no knowledge.  

===Insert Figure 13 about here=== 

4.3.2 Selection of Relevant Knowledge from Two Sources 

In this experiment, networks first learned two tasks of varying relevance to the target task 
of learning a vertical rectangle (Rect90). The names of the various knowledge conditions, their 
relations to the target, and the mean times each network was recruited during input phases are 
shown in Table VI. The descriptions of the figures for each condition were provided in Table V. 
The two means in each row were compared with a t-test for paired samples. In each case, except 
the last, the mean difference was significant, p < .001, df = 19. Exact knowledge was preferred 
over relevant, irrelevant, or overly complex knowledge. Exact knowledge embedded within 
overly complex knowledge was also preferred over relevant, but inexact knowledge. The 
nominally irrelevant circle networks were recruited more often than relevant, inexact knowledge 
and as often as overly complex, but exact knowledge. Only one single-hidden-unit was recruited 
by the 120 networks in this experiment.  
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===Insert Table VI about here=== 

The preference for recruiting exact and exact but overly complex knowledge sources can 
be understood in the same terms used to analyze single source experiment on rotation. Directly 
connected interpretations of these exact knowledge sources are often recruited because they 
predict error very well, and once recruited they require very little further modification.   

5. Finding and Using Component Knowledge 

In this paradigm, we tested whether KBCC can find and combine source knowledge of 
components to learn a new, more complex target problem comprised of these components, and 
whether use of these knowledge components speeds learning. The main component in these tasks 
is a 0.5 x 1.5 rectangle. The target task is a cross (Cross90) formed by two superposed rectangles 
(Rect0 and Rect90). The transformation used to create variation in knowledge relevance is 
rotation. All figures are centered at (0, 0). The various source knowledge conditions are shown in 
Table VII. Descriptions of the various source knowledge components were provided in Table V.  

===Insert Table VII about here=== 

A factorial ANOVA of the epochs to victory yielded a main effect of knowledge 
condition, F(9, 190) = 50, p < .0001. The mean epochs to victory, with standard deviation bars 
and homogeneous subsets, based on the LSD post hoc comparison method, are shown in Figure 
14. Exact knowledge produced the fastest learning, followed by knowledge of the two exact 
target components, knowledge of one of the two exact target components, all other sorts of 
knowledge, and finally the control condition without any knowledge.  

===Insert Figure 14 about here=== 

Number of hidden units recruited during the acquisition of source knowledge can be used 
as an index of complexity for single sources. These were subjected to a factorial ANOVA, 
yielding a main effect of knowledge condition, F(6, 133) = 236, p < .0001. The mean number of 
hidden units recruited in the source acquisition phase, with standard deviation bars and 
homogeneous subsets, based on the Scheffe method of post hoc comparison, are shown in Figure 
15. Single rectangles proved to be the simplest, followed by the circle and the cross at 90 
degrees, and finally the cross at 45 degrees.  

===Insert Figure 15 about here=== 

Output activation diagrams are plotted in Figure 16 for a network learning the cross target 
by recruiting its two basic components, the vertical and horizontal rectangles. Figures 15a and 
15b show the horizontal and vertical component sources, respectively. Figures 15c, 15d, and 15e 
show the target network at the end of the first, second, and third output phases, respectively. As 
illustrated in Figure 15c, when learning the cross, the best solution without any hidden units is to 
classify all patterns as being outside of the target class because the target class contains only 57 
of the 225 training patterns. The third output phase was the final output phase for this network. 
This network recruited the horizontal source rectangle first, followed by the vertical source 
rectangle, each in their directly connected versions.  

===Insert Figure 16 about here=== 

More generally, 81% of the source networks recruited in this condition were directly 
connected versions. All of networks in the exact (un-rotated cross) knowledge condition 
recruited the directly connected source network, and 90% were finished after this single 
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recruitment. In these recruitments (whether of independent source components or exact source 
knowledge), the direct input-side connection weights were around 1 for the x-axis and y-axis 
input units and around 0 elsewhere. Again, the shapes of the target solutions closely resembled 
the shapes of the recruited source knowledge. Networks in conditions with rotated source 
components did not, in general, exhibit such straightforward behavior as did networks with these 
un-rotated components.  

6. Summary of Learning Speed Ups 

To compare the amount of learning speed up in the various experiments, we computed 
several indices of speed up. For each experiment, we divided mean epochs in the no-knowledge 
or irrelevant-knowledge condition by mean epochs in either the exact-knowledge or best-inexact-
knowledge condition.6 Because the results were different for scaling down to a small rectangle 
and scaling up to a large rectangle in the sizing experiment, the indices were computed 
separately for the two versions of that experiment. These indices of learning speed up, shown in 
Figure 17, range from 1.34 in the irrelevant/best-inexact measure in the rotation experiment to 
15.51 in the none/exact index in the components experiment. In general, knowledge speeds up 
learning substantially everywhere, but there is considerable variation in the size of these effects. 
Figure 17 shows tendencies for exact knowledge to be more beneficial than inexact knowledge 
and for irrelevant knowledge to be more beneficial than no knowledge at all. Across indices and 
experiments, the overall mean speed-up factor is 5.29.  

===Insert Figure 17 about here=== 

7. Generalization 

Generalization tests with the 200 randomly determined test patterns are presented in 
Table VIII in terms of the mean and standard deviation of percent misclassification by KBCC 
networks in each experiment. The mean percent misclassification is 3%, and never exceeds 7% 
in any experiment, indicating good generalization performance.  

===Insert Table VIII about here=== 

8. Discussion 

8.1 Overview of Results  

The present results show that KBCC is able to find, adapt, and use its existing knowledge 
in the learning of new problems, significantly shortening the learning time. When exact 
knowledge is present, it is recruited for a quick solution. The more relevant the knowledge is, the 
more likely it will be recruited for solution of a new problem and the faster that new learning is 
likely to be. If KBCC knows the components of its new task, then it recruits and combines those 
components into a solution, again with a significant speed up in learning. These are the sorts of 
qualities one would expect in a system that effectively uses its knowledge in new learning.  

With a single source of knowledge in memory, KBCC tends to learn fastest with 
knowledge that matches the target exactly, followed by exact but embedded knowledge, close 
and relevant knowledge, distant relevant knowledge, irrelevant knowledge, and no knowledge at 
all. When learning a multi-component target task, KBCC learns faster with knowledge of both 
components than knowledge of only one component. With multiple sources of knowledge, there 

                                                 
6 By "best" we mean fastest to learn.  
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is a tendency for KBCC to prefer to recruit sources in this same order, that is, to recruit the 
source that allows it to learn faster. Many of these results were traced to differential tendencies to 
recruit directly connected source networks. Such source networks are more likely to be recruited 
when the knowledge is exact or embedded, and is likely to speed learning.  

Testing KBCC in the different domains of translation, sizing, and rotation provided 
evidence on the generality of our conclusions. Although these domains differ in their overall 
difficulty and in some aspects of the findings, there was considerable generality in the results. 
For example, in learning a small rectangle, recruiting a source rectangle sharpened the critical 
corners so that learning was fast and distance of relevant knowledge was irrelevant to learning 
speed. However, in the more difficult problem of scaling up to a larger rectangle, critical corners 
were smoothed by recruitment and had to be relearned, thus increasing learning time in relation 
to distance of the source knowledge. Thus, the patterns of results relating knowledge relevance to 
learning speed may be dampened or enhanced by various manipulations, but they are rarely 
reversed.  

8.2 A Note on Irrelevant Source Knowledge 

 We had termed learning a circle as an irrelevant source knowledge because a circle lacks 
the critically important corners possessed by target and source rectangles. In single-source 
experiments, KBCC networks recruiting circular source knowledge were generally slower to 
learn rectangular targets than those recruiting rectangular source knowledge. However, 
recruitment of circular source knowledge was typically favored over, and was faster than, 
recruitment of single hidden units. In dual-source experiments, recruitment of circular source 
knowledge was less preferred than recruitment of exact knowledge, but sometimes more 
preferred (in translation and rotation experiments) and sometimes less preferred (in sizing 
experiments) than relevant knowledge. It is interesting to speculate about the utility of 
supposedly irrelevant circular source knowledge in some of these comparisons.  

 Single hidden units carve up a problem space with uniform hyper-planes, whereas 
candidate networks built on circular concepts employ a more complex geometry that may be 
similar to that of the target concept, thus raising correlation during recruitment phases and 
possibly lowering error during output phases. For example, both a rectangle and a circle separate 
inside patterns from outside patterns. When a different-shaped source is in the same region as the 
target, it may become a desirable object to recruit because it can correlate quite highly with 
target error. Such high correlations may lead to recruitment but the need to sharpen corners to 
meet the additional requirements of rectangular targets may prolong learning, leading to even 
more recruitments (cf. the multiple numbers of circles recruited in some conditions in Tables II, 
IV, and VI).  

8.3 Relation to Previous Work 

As noted earlier, the present work on KBCC bears some relation to previous neural 
network research on knowledge transfer, multitask learning, sequential learning, lifelong 
learning, input re-coding, knowledge insertion, and modularity.  

Pratt (1993) developed a technique called discriminability-based transfer that uses the 
weights from a previously trained network to initialize a new network. This is probably the most 
obvious and straightforward idea for using knowledge in new learning. However, because it did 
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not work as well as expected, Pratt improved the technique by re-scaling the previous network's 
hyper-planes so that useful ones had large weights and less useful ones had small weights.  

Caruana (1993, 1997) pioneered Multitask Learning (MTL) in which he trained a 
network on several tasks taken from the same domain in parallel, with a single output for each 
task. Such networks typically learned a common hidden-unit representation, which then proved 
useful for learning subsequent tasks from the same domain. Baxter (1995) proved that the 
number of examples required for learning any one task in an MTL paradigm decreases as a 
function of total number of tasks learned in parallel.  

Silver and Mercer (1996) developed a method of sequential learning called task rehearsal. 
Here, old tasks are pseudo-rehearsed during new learning, generating patterns that can be added 
to the those of the target task. In pseudo-rehearsal, the network generates its own target vectors, 
using its current weights, rather than merely accepting them from the environment (Robins 
1995). Separate learning rates for each task are used to control the impact of each source task, 
ensuring that the most related tasks have the most impact on learning.  

Thrun and Mitchell (1993) engineered a technique they called lifelong learning, in which 
a network meta-learns the slope of the desired function at each training example. This is 
essentially the derivative of the function at an example output with respect to the input attribute 
vector. Then, in new learning, a meta-network makes slope predictions and estimates its 
accuracy for each new training example. This technique seems to rely not so much on knowledge 
representations as on search knowledge.  

Clark and Thornton (1997) discussed the importance of networks being able to re-code 
their input in learning difficult, so-called Type-2 problems. Type-1 problems are those that can 
be solved by sampling the originally coded input data. In contrast, Type-2 problems need re-
coding in order to use Type-1 knowledge. Ability to do this would require some degree of 
incremental learning, modularity, and perhaps representational re-description (Karmiloff-Smith 
1992), but no specific algorithm was proposed.  

Shavlik (1994) presented the KBANN algorithm for creating knowledge-based artificial 
neural networks. KBANN converts a set of symbolic rules embodying domain knowledge of a 
problem into a feed-forward neural network with the final rule conclusions as output units and 
intermediate rule conclusions as hidden units. Connection and bias weights are initialized to 
implement the conjunctive and disjunctive structures of the rules. Networks thus initialized with 
knowledge are then trained with examples to refine the knowledge. Training is typically faster 
than with standard networks with random weights and leads to better generalization. Following 
the training, symbolic rules can be extracted from the network.  

Jordon and Jacobs (1994) proposed the Hierarchical Mixture of Experts (HME) 
architecture to decompose a problem into network modules. Distinct network modules become 
expert on subtasks, and cooperate on an overall solution using gating networks that learn to 
weight the modular expert contributions for the different parts of the problem. HME was found 
to learn the dynamics of a four-degree-of-freedom robot arm much faster than a multi-layer 
back-propagation network did.  

8.4 Advantages of KB CC  

In contrast to these previous methods for using knowledge in learning, KBCC uses 
established techniques from generative learning algorithms (Fahlman & Lebiere, 1990). KBCC 
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recruits existing networks as well as single units as it needs them in order to increase its 
computational power in the service of error reduction. Treating its existing networks like 
untrained single units, KBCC trains weights to the inputs of existing source networks to 
determine whether their outputs correlate with the target network's error. In addition, KBCC 
trains the output weights from a recruited network in order to incorporate it into a solution of the 
current problem. This process of adapting old knowledge to new task allows for further 
recruitment of either additional networks or single units. Indeed, the same network could be 
recruited more than once if this proved to be desirable for learning the target task. This 
adaptation of the outputs of the recruited source network allows KBCC to use knowledge that is 
only partly relevant to the new task. The ability to adjust both incoming and outgoing weights 
with respect to a source network gives KBCC considerable flexibility in its use of knowledge. 
The fact that units and sub-networks are installed in a cascade allows KBCC to build its new 
learning on top of any recruited knowledge.  

KBCC may be one way of reducing a complex problem to a simpler, already known 
problem, as recommended by Clark and Thornton (1997). When a network is recruited, this 
effectively reinterprets a target problem as if it were an instance of a known problem. Further 
recruitments and output weight adjustments then craft this reinterpretation into a solution to the 
target problem.  

During input phases, KBCC searches for the best linear transformation of the target 
network's inputs in relation to its source networks. This enables a potentially large range of input 
re-coding schemes. All of the linear transformations that were tried in the present simulations 
(translations, size-scaling, and rotation) produced satisfactory results in the sense of faster 
learning.  

A direct comparison on translation problems showed that KBCC was considerably more 
effective than MTL in terms of speeding up learning (Shultz & Rivest, 2000b). In contrast to 
KBCC networks, MTL networks did not show any benefits of knowledge in terms of increased 
learning speed. MTL networks had particular difficulty extracting exact knowledge from an 
overly complex source network. Moreover, they often failed to learn their assigned source 
problem and thus had to be replaced before proceeding to the target phase. The primary reason 
that MTL does not speed the learning of new tasks is that it requires both old and new tasks to be 
freshly learned in parallel. In contrast, KBCC recruits its old knowledge without having to 
relearn it.  

Unlike many of the previous techniques for which both the inputs and outputs of the 
source and target task must match precisely, KBCC can potentially recruit any sort of function to 
use in a new task. Source network inputs and outputs can be arranged in different orders, employ 
different coding methods, and exist in different numbers than those in the target network. Indeed, 
the only real constraint on what can be recruited by KBCC is that it must be possible to find the 
first derivative for a recruitment object. This need for the first derivative is due to the use of the 
quickprop algorithm for weight adjustment. If numerical estimation or an optimization algorithm 
that did not require first derivatives were used, even this restriction would disappear. This 
extreme flexibility means that functions created by means other than KBCC itself could be 
recruited. The wide range of recruitment objects would appear to offer considerably more power 
and flexibility than most knowledge-based learners provide.   
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When a source network is recruited by KBCC, it is thereafter treated as a black box 
module. Like the modules discussed by Fodor (1983), KBCC's recruited networks are 
computationally encapsulated sub-systems that interact with the rest of the system only through 
their inputs and outputs. Although Fodor (1983) proposed that such modules are innate and 
operate only in particular specialized areas such as perception and language processing, it is now 
recognized that modules can be learned and also operate within central cognition (Karmiloff-
Smith 1992).  

In contrast to larger and more homogeneous networks, modular neural networks restrict 
complexity to be proportional to problem size, easily incorporate prior knowledge, generalize 
effectively, learn multiple tasks, perform robustly, and are easily extended or modified (Gallinari 
1995). The solutions of modular networks should also be easier to analyze than the solutions of 
homogeneous networks. Whatever recruited KBCC modules do with their input would not 
change from the time of their initial acquisition, although it still might be challenging to 
determine their role in the overall solution reached by the target network. Unlike the HME 
approach to modularity, the sub-networks in KBCC are gradually constructed through automatic 
learning rather than being designed ahead of time and being simultaneously present throughout 
the whole of learning.  

KBCC also implements a natural resistance to the retroactive interference that often 
plagues sequential learning in neural networks (French 1992). Because each source network is an 
unchanged module, it never loses its original functionality, no matter how many times and ways 
that it is recruited. There is also no need to relearn old tasks while learning new ones as in Silver 
and Mercer's (1996) task rehearsal method and in Caruana’s (1993, 1997) MTL.  

KBCC allows for a combination of learning by either analogy and/or induction. KBCC 
learns by analogy to its current knowledge whenever it can and switches to a more inductive 
mode if it needs to. Recruiting a network is learning by analogy, whereas recruiting a single unit 
is learning by induction. Both processes are seamlessly integrated in KBCC's approach to a new 
target task.  

8.5 Future Work 

In this paper, we assessed the speed up in learning that comes from recruiting existing 
relevant knowledge in the KBCC algorithm. KBCC should also be assessed for the possibility 
that it could learn a problem more deeply and generalize more effectively by virtue of recruiting 
such knowledge. Deeper learning and more effective generalization was not apparent in the 
current work because learning was allowed to proceed to completion in every condition.7 Even 
without any stored knowledge, KBCC, which is then essentially equivalent to ordinary CC, is 
powerful enough to learn these non-linear problems by recruiting individual hidden units as 
needed. Assessing the impact of knowledge on the quality of learning would require 
impoverished training sets and/or assessments earlier in learning. This issue is the focus of work 
that is currently underway in our laboratory.  

KBCC has so far been applied to only toy demonstration problems, albeit problems that 
might pose some difficulty for other learning algorithms. Use of these well understood and easy 
                                                 

7 This is not to say that KBCC does not generalize well. The generalization results in Table VIII show that 
mean misclassification error on test problems was only 3%. The point made here is that there is not yet any 
demonstration that recruiting existing knowledge by KBCC networks improves depth of learning, as indexed by 
superior generalization.  
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to visualize problems enables us to explore the properties of KBCC in some detail and with 
growing confidence that the algorithm is working appropriately. Nonetheless, it would be 
interesting and important to try KBCC on real and even more difficult problems and with a larger 
and more realistic array of source networks. A number of realistic problems have already been 
the focus of work on knowledge transfer in neural networks. These include problems in speech 
recognition, medical diagnosis, DNA pattern discovery, and chess (Pratt 1993; Silver & Mercer, 
1996). In addition to exploring such realistic problems, we also plan to apply KBCC to the 
simulation of psychological data on the use of knowledge in learning.  

A significant difficulty could be anticipated as a KBCC system accumulates extensive 
experience. The problem is that searching an extensive knowledge base of source networks in 
input (recruitment) phases would become prohibitively expensive computationally. It seems 
reasonable in such circumstances to focus that search on source networks that could be expected 
to be particularly useful. Focusing these recruitment searches could perhaps be accomplished 
with weight-implemented heuristics such as similarity in inputs and outputs, recency of learning, 
and externally provided hints about what existing knowledge might be useful. In addition and 
perhaps more importantly, past recruitment of particular source networks for particular problems 
might be used to develop a task semantics that could further constrain these searches.  

The current version of KBCC is able to find and use its existing knowledge in learning 
new tasks. This holds the promise of being able to undertake more realistic implementations of 
the kind of knowledge-based learning at which people excel.  
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Table I 

Single-source Knowledge Conditions for Translation Experiments 

Name Description Relation to target 

RectL Rectangle centered at (-4/7, 0) Exact  

2RectLC 2 rectangles, centered at (-4/7, 0) and (0, 0) Exact/near, overly complex  

RectC Rectangle centered at (0, 0) Near relevant  

RectR Rectangle centered at (4/7, 0) Far relevant  

2RectCR 2 rectangles, centered at (0, 0) and (4/7, 0) Near/far, overly complex  

Circle Circle centered at (0, 0) with radius 0.5 Irrelevant  

None No knowledge None 
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Table II 

Dual-source Knowledge Conditions and Mean Networks Recruited in Translation Experiments  

Name Relation to target Mean networks recruited 

  RectL RectR 2RectLC Circle

RectL, RectR Exact vs. Relevant 1.0 0.0 n/a n/a

RectL, 2RectLC Exact vs. Overly complex 0.95 n/a 0.15 n/a

RectL, Circle Exact vs. Irrelevant 1.05 n/a n/a 0.0

RectR, 2RectLC Relevant vs. Overly complex n/a 0.15 1.25 n/a

RectR, Circle Relevant vs. Irrelevant n/a 1.25 n/a 2.55

2RectLC, Circle Overly complex vs. Irrelevant n/a n/a 1.45 0.15
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Table III 

Single-source Knowledge Conditions for Sizing Experiments 

Name Description Relation to target RectL Relation to target RectS 

RectS Rectangle of width 6/14 Far relevant Exact 

RectM Rectangle of width 14/14 Near relevant Near relevant 

RectL Rectangle of width 22/14 Exact Far relevant  

Circle Center at (0, 0), radius 0.5 Irrelevant Irrelevant 

None No knowledge None None 
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Table IV 

Dual-source Knowledge Conditions and Mean Networks Recruited for Sizing Experiments 

Name Relation to target Mean networks 
recruited 

t(19) p < 

  RectS RectL Circle   

Target: RectS    

   RectS, RectL Exact vs. Relevant 1.05 0.60 n/a 3.33 .005 

   RectS, Circle Exact vs. Irrelevant 1.00 n/a 0.45 3.58 .005 

   RectL, Circle Relevant vs. Irrelevant n/a 1.50 0.45 4.70 .001 

Target: RectL    

   RectL, RectS Exact vs. Relevant 0.15 1.20 n/a 11.92 .001 

   RectL, Circle Exact vs. Irrelevant n/a 1.05 0.0 21.00 .001 

   RectS, Circle Relevant vs. Irrelevant 2.65 n/a 3.40 1.25 ns 
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Table V 

Single-source Knowledge Conditions for Rotation Experiments 

Name Description Relation to target 

Rect90 Vertical rectangle  Exact  

Rect45 Diagonal rectangle  Near relevant  

Rect0 Horizontal rectangle  Far relevant  

Cross90 2 superposed rectangles  Exact/far, overly complex  

Cross45 2 superposed rectangle forming diagonal cross Near, overly complex  

Circle Circle centered at (0, 0) with radius 0.5 Irrelevant  

None No knowledge None 
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Table VI 

Dual-source Knowledge Conditions and Mean Networks Recruited for Rotation Experiments 

Name Relation to target Mean networks recruited 

  Rect90 Rect0 Cross90 Circle

Rect90, Rect0 Exact vs. Relevant 1.35 0.25 n/a n/a

Rect90, Cross90 Exact vs. Overly complex 1.00 n/a 0.35 n/a

Rect90, Circle Exact vs. Irrelevant 1.25 n/a n/a 0.25

Rect0, Cross90 Relevant vs. Overly complex n/a 0.35 2.05 n/a

Rect0, Circle Relevant vs. Irrelevant n/a .60 n/a 2.00

Cross90, Circle Overly complex vs. Irrelevant n/a n/a 1.25 1.15
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Table VII 

Source Knowledge Conditions for Component Experiments 

Name Relation to target 

Cross90 Exact  

Rect0 & Rect90 Both components 

Rect0 1st component 

Rect90 2nd component 

Cross45 Rotated 45 degrees 

Rect45 & Rect135 Both components rotated  

Rect45 1st rotated component 

Rect135 2nd rotated component 

Circle Irrelevant 

None No knowledge 
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Table VIII 

Mean and Standard Deviation of Percent Misclassification Error on Test Problems 

Experiment Mean SD 

Rotation/single .027 .009 

Rotation/dual .025 .010 

Translation/single .030 .013 

Translation/ dual .023 .012 

Scale-up/single .040 .012 

Scale-down/single  .031 .015 

Scale-up/dual .035 .018 

Scale-down/dual .020 .011 

Cross from components .070 .018 
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Figure Captions 

Figure 1. A KBCC network with two hidden units, the first of which is a previously learned sub-
network and the second a single unit. The network is shown in the third output phase. Dashed 
lines represent trainable weights, and solid lines represent frozen weights. Thin lines represent 
single weights; thick lines represent vectors of weights entering and exiting the recruited sub-
network, which may have multiple inputs and multiple outputs. 

Figure 2. Connection scheme for a sample KBCC network with two inputs, two outputs, one 
recruited network, and a recruited hidden unit. 

Figure 3. Mean epochs to victory in the target phase of the translation experiment, with standard 
deviation bars and homogeneous subsets. 

Figure 4. Output activation diagrams showing exact but overly complex source knowledge (a), 
the target network at the end of the first output phase (b), and the target solution at the end of the 
second output phase (c) after recruiting the source knowledge in a. 

Figure 5. Mean epochs to victory in the target phase of the small rectangle condition of the sizing 
experiment, with standard deviation bars and homogeneous subsets. 

Figure 6. Mean epochs to victory in the target phase of the large rectangle condition of the sizing 
experiment, with standard deviation bars and homogeneous subsets. 

Figure 7. Output activation diagrams for a network learning a small rectangle, showing near 
relevant source knowledge (a) and the final target solution at the end of the second output phase 
(b) after recruiting the knowledge in a. 

Figure 8. Output activation diagrams for a network learning a small rectangle, showing far 
relevant source knowledge (a) and the final target solution at the end of the second output phase 
(b) after recruiting the knowledge in a. 

Figure 9. Output activation diagrams for a network learning a large rectangle, showing near 
relevant source knowledge (a) and target solutions at the end of the second (b), third (c), and 
fourth and final (d) output phases. 

Figure 10. Output activation diagrams for a network learning a large rectangle, showing far 
relevant source knowledge (a) and target solutions at the end of the second (b), fifth (c), and 
sixth and final (d) output phases. 

Figure 11. Mean input connection weights for x-axis input units learned in the sizing experiment 
while recruiting a directly connected source network. 

Figure 12. Mean epochs to victory in the target phase of the rotation experiment, with standard 
deviation bars and homogeneous subsets. 

Figure 13. Output activation diagrams for a network learning a vertical rectangle after recruiting 
directly connected exact but overly complex source knowledge (a). Target solutions are shown at 
the end of the second (b) and third and final (c) output phases. 

Figure 14. Mean epochs to victory in the target phase of the components experiment, with 
standard deviation bars and homogeneous subsets. 

Figure 15. Mean hidden units recruited in the source-acquisition phase of the components 
experiment, with standard deviation bars and homogeneous subsets. 
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Figure 16. Output activation diagrams for a network learning a cross target by recruiting its two 
components (a and b). Target solutions are shown at the end of the first (c), second (d), and third 
(final, e) output phases. 

Figure 17. Speed-up factors in the various experiments in terms of mean epochs in the no-
knowledge or irrelevant-knowledge condition divided by mean epochs in either the exact-
knowledge or best-inexact-knowledge condition.
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Figure 1. A KBCC network with two hidden units, the first of which is a previously learned sub-
network and the second a single unit. The network is shown in the third output phase. Dashed 
lines represent trainable weights, and solid lines represent frozen weights. Thin lines represent 
single weights; thick lines represent vectors of weights entering and exiting the recruited sub-
network, which may have multiple inputs and multiple outputs.  
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Figure 2. Connection scheme for a sample KBCC network with two inputs, two outputs, one 
recruited network, and a recruited hidden unit.  
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Figure 3. Mean epochs to victory in the target phase of the translation experiment, with standard 
deviation bars and homogeneous subsets. 
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a.  b. 

   
 c. 

 
Figure 4. Output activation diagrams showing exact but overly complex source knowledge (a), 
the target network at the end of the first output phase (b), and the target solution at the end of the 
second output phase (c) after recruiting the source knowledge in a.  
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Figure 5. Mean epochs to victory in the target phase of the small rectangle condition of the sizing 
experiment, with standard deviation bars and homogeneous subsets. 
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Figure 6. Mean epochs to victory in the target phase of the large rectangle condition of the sizing 
experiment, with standard deviation bars and homogeneous subsets. 
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a. b. 

   
Figure 7. Output activation diagrams for a network learning a small rectangle, showing near 
relevant source knowledge (a) and the final target solution at the end of the second output phase 
(b) after recruiting the knowledge in a.  
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a. b. 

   
Figure 8. Output activation diagrams for a network learning a small rectangle, showing far 
relevant source knowledge (a) and the final target solution at the end of the second output phase 
(b) after recruiting the knowledge in a. 
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a. b. 

  
c. d. 

  
Figure 9. Output activation diagrams for a network learning a large rectangle, showing near 
relevant source knowledge (a) and target solutions at the end of the second (b), third (c), and 
fourth and final (d) output phases.  
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a. b.  

  
c. d. 

  
Figure 10. Output activation diagrams for a network learning a large rectangle, showing far 
relevant source knowledge (a) and target solutions at the end of the second (b), fifth (c), and 
sixth and final (d) output phases. 
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Figure 11. Mean input connection weights for x-axis input units learned in the sizing experiment 
while recruiting a directly connected source network.  
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Figure 12. Mean epochs to victory in the target phase of the rotation experiment, with standard 
deviation bars and homogeneous subsets. 



KBCC     47 

 

a. b. 

  
 c. 

 
Figure 13. Output activation diagrams for a network learning a vertical rectangle after recruiting 
directly connected exact but overly complex source knowledge (a). Target solutions are shown at 
the end of the second (b) and third and final (c) output phases.  
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Figure 14. Mean epochs to victory in the target phase of the components experiment, with 
standard deviation bars and homogeneous subsets. 
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Figure 15. Mean hidden units recruited in the source-acquisition phase of the components 
experiment, with standard deviation bars and homogeneous subsets.  
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a.  b. 

  
c. d. 

  
 e. 

 
Figure 16. Output activation diagrams for a network learning a cross target by recruiting its two 
components (a and b). Target solutions are shown at the end of the first (c), second (d), and third 
(final, e) output phases. 
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Figure 17. Speed-up factors in the various experiments in terms of mean epochs in the no-
knowledge or irrelevant-knowledge condition divided by mean epochs in either the exact-
knowledge or best-inexact-knowledge condition. 

 


