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Abstract 
 
Contrary to a recent claim that neural network models are 
unable to account for data on infant habituation to artificial 
language sentences, the present simulations show successful 
coverage with cascade-correlation networks using analog 
encoding. The results demonstrate that a symbolic rule-based 
account is not required by the infant data. 
 

One of the fundamental issues of cognitive science 
continues to revolve around which type of theoretical model 
better accounts for human cognition -- a symbolic rule-
based account or a sub-symbolic neural network account. A 
recent study of infant habituation to expressions in an 
artificial language claims to have struck a damaging blow to 
the neural network approach (Marcus, Vijayan, Rao, & 
Vishton, 1999). The results of their study show that 7-
month-old infants attend longer to sentences with unfamiliar 
structures than to sentences with familiar structures.  

Because of certain features of their experimental design 
and their own unsuccessful neural network models, Marcus 
et al. conclude that neural networks cannot simulate these 
results and that infants possess a rule-learning capability 
unavailable to neural networks. A companion article 
suggests that rule learning is an innately provided capacity 
of the human mind, distinct from associative learning 
mechanisms like those in neural networks (Pinker, 1999).  

My paper presents neural network simulations of the key 
features of the Marcus et al. (1999) experiment, thus 
showing that their infant data do not uniquely support a 
rule-based account. 
 
Psychological Evidence and One Interpretation 

Marcus et al. (1999) present experiments in which 7-month-
old infants habituate to three-word sentences in an artificial 
language and are then tested on novel sentences that are 
either consistent or inconsistent with those to which the 
infant has habituated. In one experiment, illustrated in the 
first three columns of Table 1, infants habituated to 
sentences exhibiting an ABA pattern, for example, ga ti ga 
or li na li. There were 16 of these ABA sentences, created 
by combining four A words (ga, li, ni, and ta) with four B 
words (ti, na, gi, and la). Then the infants were presented 
with two novel sentences that were consistent with the ABA 
pattern (wo fe wo, and de ko de) and two novel sentences 
that were inconsistent with ABA because they followed an 
ABB pattern (wo fe fe, and de ko ko). A second, control 
condition habituated infants to sentences with an ABB 

pattern, for example, ga ti ti and ga na na. Again, 16 such 
sentences were created by combining the four A words with 
the four B words. The test sentences were the same in this 
second condition, but here the novel ABB sentences were 
consistent and the novel ABA sentences were inconsistent 
with the habituated ABB pattern.  
 
Table 1: Conditions and error in simulation of Experiment 1 
Procedure Condition 1 Condition 2 Mean  SE 
Habituate ABA ABB   
Consistent ABA ABB 0.649 0.107 
Inconsistent ABB ABA 1.577 0.088 
 

The dependent measure was looking time. During the test 
phase, if the infant looked at a flashing light to her left or 
right, a test sentence was played from a speaker near that 
light. A test sentence was played over and over until the 
infant either looked away or until 15 s elapsed. Infants 
attended more to inconsistent novel sentences than to 
consistent novel sentences, indicating that they were 
sensitive to grammatical differences between the sentences. 

Marcus et al. designed another experiment, described in 
the first three columns of Table 2, that contrasted 
habituation to ABB sentences with AAB sentences. The 
idea was to rule out the possibility that infants might have 
used the presence or absence of duplicated words to 
distinguish grammatical types in their other experiments. 
For example, ABA sentences duplicate no words, but ABB 
sentences do (by duplicating B). In this Experiment 3, both 
grammatical sequences have duplicated words.  

 
Table 2: Conditions and error in simulation of Experiment 3 
Procedure Condition 1 Condition 2 Mean  SE 
Habituate ABB AAB   
Consistent ABB AAB 0.570 0.100 
Inconsistent AAB ABB 1.491 0.072 
 

Infants performed in a similar fashion in both 
experiments, i.e., they attended more to inconsistent than to 
consistent novel sentences. All infants except one showed 
the predicted preference for inconsistent over consistent test 
sentences. The issue is the proper theoretical account of this 
grammatical knowledge -- is it based on rules or on 
connections?  

Marcus et al. argue that these simple grammars could not 
be learned by a computational system that is sensitive only 
to transitional probabilities or event frequencies. 
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Transitional probabilities would not work because the 
transitional probabilities for novel words would be 0. 
Counting the numbers of duplicated words might work for 
Experiment 1, but not for Experiment 3, where both 
grammars had duplicate words. Nonetheless, Marcus et al. 
briefly mention their unsuccessful attempts to simulate these 
habituation data with simple recurrent networks such as 
those used by Elman (1990).  

No details of the course of habituation of attention or the 
extent of recovery were reported by Marcus et al. Nor was 
there an implementation of a rule-based model to account 
for the habituation data or a theoretical analysis of how rule 
learning might be used in the computation of habituation. In 
any case, the challenge raised by Marcus et al. is interesting 
and worthwhile. It is interesting because habituation is 
important and still poorly understood, and worthwhile 
because of the implications for the fundamental debate on 
rules vs. connections. 

 
Habituation as Encoding and Decoding in 

Neural Networks 
One computational account of habituation has been in terms 
of the encoding and decoding processes involved in so-
called encoder networks (Mareschal & French, 1997). 
Encoder networks have output units identical to their input 
units. Their task is to reproduce their inputs on their output 
units. With layer-to-layer connectivity, an encoder network 
must encode input signals onto a layer of hidden units and 
then decode the hidden unit representations onto the output 
units. If the number of hidden units is less than the number 
of input or output units, then the encoder network learns to 
abstract a compact representation of the problem on its 
hidden units. Such compact abstractions generalize to novel 
inputs and enable prototype phenomena and pattern 
completion skills (Hertz, Krogh, & Palmer, 1991).  

How might encoder networks be related to habituation? 
The habituation technique is arguably the most important 
methodological advance in developmental psychology in 
this century. The reason for this is that habituation enables 
the systematic study of perceptual and conceptual abilities 
in non-verbal, response-impoverished infants (Cohen, 
1979). Unlike the study of mere preferences, habituation can 
be used even when no preferences exist. Even if the infant 
exhibits no natural preferences between stimulus categories, 
such preferences can be experimentally introduced by 
habituating the infant to one category and measuring 
dishabituation to another contrasting category. The 
responses required to show habituation and dishabituation 
are available at birth (Slater, 1995). All that is required is 
visual attention, head turning, or something as passive as 
heart rate. These advantages have enabled dozens of 
discoveries of perceptual and cognitive abilities in young 
infants over the past 30 years using habituation 
methodology. Infants have been demonstrated to perceive 
color, form, complex patterns, faces, and intricate relations, 
to learn categories and prototypes, to perceive perceptual 
constancies, to know about object permanence and 

causality, to identify objects, and to form both short-term 
and long-term memories for objects and events (e.g., Cohen, 
1979; Haith, 1990; Oakes & Cohen, 1990; Quinn & Eimas, 
1996). The memories identified in habituation studies are 
essentially recognition memories -- the recognition of a 
stimulus as being a member of a previously habituated 
category.   

What is going on during the processes of habituation and 
dishabituation? The standard view is that infants gradually 
construct representational categories for stimuli that they 
encounter (Cohen, 1973; Sokolov, 1963). This category 
building is enabled by visual attention, as well as by other 
sensory modalities. Once a representational category is 
constructed via attention and processing, the infant no 
longer needs to attend so much to stimuli of that category. 
When the infant encounters a new stimulus, he compares it 
to stored representations of existing stimulus categories. If 
the new stimulus matches a stored category, then it will 
likewise elicit little or no attention. But if the new stimulus 
is not recognized as a member of an existing category, then 
it receives additional attention and processing. This is a 
system that seems adaptive in encouraging the infant to 
expend cognitive resources on novel information and thus 
continue to learn about the world.  

There are many interesting aspects to the habituation 
literature. Among them is a tendency for attention to 
habituate gradually in a negatively accelerated fashion -- 
fast at first and then slowing down to an asymptote of no 
attention. The gradual decrease is perhaps a natural 
consequence of the fact that building representations in 
relatively naive infants takes time and effort. The negative 
acceleration is a natural consequence of the fact that 
attention to a stimulus may start at a high level and is 
bounded at none. 

The basic idea enabling a link between habituation and 
encoder networks is that encoder networks model how one 
might learn about stimuli from attending to them. Relations 
among stimulus features are abstracted in the hidden unit 
representations as connection weights are adjusted. New 
stimuli that produce similar representations and little or no 
error are in a sense recognized as familiar. Those stimuli 
that produce different representations and large error are 
essentially unrecognized and considered as novel. The key 
assumption in this modeling of habituation with encoder 
networks is that network error corresponds to the need to 
direct current attentional resources (Mareschal & French, 
1997). The theoretical contribution of this analysis is a 
computationally precise implementation of the 
representation and processing involved in habituation as 
presently understood.  

 
The Current Model 

Cascade -correlation 
The proposed model of habituation uses an encoder version 
of the cascade-correlation learning algorithm. Cascade-
correlation is an algorithm for learning in feed-forward 
neural networks (Fahlman & Lebiere, 1990). Unlike 
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standard back-propagation networks, whose topologies are 
designed by hand and remain static as connection weights 
are adjusted, cascade-correlation networks grow as well as 
learn. They grow by recruiting new hidden units into the 
network as required to reduce error at the output units. New 
hidden units are recruited one at a time and installed each on 
a separate layer with input connections from the input units 
and from any existing hidden units. The candidate hidden 
unit that gets recruited is the one whose activations correlate 
most highly with the network's current error as the input 
weights to the candidates are adjusted.  

Cascade-correlation also differs from standard back-
propagation by using curvature as well as slope information 
from the error surface in making weight adjustments. This 
additional information about the error surface, which is 
approximated in a computationally efficient way, enables 
more decisive and effective weight adjustments.  

Cascade-correlation was designed to solve two of the 
major problems with back-propagation -- slow learning and 
inability to learn some difficult problems. On average, it 
learns about 10-50 times faster than standard back-
propagation, and it learns problems that are too difficult for 
standard back-propagation networks (Fahlman & Lebiere, 
1990). Some of the neurological justification for generative 
networks such as cascade-correlation is reviewed by Quartz 
and Sejnowski (1997).  

Cascade-correlation has proved useful in simulating many 
aspects of cognitive development, including the balance 
scale (Shultz, Mareschal, & Schmidt, 1994), conservation 
(Shultz, 1998), seriation (Mareschal & Shultz, in press), 
pronoun semantics (Takane, Oshima-Takane, & Shultz, 
1995), number comparison (Hashmi & Shultz, 1998), 
discrimination shift learning (Sirois & Shultz, 1998), and 
integration of velocity, time, and distance cues 
(Buckingham & Shultz, 1994, 1996). In these models, 
network behavior becomes rule-like with learning, but rules 
are not the actual representations of knowledge and rule 
firing is not the mechanism for cognitive processing. Rules 
are instead high-level, epi-phenomenal characterizations of 
what is happening at the sub-symbolic level of unit 
activations and connection weights. Among the many 
advantages of implementing rule-like behavior in neural 
activity are acquisition of non-normative rules, natural 
variation across problems and individuals, theoretical 
integration of perceptual and cognitive phenomena, and 
achievement of the right degree of crispness in knowledge 
representations. Several network predictions were 
confirmed in subsequent psychological studies.  
 
An Encoder Version of Cascade -correlation 
An apparent problem for using standard cascade-correlation 
in encoder problems is that it creates many cross-
connections that bypass hidden units. The most troublesome 
of these for encoder simulations are the direct connections 
from input to output units, which could solve any encoder 
problem in a trivial way by rapidly learning weights of 1 
between an input unit and its corresponding output unit. The 

solution is to freeze these direct input-to-output links to 
have values of 0, not modifiable by subsequent learning. As 
with back-propagation encoder networks, all of the 
computation must then employ hidden units.  
 
Coding the Marcus et al. Experiments  
The coding scheme for simulation of these experiments is a 
straightforward translation of words into an analog 
representation of real numbers. In such analog 
representations, degree of activation encodes distinct inputs 
and outputs. The assignment of words to numbers is 
arbitrary but consistent. In the training patterns, the four 
levels of A (ga, li, ni, ta) are represented by the numbers 1, 
3, 5, and 7, respectively, and the four levels of B (ti, na, gi, 
and la) by the numbers 2, 4, 6, and 8, respectively. Hence, 
the ABA sentences ga ti ga and li na li are represented by 1 
2 1 and 3 4 3, respectively. The ABB sentences ga ti ti and 
ga na na are represented by 1 2 2 and 1 4 4, respectively. 
The test patterns have values not used in training, but are 
interpolated within the training values: 2.5 for wo, 3.5 for fe, 
5.5 for de, and 6.5 for ko. Thus, the ABA test sentence wo fe 
wo is represented by 2.5 3.5 2.5; and the ABB test sentence 
de ko ko is represented by 5.5 6.5 6.5.  

In previous simulations with cascade-correlation 
networks, we have found that analog coding schemes often 
enable excellent learning and generalization. The use of 
analog representations is also supported by many 
psychological studies, particularly on numerical operations 
(e.g., Gelman & Ga llistel, 1978, 1992).  

 
Procedure  
Sixteen cascade-correlation networks were run in each of 
the conditions of Marcus et al.'s Experiments 1 and 3. Each 
network, starting with its own randomly determined 
connection weights, including those initial weights used for 
candidate hidden units, corresponds to a unique infant. In 
each network, there were three input units to represent each 
of the three words in a sentence, and three output units to 
represent the target response, that is, the same three-word 
sentence. The output units had linear activation functions to 
enable their approximation of real numbers. The encoder 
option ensured that direct input-to-output connections were 
frozen at 0, so hidden units, with sigmoid activation 
functions would have to be recruited.  

All cascade-correlation parameters were equal to 
Fahlman's default values with the following exceptions. 
Score-threshold, the tolerated difference between target and 
actual outputs was raised from the default of 0.4 to 1.0 in 
order to reduce the cris pness of the rules learned by the 
network. Without this increased sloppiness, networks would 
never reverse the difference between consistent and 
inconsistent test sentences as did one of Marcus et al.'s 
infants. Training continued until all output units produced 
activations within score-threshold of their targets. There are 
also parameters for input-patience and output-patience with 
default settings of 8. They represent the number of epochs 
allowed to pass with little or no increase in correlation or 
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reduction in error, respectively, before shifting phase.1 
Cascade-correlation alternates between input and output 
phases, depending on whether a hidden unit is being 
recruited or weights going into output units are being 
adjusted, respectively. I changed these two patience values 
to 1, partly to increase sloppiness in network learning and 
partly because, on this problem, performance did not 
improve much after it failed to improve on a single epoch.  

 
Results 
Results in terms of error on the two types of test patterns are 
presented in Table 1 for the simulation of Experiment 1. 
Error on the test patterns was subjected to a repeated 
measures ANOVA in which condition (1 vs. 2) served as a 
between network factor and test pattern (consistent vs. 
inconsistent) served as  a repeated measure. Neither the main 
effect of condition or the condition x test pattern interaction 
was significant. However, there was a substantial main 
effect of test pattern, F(1,30) = 228, p < .0001. As revealed 
in Table 1, there was more error to the inconsistent test 
patterns than to the consistent test patterns. With error 
considered to be equivalent to the need for further cognitive 
processing, this result mirrors that found with Marcus et al.'s 
infant participants. In a further parallel to the infant study, 
one network produced a reversal of the general trend, i.e., it 
showed (slightly) more error to the consistent test patterns 
than to the inconsistent test patterns.   

Analogous results for the simulation of Experiment 3 are 
presented in Table 2. A similar ANOVA yielded only a 
substantial main effect of test pattern, F(1,30) = 356, p < 
.0001. Again, as revealed in Table 2, there was more error to 
inconsistent test patterns than to consistent test patterns. 
And again, there was one network with a reversal of the 
general trend, i.e., it showed (slightly) more error to the 
consistent test patterns than to the inconsistent test patterns.  

Apart from needing a score-threshold of at least 1.0 to 
produce any reversals on the test patterns, other simulations 
showed that results were robust against systematic variation 
in the score-threshold and patience parameters.  

A plot of results for one representative network is 
presented in Figure 1. It shows a negatively accelerated 
decrease in error over output epochs on the training patterns, 
much like the shape of declining attention in infant 
habituation experiments. After complete success with the 
training patterns, the consistent test patterns likewise show 
very little error, but the inconsistent test patterns show 
considerable error recovery, much like dishabituation of 
attention in infants. The epochs at which hidden units are 
recruited are marked with diamonds just above the training 
errors. As in other cascade-correlation simulations, it is 
noteworthy that error often decreases sharply after a new 
hidden unit is recruited.  

Preliminary analyses of the knowledge representations 
learned by these networks suggest that the hidden units 
cluster on two fundamental components, each of which is 

                                                 
1 An epoch is a presentation of all of the training patterns. 

sensitive to variation in both the A and B categories of 
words.2 The two-dimensional nature of this problem was 
further verified by PCAs of the raw training data in each 
experimental condition.  

 
Discussion 

The simulation results show that a neural network model 
without variable-laden symbolic rules can indeed simulate 
the results of Marcus et al.'s (1999) infant habituation 
experiments. Like the infants, the networks showed gradual 
habituation to a repeated syntactic form, and recovery of 
interest to an inconsistent novel form but not to a consistent 
novel form. Even the occasional reversal preference by a 
single individual was captured. These results show that 
Marcus et al.'s findings with infants do not uniquely require 
a symbolic rule-based account. It may well turn out that 
some computation in humans is based on explicit symbolic 
rules, but the Marcus et al. data do not provide definitive 
proof for this claim as it applies to infants. Pinker's (1999) 
argument that the Marcus et al. data suggest an innate rule-
learning capacity seems, at best, premature.  

The key feature of the present simulations would appear 
to be the use of analog encoding for the input and output 
words composing a sentence. Generalization to novel items 
is known to be facilitated by analog coding schemes in 
which activation intensity corresponds to particular 
representations (Jackson, 1997).3 Although the details of 
Marcus et al.'s (1999) unsuccessful simulations were not 
published, it might be speculated that they employed non-
analog binary codes. The reason such codes might not 
generalize is that novel items are coded on units with 
untrained connection weights. Such failures are analogous 
to expecting that I can speak Spanish just because someone 
I never interact with has learned to do so.  

The use of analog coding is not merely a way of 
smuggling in variable binding. Analog coding by itself does 
not implement variable binding because assignments of 
values to input units are lost as activation is propagated 
forward onto non-linear hidden units. In explicit variable-
binding schemes, assignments of values to variables are 
preserved for use in later computation.  

It is possible that other neural network algorithms, such as 
back-propagation or auto-association, would be able to 
simulate these habituation data, using analog or some other 
coding scheme. If so, differences between successful 
algorithms could be explored for relative accuracy in 
accounting for the psychological data.  

Other future work on this model might profitably address 
the issue of whether a successful neural network model 
could use a more realistic phonetic coding of the input. Very 
few neural network models attempt to cover everything 
from raw stimuli to high-level cognitive manipulations. But 

                                                 
2 These analyses are based on PCA of network contributions 
(Shultz, Oshima-Takane, & Takane, 1995).  
3 The present networks generalize to A and B syntactic categories 
even outside of the range of the training patterns.  
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such extensions would generate more complete 
understanding of psychological phenomena. The finding 
that phonemes vary continuously on sonority suggests that a 
more realistic analog encoding might be feasible (Vroomen, 
van den Bosch, & de Gelder, 1998). Research on such 
realistic coding schemes would be necessary to simulate 
Marcus et al.'s Experiment 2, which was designed with 
particular phonetic properties in mind.  

Another useful extension might involve the use of 
recurrent networks. Non-recurrent networks and recurrent 
networks can both learn temporal problems. The essential 
difference between them is a trading of space for time in the 
input coding (Hertz et al., 1991). Recurrent networks 
process inputs in sequence over time, allowing for 
sequences of indeterminate length; non-recurrent networks 
represent inputs on different input units simultaneously. 
There is a recurrent version of cascade-correlation that 
might be interesting to try on these sentence habituation 
problems.  

It is worth stressing that the present model is not the 
definitive treatment of habituation. The process of 
habituation is still poorly understood and there are many 
phenomena in the habituation literature that would need to 
be accounted for by any comprehensive model. This study is 
essentially a demonstration that the Marcus et al. (1999) 
data can be covered by a neural network model.   

Because a turnabout is often considered fair play, I would 
like to issue a reciprocal challenge to those favoring 
symbolic rule-based models of human cognition to 
implement serious models of habituation phenomena. The 
habituation literature is extensive and contains some of the 
most important discoveries in developmental psychology. 
They are largely untouched by computational modeling. It 
does not suffice to merely re-describe psychological 
phenomena in terms of a few symbolic rules. It is critically 
important to implement working models that include not 
only knowledge representation and processing but also 
learning and development as appropriate. Among the 
significant challenges for rule-based models of habituation 
are clear links with new or standard theories of the 
habituation process, the gradual negatively accelerated 
shape of habituation curves, individual differences in 
habituation rates and occasional reversals of general trends, 
and the dishabituation differences reported by Marcus et al. 
(1999). One of the quickest cures for incorrect or 
inappropriate theoretical statements and models is the 
discipline of actually trying to implement a model that 
covers phenomena in a principled way.  

Another set of infant habituation data that has been 
successfully simulated by an encoder neural network model 
concerns asymmetric exclusivity effects in infant memory 
and categorization (Mareschal & French, 1997). Infants 
learn the categories of dog and cat, but with some 
interesting asymmetries (Quinn, Eimas, & Rosenkrantz, 
1993). Essentially, dogs are not included in the category of 
cats, but cats are included in the category of dogs.  

At this point, the only successful models of infant 
habituation employ feed-forward connectionist models 
without explicit variable binding.  
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Figure 1: Results for a representative network in the ABA condition of the simulation of Experiment 1. Error on the training 
patterns decreases in a negatively accelerated fashion over time, representing habituation. Error remains low for the 
consistent test, but increases for the inconsistent test, demonstrating dishabituation to novelty. The diamond shapes represent 
the epochs at which hidden units were recruited.4 

                                                 
4 Error is divided by the number of patterns and plotted over output-phase epochs. Input-phase epochs are not included in such plots 
because there is no change in network performance during input phases. The first three output epochs are omitted from this plot to improve 
clarity because error starts quite high and drops dramatically by virtue of adjustment of weights from the bias unit. The bias unit is always 
on, with an activation of 1, regardless of the input pattern. It has trainable connection weights to all non-input units, specifying their resting 
levels of activation.  


