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Chapter 4

Why let networks grow?

Thomas R. Shultz, Shreesh P. Mysore,
and Steven R. Quartz

‘Let it grow, Let it grow.’

Grateful Dead, 1973, Eric Clapton, 1974,
Boogie Brown Band, 2003

Introduction
Beyond the truism that to develop is to change, the process of developmen-
tal change itself has been relatively neglected in developmental psychology.
Methodologically, most behavioural studies have traditionally utilized a cross-
sectional approach. This has revealed a great deal about how certain behav-
ioural and cognitive abilities differ at various points in development, but it
tends to reveal less about the developmental processes that operate to trans-
form those cognitive and behavioural abilities. A variety of factors account for
the lack of explanations of developmental change, ranging from the method-
ological challenges their study entails to principled, learning-theoretic argu-
ments against the very existence of such developmental processes (Macnamara,
1982; Pinker, 1984).

Among the most influential arguments against developmental change was
Chomsky’s (1980) instantaneity argument that starts with the null hypothesis
that children are qualitatively similar learners to adults and supposes that
development is instantaneous, in the sense that there are no time dependen-
cies in development. Departing from this view and supposing that children
are initially more restricted learners only results in weakening their acquisi-
tion properties. The upshot is that less is less, and development only reduces
learning capability. Thus, as a sort of charity principle, one ought to at least
start with the hypothesis that children do not differ substantially from adults,
because explaining development is difficult enough without having to do so
with greatly diminished learning ability.
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These sorts of arguments led to the widespread assumption that there is
little theoretical insight to be gained from studying processes of developmen-
tal change. Indeed even with the advent of connectionist models and their
adoption in developmental psychology, most of the models that were used
were qualitatively similar to models of adult learning. That is, most models
used a fixed feedforward architecture in which the main free parameters were
connection strengths. Therefore such models implicitly adopted Chomsky’s
argument and began with the assumption that the immature and mature states
are qualitatively identical.

Yet how well-founded is this assumption? Although Chomsky’s approach is
often considered to be a biological one, it is actually quite unbiological in the
sense that it is not developmental. Genuine biological approaches invariably
emphasize the importance of development (Gilbert, 2003). Viewed from the
perspective of developmental cognitive neuroscience, it is now well established
that the structural features of neural circuits undergo substantial alterations
throughout development (Quartz and Sejnowski, 1997). Do such changes add
anything of interest to the explanation of developmental change? If so, does
a better understanding of the processes of developmental change undermine
Chomsky’s argument, and thereby demonstrate that developmental change is
crucial for understanding the nature of cognitive development?

In this chapter we ask the question, why let networks grow? We begin
by reviewing the wealth of accumulating data from neuroscience that net-
work growth appears to be a much more central feature of learning than is
traditionally assumed. Indeed it appears that the assumption that the main
modifiable parameters underlying learning are changes in connection strength
in an otherwise fixed network may need revision. We discuss this question
with an eye toward evidence for learning-directed architectural changes in the
brain throughout the lifespan. Next, we consider the computational impli-
cations of learning-directed growth. There we consider whether less really is
less, or whether by breaking down the traditional distinction between intrin-
sic maturation and cognitive processes of learning, the learning mechanism
underlying cognitive development thereby becomes substantially different,
and more powerful, in its learning properties than a fixed architecture. We
then present a case in which activity-dependent network growth underlies
important acquisition properties in a model system, auditory localization in
the barn owl. This non-human system is very well characterized in terms
of biological underpinnings, which provide important clues into the likely
biological mechanisms underlying human cognitive development, and which
give rise to general computational principles of activity-dependent network
growth. Then we present evidence from modelling cognitive development in
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children. There, we explore a number of computational simulations utilizing
the cascade-correlation (CC) algorithm. In contrast to the more commonly
used back-propagation algorithm, CC starts with a minimal network and adds
new units as a function of learning. CC can be viewed as an abstract rule
for neural growth, and thus as a means of exploring the computational and
learning properties of such developmental processes. In the final section we
present the main conclusions from this work and point to areas of future
research and open research questions.

Experience-dependent architectural plasticity
Two broad categories of neural plasticity can be distinguished based on the
nature of expression and encoding of change in the nervous system. They
are ‘synaptic efficacy change’ and ‘architectural plasticity’. The former, as the
name suggests, refers to changes to existing, functional synapses in a net-
work whose topology is kept fixed, while the latter refers to changes in the
underlying topology of the network. Whereas synaptic efficacy change has
been the predominantly studied form of plasticity (Martin and Morris, 2002),
neuroscience research also provides evidence for activity-dependent plasticity.
Structural mechanisms largely implement architectural plasticity, and they
include dendritic spine motility, spinogenesis (the induction of new spines),
synaptogenesis (the formation of new synapses), and neurogenesis (the growth
of new neurons). We provide a brief sketch of the research literature in these
areas.

Most excitatory synapses in the brain are formed on small protrusions from
neuronal dendrites called spines. Spines are extremely important postsynap-
tic structures containing several neurotransmitter receptors, and various bio-
chemical signaling mechanisms, among other elements. Based on the synaptic
input they receive, spines trigger different signaling pathways that can result
in short-term or long-term synaptic changes. Rapid morphological plasticity
of spines, spine movement and their growth and retraction are collectively
referred to as spine motility. Motility was found to occur spontaneously in
hippocampal neurons in slice cultures from rats (Dailey and Smith, 1996;
Fischer et al., 1998). Since its discovery, one of the main functions attributed
to motility is that of exploring the extracellular space in search of presynaptic
partners. This view is supported by the finding that formation of synapses
stabilizes previously mobile dendritic protrusions (Dailey and Smith, 1996).
Motility has also been found in response to electrical stimulation of neurons
(Maletic-Savatic et al., 1999), thus suggesting that experience may play a role in
regulating motility. Direct evidence for this possibility stems from the finding
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that trimming the whiskers of rats, thereby causing significant sensory depriva-
tion, resulted in a 40 per cent drop in spine motility in corresponding whisker
barrels in the rodent brain (Lendvai et al., 2000).

While the above studies looked directly at movement and morphological
changes as they occurred, other studies have looked at the effects of motil-
ity indirectly by comparing the density of spines and their morphological
distribution between control and learning conditions. In a trace eye-blink
conditioning task in rats, it was found that the density of spines in the basal
CA1 dendrites of the hippocampus—an area that is known to be important
for encoding such memories—was greater after conditioning (Leuner et al.,
2003). Interestingly, when the acquisition of this association was blocked
using a pharmacological agent that interferes with the formation of long-term
memories, this spine density increase was blocked as well. Spatial training of
rats, which is known to produce an increase in their subsequent ability to
learn in spatial tasks, also produces an increase in the density of spines in
the hippocampus (Moser et al., 1997). Other tasks like odour discrimination
training (Knafo et al., 2001), visual stimulation, and even space flight (Yuste
and Bonhoeffer, 2001), have been found to produce spine density increases in
the appropriate brain regions in rats. A case can thus be made that experience-
dependent plasticity in dendritic spines may facilitate architectural reorgani-
zation of neural circuits in response to functional demands.

In addition to the above studies that examined spine changes, other studies
have looked directly at changes in synapse numbers in response to learning.
For instance, Chang and colleagues (1991) showed that long-term potentia-
tion increased synaptic numbers in two-year-old rats in vitro. Other studies
report an increase in the cerebellar synapse density in rats following classical
eye-blink conditioning experiments (Black et al., 1990; Kleim et al., 2002),
and synaptogenesis in the hippocampus following spatial training of rats in
the Morris water maze task, a classic spatial learning experiment (Ramirez-
Amaya et al., 1999). Such results are not restricted to rodents (for instance,
see Stewart and Rusakov, 1995, for similar effects in chicks). Experimental
evidence for direct sensory-stimulus-dependent synapse formation in adult
animals was first reported in rodent whisker barrels, where it was shown that
localized increases in both synapse number (35 per cent) and spine density
(25 per cent) followed specific whisker stimulation (Knott et al., 2002; Zito
and Svoboda, 2002). Thus, several lines of evidence establish the occurrence
of synaptogenesis in adult neuronal tissue following physiologically relevant
stimuli and learning paradigms.

Finally, we turn to neurogenesis in adult animals. In traditional neuro-
science, the idea that neurons may be added continually after birth was not
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considered seriously (Gross, 2000). Since the early 1960s, this view gradually
began to change when Altman and colleagues (Altman, 1962; Altman and Das,
1965) showed evidence for new neurons in several brain regions of adult rats
(neocortex, olfactory bulb, dentate gyrus), and cats (neocortex). Since then,
evidence for neurogenesis has accumulated in adult songbirds (Nottebohm,
1985; Goldman and Nottebohm, 1983; Paton and Nottebohm, 1984), den-
tate gyrus of rats (Stanfield and Trice, 1988), adult mouse hippocampus
(Kempermann et al., 1997), and dentate gyrus and olfactory bulb of macaque
monkeys (Kornack and Rakic, 1999). Recent studies have even reported the
addition of new neurons in the neocortex of macaque monkeys throughout
adulthood (Gould et al., 1999b). We note that the results in the neocortex are
still controversial as some researchers have expressed doubt about them based
on objections to the techniques used to establish neurogenesis (Nowakowski
and Hayes, 2000; Rakic, 2002). In humans, it has been found that new neu-
rons are added in the dentate gyrus (Eriksson et al., 1998), but not to the
olfactory bulb (Sanai et al., 2004). The latter study points to the presence
of a substantial number of adult neural stem cells—cells that can poten-
tially generate neurons—in a region of the forebrain called the subventricular
zone, that intriguingly appear not to produce neurons in the adult human
brain.

The above evidence indicates that neurons are indeed added to adult mam-
malian neuronal circuits, although this addition appears to be less prevalent
in humans. An important question that remains is whether this neurogenesis
is functionally important or merely a ‘vestige of development’ (Gross, 2000;
Kempermann, 2002; Nottebohm, 2002), especially since the functional inte-
gration of new neurons into well-developed circuits may be difficult (Rakic,
2004). The following considerations suggest that neurogenesis does, in fact,
mediate function. New neurons are added to structures that are important for
learning and memory, such as the hippocampus, lateral prefrontal cortex, infe-
rior temporal cortex and posterior parietal cortex. Neurogenesis, like synap-
togenesis and spine density changes, has been correlated with hippocampally
dependent learning experiences. For instance, trace eye-blink conditioning
and spatial learning in animals lead to an increase in the number of neurons
through an extension of neuronal lifetimes (Gould et al., 1999a). There appears
to be a critical period following cell production such that learning occurring
in this period increases neuronal lifespan. In parallel to this evidence, stressful
experiences that result in a downregulation of cell proliferation in the den-
tate gyrus (Gould and Gross, 2002) are implicated in lower performance in
hippocampally dependent learning tasks, suggesting a causal link between the
two. Several conditions that increase neurogenesis (enriched environments,
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increased oestrogen levels, wheel running, etc.) in mice and rats also enhance
performance (Gould and Gross, 2002). Similarly, increases in social complexity
have been found to enhance the survival of new neurons in birds (Lipkind
et al., 2002). Finally, it has been found that the physiological properties of
adult-generated granule cells in the dentate gyrus of the hippocampus resem-
ble those of granule cells in young rats (Overstreet-Wadiche et al., 2006). This
suggests that adult-generated neurons may share some properties with embry-
onic and early postnatal neurons in their ability to extend axons, form new
connections more readily and to make more synapses. These characteristics
may make adult neurogenesis an attractive ‘feature’, rather than a developmen-
tal ‘bug’ in neuronal circuits.

In summary, there is now a large body of evidence that suggests that spine
motility, spinogenesis, synaptogenesis, and more recently, neurogenesis are
all active mechanisms for implementing architectural plasticity in neuronal
circuits in response to real learning and memory needs faced by organisms.

Computational importance of learning-directed growth
Formal learning theory (FLT) deals with the ability of a learner to arrive at
a target concept based on examples of the concept. Three typical features of
FLT models are that the learning algorithm searches through a predefined
space of candidate hypotheses (concepts), it is expected to learn the concept
exactly, and no restrictions are placed on the actual time taken by the learner
to arrive at the target concept. FLT is therefore interested in ‘exact’ and ‘in-
principle’ learnability, and the expectation is that generalization—a measure
of performance on novel examples—is achieved. The classical formulation of
FLT is discussed in the context of language learning by Gold (1967). Perhaps
the key insight from formal work on language learning is that the learner must
utilize a highly restricted set of all possible concepts in order to have even
the possibility of generalizing. In other words, far from employing a general
learner, from this perspective a language learning system must be meticulously
tailored to the problem at hand, either by the designer in the case of artificial
systems, or presumably by evolution in the case of biological learners.

In the early 1980s, formal learning theory underwent a substantial change
from Gold’s limit-based framework to a model of probably-approximately-
correct (PAC) learning (Valiant, 1984). The PAC model relaxes two of the
three key requirements of formal learning theory. The impractical assumption
of infinite time horizons is eliminated and the stringent restriction of exact
learning relaxed. In short, PAC learning deals not with in-principle learnability,
but with learnability in polynomial time, and not with exact learning, but
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with approximate learning. Formally, a concept is PAC-learnable if the learner
arrives with probability 1-d at a hypothesis that classifies all the examples
correctly with probability 1-e, for arbitrarily small e and d. Nevertheless, the
hypothesis space is still fixed a priori. A fixed hypothesis space yields such
problematic theoretical issues as Fodor’s paradox (Fodor, 1980), which states
that nothing can be learned that is not already known; and hence nothing is
really learned. The idea here is that no hypothesis that is more complex than
the ones in the given hypothesis space can be evaluated and hence learned.
Therefore, all concepts need to be available in the hypothesis space before the
search begins.

Constructive learning (Piaget, 1970, 1980; Quartz, 1993; Quartz and
Sejnowski, 1997) addresses this issue of a fixed hypothesis space. The cen-
tral idea of Piagetian constructivism is the construction of more complex
hypotheses from simpler ones. This issue is dealt with more formally by Quartz
(Quartz, 1993; Quartz and Sejnowski, 1997). Constructivist learning models
deal directly with the issue of increasing hypothesis complexity as learning pro-
gresses (Shultz et al., 1995; Westermann, 2000). Activity-dependent structural
plasticity is viewed as the mechanism that implements constructivist learning.
Constructive neural networks offer a clear way of viewing learning and devel-
opment as constituting a ‘plasticity continuum’. Synaptic weight change may be
a form of plasticity that occurs at fast timescales, whereas architectural changes
occur on slower timescales. Further, it is also possible, as we saw earlier, that
the developmental processes of structural plasticity underlie learning even in
mature animals.

Baum (1988) showed that networks with the ability to add structure during
the process of learning are capable of learning in polynomial time any learning
problem that can be solved in polynomial time by any algorithm whatsoever
(Quartz and Sejnowski, 1997), thus conferring a computational universality
to this paradigm. Interestingly, the bias-variance trade-off can be broken by
constructivist learning, by adding hypotheses incrementally to the space in
such a way as to keep variance low while reducing bias. Further, in the context
of neurobiology, the burden of innate knowledge is relaxed. Given a basic set of
primitives (in the form of mechanisms and physical substrate), construction of
a network occurs under the guidance of experience within genetic constraints.
Finally, computational arguments show that it is unlikely that evolution has
prepared brain networks in human children for all of the various learning
problems to which they might eventually be exposed (Sirois and Shultz,
1999). It is far more likely that brain networks will need to be constructed
and their architectures modified as novel and unexpected learning problems
arise.
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Architectural plasticity and auditory localization
in barn owls
The auditory localization system (ALS) of the barn owl is an excellent example
of representational change that is produced by experience-driven architectural
plasticity. Beacause developmental mechanisms and programmes appear to
be highly conserved across many species and phyla, systems like this may
reveal important general principles of neurobiological self-organization and
mechanisms by which instructive environmental signals play a role in the
construction of representational structures that also most likely operate in
human development. Whereas many animals can localize sounds soon after
birth (Field et al., 1980) indicating the hard-wiring of at least a part of this
system (Brainard and Knudsen, 1998; Knudsen et al., 1991), experience, in
addition to intrinsic programmes, plays an important role in shaping and
modifying the auditory localization pathway in barn owls.

Visual displacement experiments in barn owls
Barn owls localize sound in the horizontal direction primarily using an audi-
tory cue called the interaural time difference (or ITD). This is defined as the
delay or the time difference between the arrival of sound from a source at one
ear versus the other. Unless the sound source is positioned symmetrically with
respect to the two ears, the signal has to travel different distances to reach the
near versus the far ear, resulting in a non-zero ITD.

One of the pathways in which ITD information is processed in barn owls
is the midbrain pathway (see Figure 4.1). Here, cue information arrives in a
frequency-dependent manner at the central nucleus of the inferior colliculus
(ICC), and flows through the external nucleus of the inferior colliculus (ICX)
to the optic tectum (OT). The ICC has a tonotopic, or frequency-dependent,
organization, and cue information from various frequency channels of the ICC
is combined (shown as thick arrows) to form a topographic, map-like repre-
sentation of auditory space in the ICX. The ICX then conveys this topographic
information about auditory space to the OT (Knudsen, 2002). Interestingly,
the OT has a similar topographic map of visual space mediated by visual input
from the retina and forebrain. It has been found that the auditory and visual
maps of space are aligned and integrated in the OT (Knudsen and Brainard,
1995).

Visual displacement experiments have explored the nature of information
processing in the midbrain pathway and have shed light on the mechanisms
by which plasticity occurs in response to external demands. These experi-
ments involve the use of prismatic spectacles to disrupt auditory-location
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Fig. 4.1 Midbrain auditory pathway in barn owls. (a) Cartoon showing lateral view of a
barn owl’s brain. The straight line represents the plane of section through the midbrain.
(b) Schematic representation of the sectioned surface of the right midbrain. Shown
are the three important processing areas in the midbrain localization pathway: ICC—
central nucleus of the inferior colliculus, ICX—external nucleus of the inferior colliculus,
and OT—optic tectum. The arrows on the left and the right show respectively the flow
of auditory and visual information into the midbrain. The topographic nature of the
visual input into the OT is emphasized by individual arrows which indicate some of
the spatial locations from which visual information arrives at the OT. Here, R10◦ (L10◦)
represents the location in the visual field that is 10◦ to the right (left) of the central
azimuthal position. R: rostral, c: caudal, m: medial, l: lateral. Adapted from (DeBello
et al., 2001).

associations by displacing the visual input along the azimuth by a predeter-
mined amount (Brainard and Knudsen, 1998). For instance, when an owl
fitted with spectacles that produce a 10◦ rightward shift looks straight ahead,
it receives visual information centred at 10◦ to the left, rather than at 0◦, or
straight ahead. As a result, whereas a normal owl can visually localize a sound-
source placed at 0◦ by looking straight ahead, one fitted with a right-shifting
prism has to learn to rotate its head to the right by the appropriate amount, in
order to localize the same source.

It has been found that owls less than 200 days old display a remarkable ability
to behaviourally adapt to prism experience—up to a 23◦ shift—in about seven
weeks. Removal of prisms after adaptation results in gradual recovery of nor-
mal orienting behaviour. On the other hand, adult owls adapt poorly to prism
experience (Knudsen, 1998). Interestingly, shifted-back juvenile owls that are
subsequently fitted with prisms as adults do show adaptability, but only up
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Fig. 4.2 Auditory localization plasticity in prism-reared owls. Adaptation to prism
experience in the auditory localization behaviour of juvenile owls has been found to
occur through activity-dependent architectural modifications of the topographic repre-
sentation of auditory space. It has been found that axonal growth and synaptogenesis
occur only between the ICC and ICX layers in the midbrain (DeBello et al., 2001;
Feldman and Knudsen, 1997). As a result, while the auditory tuning of neurons in
the ICC remains unchanged, that of the ICX (and consequently the OT) neurons shifts
by the amount of visual displacement induced by the prisms (Brainard and Knudsen,
1993, 1995). (a) Schematic representation of a section through the right midbrain
of a normal barn owl showing the default anatomical projections (arrows) between
different layers. Auditory (ITD) information arriving at the ICC and visual information
arriving at the OT are shown. The open circles represent individual neurons. The text
above each circle represents the azimuthal centre of the auditory receptor field of that
neuron. The text adjacent to the arrows represents the centre of the spatial location
from which auditory or visual information arrives to the midbrain. The thick arrows
between ICC and ICX represent the integration of tonotopic information across various
frequency channels of the ICC. (b) Schematic representation of a section through the
right midbrain of a prism-reared barn owl. The auditory input remains unchanged,
while the visual input is shifted as a result of prism fitting (depicted with arrows that are
bent). New anatomical projections between the ICC and ICX that develop in response
to prism-rearing are shown with thick curved arrows. Text above the neurons in the OT
highlights the shift in the auditory tuning of these neurons. For instance, the tuning
of the topmost neuron in the OT shifts from R10◦ to 0◦. Here, R10◦ (L10◦, represents
the location in the visual field that is 10◦ to the right (left) of the central azimuthal
position. R: rostral, c: caudal, m: medial, l: lateral. Adapted from DeBello et al. (2001).

to the adjustments they had originally displayed (Knudsen, 1998). Recent
evidence (Linkenhoker and Knudsen, 2002) also shows that the capacity for
behavioural plasticity in adult owls can be increased with incremental training,
that is, where the adults experience prismatic shifts in small increments.

Detailed investigations into the mechanisms mediating this behavioural
adaptation have yielded several insights. Particularly interesting is the fact that
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learning is mediated by structural changes—the growth of new axons and the
formation of new synapses—in the neural architecture of prism-fitted birds
(see Figure 4.2).

We are developing a model of this system to understand the computa-
tional mechanisms through which different aspects of the observed archi-
tectural adaptation can be implemented in a biologically feasible manner.
Box 4.1 discusses the model, and preliminary results show that a Hebb-
like learning rule can account for many of the experimental details. The
model makes predictions about the site of an important (inhibitory) compo-
nent of plasticity, and about the biological signals that can trigger structural
change.

Box 4.1 Modelling plasticity in the auditory
localization system (ALS) of barn owls

We implemented a simple connectionist model of the auditory localization
network in barn owls using firing-rate coding neurons. Figure 4.3 shows the
architecture of the model based on published details of the anatomical con-
nections in the midbrain localization pathway (Hyde and Knudsen 2000;
Knudsen 2002). The different layers are the ICC, ICX, OTD (deep layers
of the OT), OTM (medial layers of the OT), and OTS (superficial layers
of the OT). Neurons in the ICX are either excitatory (ICXE) or inhibitory
(ICXI). Individual neurons are shown as circles, and their point-to-point
projections are indicated by arrows. We assume without loss of generality
that every degree in the visual (and auditory) field is coded for by a separate
neuron in any given layer. The output of each neuron is a nonlinear function
of the weighted sum of its inputs. The driving assumption of our modelling
effort is that all the default structures and pathways already exist and that
the phenomenon of interest is the plasticity between the ICC and ICX layers
in response to prismatic shifts in the visual field. The ab initio development
of ITD maps has been modeled in literature (for instance, see Kempster et
al., 2001), but we do not focus on this. For simplicity, we omit the frequency
dependence of ICC neuronal tuning in this model, and assume without loss
of generality that the ITD tuning of neurons is all-or-none corresponding
to the best ITD.

Past modelling efforts have either used a foveation-based error signal
to drive learning (Gelfland et al., 1988; Pouget et al., 1995; Rucci et al.,
1997) which has since been shown to be incorrect, or have primarily relied
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Box 4.1 (continued)
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Fig. 4.3 Model of the midbrain auditory localization system in barn owls. Shown
are the three stages in the adaptation of the system to prism experience. In
the top half of each panel, the outer semi-circle is a cartoon representation of
the audiovisual field experienced by an owl. The inner arc depicts the left reti-
nal hemifield. Representative locations in the audiovisual field are represented
in degrees. An audio stimulus is represented as an open square, a visual stim-
ulus as an ‘X’, and a combined audiovisual stimulus as a square and an ‘X’.
In all cases, an audio-visual stimulus is presented to the owl at L10◦ (i.e., the
location in space that is at 10◦ to the left of the central azimuthal position).
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Box 4.1 (continued)

Fig. 4.3 Caption Continued The bottom half of each panel shows the topographic
nature of the information flow (dotted and continuous arrows) through different
layers in a model of the midbrain. Each column of circles represents a different layer
of neurons in the midbrain, and each row represents the point-to-point pathway
that processes information from one spatial location. The inhibitory neurons in the
ICX project to the excitatory neurons in the ICX and this inhibitory connection is
shown by an arrow with a diamond-shaped head between an ICXI and an ICXE
neuron. Auditory input enters the model at the left through ICC neurons, and
visual input at the right, through OT neurons. (a) Here, a colocalized audiovisual
input is presented to a normal owl at L10◦ (shown in the top half). The default
anatomical connections and flow of information are shown in the bottom half. We
see that audio input arrives at the neuron encoding for L10◦ in the ICX (filled circle),
and the visual input arrives at the same ICX neuron via a back projection from the
corresponding OT neuron. The pathway activated by this input is represented with
continuous arrows, while non-active pathways are shown with dotted arrows. As
mentioned in the main text, such a stimulus produces a firing response in the ICX
neuron about 10ms after its presentation. (b) In this panel, the same audio-visual
input as in (a) is presented to a juvenile owl immediately after prism-fitting. The
prism is schematically shown in the top half of the panel as a thick arc, which
refracts all incoming visual input, and shifts it to the right by 10◦. The bottom
half shows auditory input arriving as in a normal owl, and being processed by
the ICX neuron in the middle row (filled circle). However, due to prism-fitting
visual information from L10◦ is now processed by the neuron in the OTS that
had previously processed visual information from 0◦ (compare with panel a). The
prism is shown here as a thick line. The point-to-point anatomical projections imply
that the downstream neurons that subsequently process this visual information are
also different from those in a normal owl. We see that the visual signal eventually
gets back-projected to the ICX neuron in the top row (shown as a filled circle),
whose auditory tuning corresponds to 0◦. Thus, there is a mismatch between the
processing of auditory and visual information at the ICX. It has been found that in
this case, the ICX neuron in the top row, which receives only the visual component
of the bimodal stimulus, fires approximately 90 ms after stimulus presentation
(Gutfreund et al., 2002). This delayed firing of the ICX neuron constitutes the
error signal that subsequently drives plasticity in this system. (c) In this panel, the
same audio-visual stimulus as before is presented to the prism-fitted juvenile owl
after it has displayed behavioral adaptation to prism experience. New anatomical
projections that were observed between the ICC and ICX (DeBello et al., 2001;
Feldman and Knudsen, 1997) are shown in the bottom half of this panel by thick
arrows. These new projections have shifted the auditory tuning of the ICX neurons
(but not that of the ICC neurons), and as a result, the mismatch in the audiovisual
information processing in the ICX has been eliminated. The ICX neuron that now
processes the audiovisual input is in the top row (shown by a filled circle), and its
new auditory tuning corresponds to L10◦.
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Box 4.1 (continued)

on reward-based learning schemes (Pouget et al., 1995; Rucci et al., 1997)
about which little is known in the owl’s auditory localization system.
Although Rosen et al. (1994) did not use a reinforcement learning scheme,
they implemented learning via the back-propagation algorithm. The learn-
ing rule we use is inspired by the classical Hebbian scheme. We move
away from reward-based methods and a global error signal, and imple-
ment learning using a template-based error signal. This is based on recent
evidence showing that the teaching or error signal that drives plasticity
in this system is a visually based topographic template signal (Hyde and
Knudsen, 2001). It has also been recently established that visual input from
the OT does indeed project to the ICX and that this back-projecting error
signal which is responsible for the calibration of the map is encoded in the
selective and delayed firing of ICXE neurons in response to the presentation
of a co-localized audiovisual stimulus to a prism-shifted system (Gutfre-
und et al., 2002). In such a set-up, ICXE neurons receive either the visual
or the auditory component of the input (see Figure 4.3). Under normal
circumstances, a co-localized bimodal stimulus produces a response in the
corresponding ICX neuron about 10 ms after the stimulus is presented, but
significantly before (about 80 ms before) the response in the prism-shifted
case (Gutfreund et al., 2002). In our model, we detect the error signal by
checking for ICX activity 90 ms after the presentation of an audiovisual
stimulus. Weights are reduced between ICC neurons that do not fire and
ICXE (and ICXI) neurons that do fire as a result of the back-projecting
error signal from the OT. If the error occurs repeatedly for a sufficiently
long period of time (implying a systematic error in encoding information),
new synapses are formed, that is, the population of the ICC-ICXI and ICC-
ICXE weight matrices is increased. Once this happens, the learning rule
increases weights between ICC neurons that fire and ICXE (and ICXI) neu-
rons that also fire soon after (indicating the arrival of auditory input). The
time course of weight evolution is implemented to be sigmoidal, and this
prevents an indefinite increase in weights caused by the classical Hebbian
rule. The results of this scheme match those from experiments in that the
ITD tuning curves of the ICX neurons shift in the adaptive direction after
training, and we are able to capture the essence of the learning exhibited by
the barn owls. Current work is looking into relaxing some of the assump-
tions made at the beginning, and at incorporating more details into the
model.



chapter04 OUP028–29/mareschal (Typeset by SPi, Delhi) 79 of 98 November 11, 2006 10:1

ARCHITECTURAL PLASTICITY AND AUDITORY LOCALIZATION IN BARN OWLS 79

Structural plasticity and representation construction
The initial topographic organization of the auditory localization system sug-
gests that structural plasticity may be necessary for the owl to adapt to
experimentally induced visual displacement. Indeed, a temporally restricted
developmental window for structural plasticity may be the reason adult owls
are unable to adapt beyond a few degrees of shift (Brainard and Knudsen,
1998). An interesting question in this context is, what are the implications of
this capacity for architectural change to the representational properties of the
network in the context of the highly constrained neurobiological framework?

Investigating the representational consequences of architectural plasticity
necessitates the use of appropriate quantifiers of representational complexity.
One way to quantify the ‘ability’ or ‘complexity’ of a network is in terms of its
memory capacity (Poirazi and Mel, 2001), defined using a function-counting
approach. We apply a similar approach to the midbrain auditory localization
network in the barn owl by treating the auditory and visual inputs as the
input to the network, and the activities of the ICX neurons as its output. If
we assume for simplicity that every neuron codes uniquely for one degree in
the visual (and auditory) field, and that each neuron in one layer projects
uniquely to the corresponding neuron in another, then a simple calculation
yields that the initial network architecture implements one input–output func-
tion, whereas the post-learning architecture (that results after a one degree
prism shift) implements a qualitatively different function. That is, structural
plasticity has permitted an increase in the repertoire of localization functions
that the network can compute from one to two, while satisfying topographic
projection constraints. According to this calculation scheme, the increase in
memory capacity (or function complexity) possible in response to an n-degree
prismatic shift in juvenile owls is n. We note here that the ability to grow
introduces extra degrees of freedom in the input–output transformations in
a manner that is consistent with the shift in the resulting output. That is, if the
output units are considered to be linear for simplicity, then the input–output
function between a pair of layers is a linear transformation (or a matrix),
and the point-to-point nature of the anatomical projections constrain all off-
diagonal elements of this matrix to be zero. Synaptic weight modifications
just scale the diagonal elements, whereas growth permits the population of
appropriate off-diagonal elements resulting in qualitatively different functions.
No amount of diagonal scaling can reproduce the latter effect. As a result, if
there is no growth but only synaptic efficacy change, the memory capacity of
the network and hence its representational complexity remain constant. This
observation is consistent with the hypothesis that a lack of the ability to grow
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in adult circuits may be the reason adult owls (>200 days old) are unable to
adapt to large visual shifts.

The general lesson from this model system is that environmentally derived
instructive signals help regulate architectural plasticity and that this form of
plasticity underlies abrupt qualitative change in the representational ability
of a network. Further, this representational change typically increases the
functional complexity of a network. Viewed from the perspective of learning
theory, the initial network represents the hypothesis space that is explored
while learning from examples and architectural plasticity allows the developing
owl to go beyond this original hypothesis space to learn novel functions that
are originally outside of this space. In contrast, the mature owl appears not to
possess the same degree of architectural plasticity, and so is limited in terms
of learning capacity. This highlights the fundamental role of architectural
plasticity as a form of constructive learning and illustrates why it is fundamen-
tally different from synaptic weight change, which only implements a search
within a given hypothesis space. Hence architectural plasticity is a powerful
and indispensable ally in representation construction and it is likely a general
theme of neurobiological development in many species, including humans, a
species to which we now turn.

Evidence from modelling cognitive development
in children
One way to assess the importance of constructive growth in cognitive devel-
opment is to compare models whose networks are allowed to grow to models
containing static networks. This comparison is facilitated by the fact that the
principal difference between two of the most popular neural algorithms for
modelling cognitive development is that one of them incorporates growth and
the other does not (Shultz, 2003). Both back-propagation (BP) and cascade-
correlation (CC) involve multilayered feedforward networks that learn by
adjusting their connection weights to reduce error, defined as the discrepancy
between actual and target outputs. BP networks are typically designed by a
programmer and retain their initial structure throughout learning. In contrast,
CC networks begin with a minimal topology containing only inputs and out-
puts defined by a programmer, and then proceed to add hidden units as needed
to master the training problem.

Box 4.2 describes the CC algorithm, which has been successfully applied to
a wide variety of phenomena in cognitive development in children (Shultz,
2003). There are presently three domains of cognitive development to which
both BP and CC networks have been applied. Here we briefly review the
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simulations in these domains in order to examine the effects of growth on
simulation success. The three relevant domains are the balance scale, the
integration of velocity, time, and distance cues for moving objects, and age
changes in sensitivity to correlations vs. features in infants’ category learning.
Note that in none of these domains do we know about the actual brain cir-
cuits involved. Nor are the BP and CC algorithms considered to be realistic
implementations of the details of real brain circuits. They are instead highly
abstracted, functional algorithms, albeit ones that are inspired by some general
neurophysiological constraints (Shultz, 2003).

Box 4.2 The cascade-correlation (CC) algorithm

There are two phases in CC learning—the input phase and the output
phase. Training typically begins in output phase by using the so-called delta
rule to adjust the weights entering output units in order to reduce network
error. When error reduction stagnates for a set number of epochs or when
the problem has not been mastered within another, larger certain number of
epochs, CC switches to input phase. An epoch is a pass through the training
patterns.

Inputs

Outputs

Candidate
hidden
units

Fig. 4.4 The first input phase of training in a hypothetical CC network. Solid
lines represent frozen connection weights, and dashed lines represent trainable
connection weights (Shultz, 2003, adapted with permission from MIT Press).

In the input phase, the task is no longer to reduce error, but rather
to reconceptualize the problem by recruiting a useful hidden unit down-
stream of the existing units but upstream of the output units. A pool
of typically eight candidate hidden units, usually equipped with sigmoid
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Box 4.2 (continued)

activation functions, is evaluated for recruitment (see Fig. 4.4). This evalu-
ation consists of training randomly initialized weights from the inputs and
any existing hidden units to these candidates, with the goal of maximizing
a modified correlation between candidate activation and network error.
In other words, the CC algorithm in input phase is looking for a new
hidden unit whose activation patterns track the network’s current error,
becoming either very active or very inactive with error fluctuations—in
short, a candidate unit which is sensitive to the major difficulties that the
network is currently having. The same delta rule is used here in input phase,
but instead of minimizing error as in output phase, it is used to maximize
correlations.

When these correlations stagnate over a certain number of input-phase
epochs, the candidate with the highest absolute correlation with network
error is selected and installed into the network, and the less successful can-
didates are discarded. This implements a kind of proliferation and pruning
of units and connections that is characteristic of selection models of brain
development (Changeux and Danchin, 1976). The new recruit is initialized
with randomized output weights of positive values if the correlation with
error was negative or with negative values if the correlation with error was
positive.

At this point, CC returns to output phase to determine how to best
utilize the new conceptualization of the problem afforded by its latest
recruit. In this way, new and more complex interpretations build on top
of older, simpler interpretations. Cycling between input and output phases
continues until the training problem is mastered. CC can be interpreted
as implementing the processes of synaptogenesis and neurogenesis that
our review shows to be at least partly under the control of learning. CC
also implements the hierarchical, cascaded progression now thought to be
characteristic of brain development (Thivierge, Rivest and Shultz, 2003).

Balance-scale stages
The balance-scale problem involves presenting a child with a rigid beam bal-
anced on a fulcrum (Siegler, 1976, 1981). The beam is equipped with several
pegs spaced at regular intervals to the left and right of the fulcrum. The
experimenter typically places some number of identical weights on one peg
on the left side and some number of weights on one peg on the right side.
While supporting blocks prevent the beam from moving, the child is asked to
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predict which side of the beam will descend, or whether the scale will remain
balanced, once the supporting blocks are removed.

The ‘rules’ that children use to make balance-scale predictions can be diag-
nosed by presentation of six different types of problems. Three problems are
relatively simple in the sense that one cue (either weight or distance from the
fulcrum) predicts the outcome because the other cue does not differ from one
side of the scale to the other. Three other problems are relatively complex in
that the two relevant cues conflict with each other, with weight predicting
one outcome and distance predicting the opposite outcome. For simple or
complex types, there are three possible outcomes in which the direction of
the tip is predicted by weight information or by distance information or
the scale remains balanced. The pattern of a child’s predictions across these
six different problem types can be used to diagnose the ‘rule’ the child is
apparently using to make predictions. Of course, in a connectionist network
a rule is not implemented as a symbolic if-then structure, but is rather an
emerging epiphenomenon of the network’s topology and connection-weight
values.

There is a consensus in the psychological literature that children progress
through four different stages of balance-scale performance (Siegler, 1976,
1981). In stage 1, children use weight information only, predicting that the
side with greater weight will descend or that the scale will balance when the
two sides have equal weights. In stage 2, children continue to use weight infor-
mation but begin to use distance information when the weights are equal on
each side. In stage 3, weight and distance information are used about equally,
but the child guesses when weight and distance information conflict on the
more complex problems. Finally in stage 4, children respond correctly on all
types of problems, whether simple or complex.

In one of the first connectionist simulations of cognitive development
McClelland and Jenkins found that a static BP network with two groups of
hidden units segregated for either weight or distance information progressed
through the first three stages of the balance scale and even into the fourth stage
(McClelland and Jenkins, 1991). However, the network never settled into stage
4 performance, instead cycling between stage 3 and stage 4 functioning for as
long as the programmer’s patience lasted. Further simulations indicated that
BP networks could settle into stage 4, but only at the cost of missing stages 1
and 2 (Schmidt and Shultz, 1991). There seems to be no way for BP networks to
capture both consistently mature stage 4 performance and earlier progressions
through stages 1 and 2. In contrast, the first CC model of cognitive develop-
ment naturally captured all four stages of balance-scale performance, and did
so without requiring any hand-designed segregation of hidden units (Shultz
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et al., 1994). Capturing balance-scale stages is not a trivial matter, as witnessed
by the shortcomings of earlier symbolic-rule-learning models (Langley, 1987;
Newell, 1990).

Both BP and CC models are able to capture naturally the other psychological
regularity of balance-scale development, the torque-difference effect. This is
the tendency for problems with large absolute torque differences (from one
side of the scale to the other) to be easier for children to solve, regardless
of their current stage (Ferretti and Butterfield, 1986). Connectionist feed-
forward networks produce perceptual effects like torque difference when-
ever they learn to convert quantitative input differences into a binary out-
put judgment. The bigger the input differences—in this case, from one side
of the fulcrum to the other side—the clearer the hidden-unit activations,
and the more decisive the output decisions. Symbolic rule-based models are
unable to naturally capture the torque-difference effect because symbolic rules
typically don’t care about the amount of differences, only the direction of
differences.

The ability of neural-network models to capture stages 1 and 2 on the
balance scale is due to a bias towards equal-distance problems in the training
patterns. These are problems in which the weights are placed equally distant
from the fulcrum on each side. This bias forces the network to first emphasize
weight information at the expense of distance information because weight
information is much more relevant to reducing prediction errors. Once weight
information is successfully dealt with, then the network can turn its attention
to distance information, particularly on those problems where distance varies
from one side of the fulcrum to the other. In effect, the network must find
the particular region of connection-weight space that allows it to emphasize
the numbers of weights on the scale and then move to another region of
weight space that focuses on the multiplication of equally important weight
and distance information. It requires a powerful learning algorithm to make
this move in connection-weight space. Apparently a static BP network, once
committed to using one source of information in stage 1, cannot easily find
its way in weight space to the stage 4 region merely by continuing to reduce
error. A constructive algorithm, such as CC, has an easier time with this move
because each newly recruited hidden unit effectively changes the shape of
connection-weight space by adding a new dimension. This new dimension
affords a path on which to move towards the stage-4 region. More colloquially,
BP cannot have its cake and eat it too, but CC, due to its dynamic increases in
computational power, can both have and eat its cake, essentially by continuing
to bake.
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Integration of velocity, time, and distance cues
In Newtonian physics, the velocity of a moving object is the ratio of distance
traveled to the time of the journey: velocity = distance/time. Algebraically then,
distance = velocity x time, and time = distance/velocity. Some of the cleanest
evidence on children’s acquisition of these relations was collected by Wilkening
(1981), who asked children to predict one dimension (e.g., time) from knowl-
edge of the other two (e.g., velocity and distance). For example, three levels of
velocity information were represented by the locomotion of a turtle, a guinea
pig and a cat. These three animals were described as fleeing from a barking
dog, and a child participant was asked to imagine these animals running while
the dog barked. The child’s task was to infer how far an animal would run
given the length of time the dog barked, an example of inferring distance from
velocity and time cues. CC networks learning similar tasks typically progress
through an equivalence stage (e.g., velocity = distance), followed by an additive
stage (e.g., velocity = distance − time), and finally the correct multiplicative
stage (e.g., velocity = distance/time) (Buckingham and Shultz, 2000). Some of
these stages had been previously found with children, and others were subse-
quently confirmed as predictions of our CC simulations. As with children in
psychological experiments, our CC networks learned to predict the value of
one dimension from knowledge of values on the other two dimensions.

We diagnosed rules based on correlations between network outputs and the
various algebraic rules observed in children. To be diagnosed, an algebraic rule
had to correlate positively with network responses, account for most of the
variance in network responses, and account for more variance than any other
rules did. As with rules for solving balance-scale problems, these rules are
epiphenomena emerging from patterns of network connection weights. For
velocity and time inferences, CC networks first acquired an equivalence rule,
followed by a difference rule, followed in turn by the correct ratio rule. Results
were similar for distance inferences, except that there was no equivalence rule
for distance inferences. In making distance inferences, there is no reason a net-
work should favour either velocity or time information because both velocity
and time vary proportionally with distance.

A shift from linear to non-linear performance occurred with continued
recruitment of hidden units. Linear rules include equivalence (e.g., time =
distance), sum (e.g., distance = velocity + time), and difference (e.g., veloc-
ity = distance − time) rules, whereas non-linear rules include product (e.g.,
distance = velocity x time) and ratio (e.g., time = distance/velocity) rules.

Because the sum and difference rules in the second stage are linear, one might
wonder why they require a hidden unit. The reason is that networks without
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a hidden unit are unable to simultaneously encode the relations among the
three dimensions for all three inference types. In distance inferences, distance
varies directly with both velocity and time. But in velocity inferences, distance
and time vary inversely, and in time inferences, distance and velocity also vary
inversely. Networks without hidden units are unable to encode these different
relations. The first-recruited hidden unit differentiates distance information
from velocity and time information, essentially by learning connection weights
with one sign (positive or negative) from the former input and opposite signs
from the latter inputs. This weight pattern enables the network to consolidate
the different directions of relations across the different inference types.

In contrast to constructive CC networks, static BP networks seem unable to
capture these stage sequences (Buckingham and Shultz, 1996). If a static BP
network has too few hidden units, it fails to reach the correct multiplicative
rules. If a static BP network has too many hidden units, it fails to capture
the intermediate additive stages on velocity and time inferences. Our extensive
exploration of a variety of network topologies and variation in critical learning
parameters suggests that there is no static BP network topology that can cap-
ture all three types of stages in this domain. Even the use of cross-connections
that bypass hidden layers, a standard feature of CC, failed to improve the stage
performance of BP networks. There is no apparent way to get BP to cover all
three stages because the difference between underpowered and overpowered
BP networks is a single hidden unit. Thus, we conclude that the ability to grow
in computational power is essential in simulating stages in the integration of
velocity, time, and distance cues.

Age changes in infant category learning
Our final simulation comparison concerns age changes in sensitivity to
correlations vs. features in category learning by infants. Using a stimulus-
familiarization-and-recovery procedure to study categorization, Younger and
Cohen found that 4-month-olds process information about independent fea-
tures of visual stimuli, whereas 10-month-olds are able to abstract relations
among those features (Younger and Cohen, 1983, 1986). Such findings relate to
a long-standing controversy about the extent to which perceptual development
involves integration (Hebb, 1949) or differentiation (Gibson, 1969) of stimu-
lus information. A developing ability to understand relations among features
suggests that perceptual development involves information integration, a view
compatible with constructivism.

Infants are assumed to construct representational categories for repeated
stimuli, ignoring novel stimuli that are consistent with a category, while
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Fig. 4.5 Mean fixation of key test stimuli in infants (solid lines) from Younger and
Cohen (Younger and Cohen, 1986, reprinted with permission of the Society for
Research in Child Development), and mean CC network error at two levels of score-
threshold (dashed lines) from Shultz and Cohen (Shultz and Cohen, 2004, adapted
with permission).

concentrating on novel stimuli that are not members of a category (Cohen and
Arthur, 1983; Younger and Cohen, 1985). After repeated presentation of visual
stimuli with correlated features, 4-month-olds recovered attention to stimuli
with novel features more than to stimuli with either correlated or uncorrelated
familiar features (Younger and Cohen, 1983, 1986). In contrast, 10-month-
olds recovered attention to both stimuli with novel features and familiar
uncorrelated features more than to stimuli with familiar correlated features.
Mean fixation time in seconds is shown for the key interaction between age
and correlated vs. uncorrelated test stimuli, plotted in solid lines in Figure 4.5
against the left-hand y-axis. This pattern of recovery of attention indicates that
young infants learned about the individual stimulus features, but not about the
relationships among features, whereas older infants in addition learned about
how these features correlate with one another.

These infant experiments were recently simulated with CC encoder networks
(Shultz and Cohen, 2004). Encoder networks have the same number of input
units as output units, and their job is to reproduce their input values on
their output units. They learn to do this reproduction by encoding an input
representation onto their hidden units and then decoding that representation
onto output units. In this fashion, encoder networks develop a recognition
memory for the stimuli they are exposed to. Network error can be used as
an index of stimulus novelty. Both BP and CC encoders were applied to the
infant data (Shultz and Cohen, 2004). In CC networks, age was implemented
by varying the score-threshold parameter: 0.25 for 4-month-olds and 0.15 for
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10-month-olds. This parameter governs how much learning occurs because
learning stops only when all network outputs are within score-threshold of
their target values for all training patterns. It was assumed that older infants
would learn more from the same exposure time than would younger infants.
Mean network error for the key interaction between age and correlated vs.
uncorrelated test stimuli is plotted with dashed lines in Figure 4.5 against
the right-hand y-axis. On the assumption that network error reflects stimulus
novelty (and thus infant interest), the CC networks closely matched the infant
data—more error to the uncorrelated test stimulus than to the correlated test
stimulus only at the smaller score-threshold of 0.15.

In sharp contrast, a wide range of static BP networks could not capture
this key interaction. Our BP simulator was modified to use a score-threshold
parameter to decide on learning success, just as in CC. The same coding
scheme used in the CC simulations was also used here. A wide variety of
score-threshold values were explored in a systematic attempt to cover the
infant data. BP networks were equipped with three hidden units, the typical
number recruited by CC networks. BP network topology was varied to explore
the possible roles of network depth and the presence of cross connections in
simulation success. Both flat and deep BP networks were tried, both with and
without the cross-connection weights native to CC. There were six input and
six output units in BP networks just as there were in CC networks. In the BP
networks, there was never lower error on correlated than on uncorrelated test
items, the signature of effective correlation detection. It is difficult to prove
that any algorithm cannot in principle cover a set of phenomena, but we
certainly gave BP a fair shake, running 9 networks in each of 80 simulations
(2 familiarization sets × 10 score-threshold levels × 4 network topologies).

Unlike previous psychological explanations that postulated unspecified
qualitative shifts in processing with age, our computational explanation based
on CC networks focused on quantitatively deeper learning with increasing age,
a principle with considerable empirical support over a wide range of ages and
experiments (e.g., Case et al., 1982). CC networks also generated a crossover
prediction, with deep learning showing a correlation effect, and even more
superficial learning showing the opposite—a similarity effect, in the form of
more error to (or interest in) the correlated test item than to the uncorrelated
test item. This is called a similarity effect because the uncorrelated test item
was most similar to those in the familiarization set. This simulation predicted
that with a single, suitable age group, say 10-month-olds, there would be a
correlation effect under optimal learning conditions and a similarity effect
with less than optimal familiarization learning. Tests of this prediction found
that 10-month-olds who habituated to the training stimuli looked longer at the
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uncorrelated than the correlated test stimulus, but those who did not habituate
did just the opposite, looking longer at the correlated than the uncorrelated test
stimulus (Cohen and Arthur, unpublished).

In addition to covering the essential age by correlation interaction, CC net-
works covered two other important features of the infant data: discrimination
of the habituated from the correlated test stimulus via the presence of two
additional non-correlated features, and more recovery to test stimuli having
novel features than to test stimuli having familiar features.

Although the BP simulations did not capture the infant data, they were
useful as control conditions in establishing why CC networks were success-
ful. Namely, the growth of cascaded networks with cross-connection weights
seems critical to capturing detection of correlations between features and the
developmental shift to this ability from earlier feature-value learning.

Because CC is sufficiently abstracted from the low-level details of actual
neural circuits, it is not clear whether its recruitment of hidden units corre-
sponds to synapto- or neurogenesis. This issue concerns whether candidate
units already exist somewhere else in the system or whether they are created
fresh before recruitment. From a sufficiently abstract computational view, it
seems not to matter. But if CC does implement synaptogenesis, then it assumes
establishment of fresh synapses rather than adding duplicate synaptic connec-
tions between units.

Conclusions
The chief biological constraint implemented in our models is that of letting
networks grow while they learn. We allowed our networks to grow by forming
new connections or by recruiting new hidden units. The modeling revealed a
number of computational advantages for network growth, all of which made
for more realistic coverage of both animal and human development.

The work reviewed here indicates that brain networks in a variety of species
clearly grow as they learn. There is good evidence of synaptogenesis in birds
and mammals in the cerebellum, hippocampal formation, and sensory and
motor cortices. There is consensus that neurogenesis occurs in the olfactory
bulb and dentate gyrus of a variety of mammals including monkeys, but
published evidence of cortical neurogenesis is still somewhat controversial.
Evidence indicates that both synapto- and neurogenesis increase with pressures
and opportunities to learn, and that they play an important functional role in
learning.

Computational analysis shows that constructive learning algorithms offer
several advantages over static learning algorithms. Constructive algorithms
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can learn any learnable problem in realistic time by reducing bias while keep-
ing variance low, thus avoiding the bias-variance trade-off that plagues static
learners. Unlike static learners, constructive algorithms can also escape from
Fodor’s paradox about not being able to learn anything genuinely new. New
representations constructed by growing networks can be qualitatively different
than anything they possessed before. Furthermore neural-network algorithms
that grow offer a precise and convincing way to implement constructivist
accounts of cognitive development wherein new knowledge builds on earlier
knowledge. Finally computational arguments show it is unlikely that evolution
has prepared brain networks in human children for all of the learning problems
to which they might eventually be exposed. It is more likely that brain networks
are constructed as novel problems arise.

Recent investigations of sound localization in the barn owl provide a clear
and compelling example of learning-directed brain growth, complete with
evidence of synaptogenesis in the auditory topographic map in the inferior
colliculus when juvenile barn owls are fitted with optical prisms that shift the
visual field across the azimuth. This qualitative change in neural circuitry and
sound localization was modeled with a Hebbian-like learning rule that was
allowed to adjust old synapses and form new ones in response to the mismatch
between auditory and visual information.

Implementing network growth in simulations of three different domains
of psychological development in children produced superior data coverage
when contrasted with comparable static networks. Network growth offers a
number of computational advantages in covering these phenomena including
the building of more complex knowledge on top of simpler knowledge, supe-
rior ability to escape from local minima during error reduction, and deeper
learning of training problems.

The simulation of infant category learning predicted a correlation effect
under optimal learning conditions and a similarity effect with less than opti-
mal learning. There is already some confirmation of this prediction in that
infants who habituated to training stimuli showed a correlation effect, but
those who did not habituate showed the opposite, similarity effect.

An interesting general hypothesis raised by our computer simulations is that
the function of learning-driven neural growth is to increase computational
power so that learning tasks can be mastered. Precisely how this hypothesis
might be tested in future brain research remains to be worked out.

It is noteworthy that these computational constraints can operate in a vari-
ety of learning paradigms, including both Hebbian learning and multilayered
feedforward CC networks. As used here, some of the differences between these
learning paradigms became somewhat blurred. Typically considered as an
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unsupervised learner, the Hebb rule was here modified to use the discrepancy
between visual and auditory information to produce an error signal. Typically
considered as a supervised learner, CC can often be construed as not requiring
a human teacher to supply target outputs. For example, CC networks learn
about balance-scale problems and about velocity, time and distance relations
by computing the discrepancy between what they predict will happen and what
actually happens (observations of the natural environment). Likewise, CC
encoder networks (such as those used in our simulations of category learning
in infants) use the stimulus itself as the target output, compute error as the
discrepancy between input and output activations, and in effect implement an
unsupervised learning scheme.

Although we emphasized network growth in this chapter, it is also clear from
neuroscience research that brains discard little-used neurons and synapses.
In a drive towards even greater biological realism, it would be worth exper-
imenting with networks that both grow and prune. Some preliminary work
along these lines has found that pruning of CC networks during growth and
learning improves learning speed, generalization, and network interpretability
(Thivierge et al., 2003). This would appear to be yet another case of a biological
constraint offering computational advantages.

The bottom line is that there is a coherent alternative to the instantaneity
hypothesis that we described in the Introduction. This constructivist alterna-
tive takes both development and learning seriously, and embraces the non-
instantaneous features of development as fundamental to the understanding
of development. As we have illustrated in this chapter, this developmental tra-
jectory of passing through increasingly complex representational and process-
ing capacities is both biologically realistic and computationally attractive in
terms of the acquisition capacities it confers on a developing system. Models
of psychological development that fail to grow come up short on all these
counts. Letting networks grow and providing a role for environmentally-
derived instructive signals to participate in this growth is a major departure
in the study of cognitive development.
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Glossary

Basal CA1 dendrites The basal dendrites of neurons in a region called CA1
that is part of the hippocampus.

Bias-variance trade-off In formal learning theory, a quantification of the gen-
eralization ability of a learner, or equivalently, of its generalization error, is
achieved statistically by defining it to be the sum of two components—bias
squared and variance. Bias is defined as the distance of the best hypothesis
in the space from the target concept, whereas variance is the distance of the
current hypothesis from the target. Restricting the hypothesis space tends
to reduce variance while increasing bias (the target concept may be far away
from the few hypotheses in the space). On the other hand, expanding the
hypothesis space increases variance but also increases the likelihood that
the target hypothesis is included in the space (low bias). The trade-off that
occurs when trying to minimize the generalization error is called the bias-
variance trade-off.

Delay or classical eye-blink conditioning This is similar to trace conditioning
in that the animal is trained to learn the association between an uncondi-
tioned stimulus and an aversive stimulus. The main difference is that the
aversive stimulus comes on while the unconditioned stimulus is still on.

Neocortex Evolutionarily, this is the most recent part of the brain, and it is
associated with higher cognitive functions in humans. Hence evidence of
neurogenesis in this area in macaques has come as an unexpected finding,
with potentially far-reaching implications to cognitive development, and to
stem-cell research.

Polynomial time The complexity of a computational problem is one of the
indices used to characterize and classify it. The time taken to solve the
problem as a function of its size is a commonly used measure to quantify
problem complexity. If the time taken to compute or solve a problem scales
polynomially with its size, then it is said to be a polynomial time problem,
and is considered to be tractable.

Score threshold A parameter in CC learning that governs depth of learning;
learning proceeds until all output-unit activations are within score threshold
of their target values.

Spatial training Typically, this involves having rats perform challenging spa-
tial tasks on a day-to-day basis in their cages. Here, this was implemented
by adding several movable ‘floors’ connected by ladders to the rats’ cages,
and by having them look for food placed at different locations on these
floors. Doing this on a regular basis positively affects their performance in
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subsequent spatial tasks. The hippocampus is known to play in important
role in spatial navigation in rats.

Torque The product of weight and distance on one side of a balance scale.

Trace eye-blink conditioning The animal is trained to learn the role of an
unconditioned stimulus, like an auditory tone, in predicting an aversive
stimulus that follows it. In eye-blink conditioning, the aversive stimulus is a
puff of air in the eyes which causes the animal to blink. The word ‘trace’
refers to the fact that the aversive stimulus onsets with a delay after the
unconditioned stimulus ends. The idea here is that encoding this associative
relationship requires a memory ‘trace’ in the hippocampus.

Tuning curve (auditory or visual) of a neuron Characterization of the
strength of the response of a neuron as the stimulus varies. For instance,
the auditory tuning curve of an ICX neuron is a curve that represents the
strength of its response as a function of the location of a sound stimulus
in space. Usually, the response of a neuron peaks when the sound source is
at a particular spatial location and this peak determines the ‘best’ stimulus
location for the neuron.

Whisker barrels Clusters of neurons in layer IV in the somatosensory cortex
of rodents that process information from specific whiskers. These barrels are
organized topographically, in the sense that neighbouring whiskers transmit
information to neighbouring barrels. Also, each whisker is associated with a
unique barrel.
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