
A Dual-Phase Technique for Pruning Constructive Networks

J.P. Thivierge
Department of Psychology
McGill University
Montreal, QC Canada
H3A 1B1
management@neurostate.com

F. Rivest
Département d’Informatique et
de Recherche Opérationnelle
Université de Montréal
Montreal, QC Canada
H3C 3J7
francois.rivest@mail.mcgill.ca

T. R. Shultz
Department of Psychology and
School of Computer Science
McGill University
Montreal, QC Canada
H3A 1B1
thomas.shultz@mcgill.ca

Abstract - An algorithm for performing simultaneous
growing and pruning of Cascade-correlation (CC) neural
networks is introduced and tested. The algorithm adds
hidden units as in standard CC, and removes
unimportant connections by using Optimal Brain
Damage (OBD) in both the input and output phases of
CC. To this purpose, OBD was adapted to prune weights
according to the two separate objective functions that are
used in CC to train the candidate hidden units and to
train the network, respectively. Application of the new
algorithm to two databases of the PROBEN1 benchmarks
reveals that this new dual-phase pruning technique is
effective in significantly reducing the size of CC
networks, while providing a speed-up in learning times
and improvements in generalization over novel test sets.

I. INTRODUCTION

Setting the ideal size of a neural network’s topology is a
major problem in many simulations. There are potential
advantages as well as disadvantages to both large and small
networks. Large networks may fit a given data set, but often
generalize poorly. Too many weights in a network create
many degrees of freedom, which tends to overfit the data set.
In overfitting, a network effectively memorizes the noise
components in the data. Large networks are also more
computationally demanding to run, and more difficult to
analyze. Smaller networks, on the other hand, can fail to
learn the data set. Although these size effects are well
documented, it is unclear how to find an optimal trade-off
point between large and small networks.

In solving the problem of defining an optimal network
topology, two main suggestions emerge. First, it is possible
to decide on a relatively large network and then prune
superfluous or redundant connections. Many approaches
exist for pruning feed-forward neural networks, including
optimal brain damage (OBD) [1], optimal brain surgeon [2],
and skeletonization [3]. A review of major pruning
algorithms is available from [4]. There are some problems
with the pruning approach, including increases in
computational cost due to starting with a larger topology than
necessary, and not being certain that the initial topology is

big enough. But most importantly, using pruning techniques
to determine the ideal size of a network can result in network
topologies that never reach acceptable levels of accuracy on
some classification problems [5].

The second possibility is to start with a very small network
and add nodes to grow it as necessary to learn a problem. A
partial review of constructive networks is available from [6].
Cascade-correlation (CC) [7] is a popular example of such an
algorithm. This type of network grows as it learns by
installing fully connected nodes into the network topology.
One drawback of this solution is the creation of a large
interconnected system that is very deep in layers. Typically,
each new hidden unit in a CC network is installed on a
separate layer. The large number of connections may disrupt
generalization, and increase computational demands. By
adding layers of fully connected neurons, many connections
may become redundant. In fact, even when pruning a large
number of weights in a CC network, there is no significant
reduction in generalization [8]. This perhaps explains the
tendency of CC networks to overfit the training data [9].
Finally, CC networks as well as many other growing
algorithms have the disadvantage of always ending up with
the same type of architecture. CC networks do offer a
solution to defining a network architecture in terms of its
nodes and layers, but not in terms of its connections. The
resulting connection scheme of CC networks is always the
same, and is therefore not fully adapted to the target problem.
It is thus important to determine a technique to sort
connection weights by importance and remove the
unnecessary ones.

To our knowledge, integrating connection pruning in the
learning scheme of a CC network has not being explored.
Reference [8] is the only known source to report a few
possibilities for pruning CC networks, but lacks extensive
empirical testing and development. In this paper, we first
describe a generalized framework for CC algorithms. Then,
we describe how OBD pruning can be applied to their
connection weights. Finally, we provide some empirical
results based on data from the PROBEN1 repository.

II. DESCRIPTION OF CC NETWORKS

CC is a constructive algorithm of supervised learning
where new hidden units are added, layer by layer, to the
existing network topology based on the requirements of a
given problem. A network starts with no hidden units and
grows by comparing a number of candidate units in parallel
and recruiting the best candidate into the network. In order

Fig. 1. Architecture of a CC network with 2 hidden layers.

to both grow and learn, CC networks alternate between two
phases, namely input and output. In output phase, a network
learns by adjusting output weights (see Figure 1) to minimize
error at the output level:

()∑ ∑
= =

−=
PC

p

OUTC

o
popoout TVF

1 1

2
,,,

��

 (1)

where o is an output node, p is a pattern, PC is the pattern
count, OUTC is the output count,

�

Vout
OUTC∈ ℜ is a vector

of network outputs, and
�

T OUTC∈ ℜ is a target activation
column vector.

In input phase, a new candidate unit gets recruited in the
network. To determine which of a number of candidates gets
installed, the input-side weights feeding those candidates are
trained in order to maximize G, a measure of covariance
between the network’s training error and the output of
candidates:

2

1 1
,,,

1
,,,

1 1

2

1

),(1

∑ ∑ ∑

∑ ∑

= = =

= =









⋅⋅−⋅=

=

OUTC

o

COUTC

co
popcocandPC

PC

p
popcocand

OUTC

o

COUTC

co

EVEV
c

ocoCov
c

G

����

(2)

unit c, COUTC is the candidate output count,

�

E OUTC∈ ℜ is
an error column vector equal to

� �

V Tout − ,

and
�

Vcand
COUTC∈ ℜ is a candidate activation column

vector. In this phase, the covariance of each candidate’s
output is compared with the network’s training error and a
winner-take-all scheme is applied where the candidate with
the highest covariation is installed in the network, and all
other candidates are discarded until another unit is required.
We redefined part of the objective function G in input phase
to include a Frobenius norm in its calculation. By squaring
the covariance, the Frobenius norm is an alternative to
computing the absolute value of the covariances as in classic
CCs. Squaring the covariance has the advantage of a
continuously differentiable objective function over every
output of the network and a given candidate [10].

Once a candidate is installed, its input-side weights are
frozen in place to preserve the unit’s feature detection
abilities. CC networks typically add a new hidden layer
every time a candidate unit gets recruited. The new
candidate is fed by all previous units, and feeds the output
layer with feed-forward connections.

Networks are constrained to always start and end in output
phase. Three criteria govern phase switching, namely (1)
performance is within some predefined range of error for F
or covariance for G; (2) a limit of epochs has been reached;
(3) or improvement of the objective function F or G has
stagnated for a certain number of epochs [11].

The output value of a CC network can be obtained by:

()
[]()
[]()Τ

Τ

⋅⋅=

⋅=

⋅=

int,int1,

int,1,

int

VWVWf

VWWf

VWfV

INCoutoutout

INCoutoutout

outoutout

��

l

���

��

l

��

���

 (3)

where INTCINC

outW ×ℜ∈ is a weight row vector feeding the
output layer,

�

V INTC
int ∈ ℜ is an internal activation column

vector,
�

vfout
INC OUTC= ℜ ℜ is an output layer

activation function (column vector), and INC is the output
layer input count. Because each weight vector is used only in

the ith input of the output layer function, let’s look at the
derivative of a network with respect to each weight vector
separately and each output separately:

()

()
()

() T
outoouti

iout

iout

iout

outoout

iout

oout

VVWf

W
VW

VW
VWf

W
V

intint,

,

int,

int,

int,

,

,

���

�

��

��

��

�

�

⋅⋅′=

∂
⋅∂⋅

⋅∂
⋅∂=

∂
∂

 (4)

The second order derivative with respect to its weights can

be obtained as:

()

() 















⋅⋅⋅′′

⋅⋅⋅′′
=

∂
∂

Τ

Τ

intintint,

intintint,1

2
,

2

VVVWf

VVVWf

W
V

outooutINC

outoout

out

oout

����
�

����
�

 (5)

for each weight vector and output separately. These values
will become useful in the following section for pruning
calculations.

III. OPTIMAL BRAIN DAMAGE

There are a variety of methods available for pruning nodes

and connections in neural networks, ranging from
computationally expensive ones to much simpler ones. The
simplest approach is undoubtedly to base pruning on the
absolute magnitude of weight values, and to prune weights
with values close to zero. The problem with this technique is
that it often leads to elimination of the wrong weights [12].
In fact, small weights that are near zero may be important in
reducing error. More sophisticated measures try to capture
the precise impact that a given node or weight has on the
training error or generalization capabilities of a network.
Skeletonization [3], for instance, is a method that involves
removing nodes that have the least effect on reducing output
error. OBD [1], which is explored here, is another example
of this technique. OBD removes weights that have the least
effect on training error based on a diagonal assumption of the
Hessian matrix, which contains all the partial second
derivatives of weights with respect to the objective function
of a network. In OBD, this matrix is assumed to be diagonal,
which means that each row can be estimated by it’s
corresponding diagonal entry, and that all other weights on
either side of the diagonal are assumed to be near zero, and
thus of negligible value.

OBD is a technique designed to prune unnecessary or
redundant connections from a network. OBD uses
information-theoretic ideas to remove unimportant weights
by comparing the saliency of each weight and eliminating the
ones with the lowest saliency. The measure of saliency is
typically calculated as a second order derivative of error of a
network with respect to each of its weights. Saliency
indicates the sensitivity of the network to removal of that
connection. In order to use saliency to prune CC networks,
we must redefine this last calculation. For CC networks in
output phase, this objective function will be F, the

minimization of error. However, for CC networks in input
phase, this objective function will be G, the maximization of
covariance between candidate output and network error.
Redefining OBD pruning in this way enables input-side
weight pruning in input phase and output weight pruning in
output phase because those are the weights affected by the
objective function in their respective phases.

Two main calculations are necessary in order to perform
OBD weight pruning in both input and output phases. First,
we obtain the second order derivative of the F objective
function (minimization of sum squared error) with respect to
each separate output weight in a network. Second, we
compute the second order derivative of the G objective
function (maximization of covariance) with respect to each
separate input side weights in a network. The first derivative
of F is obtained from the networks as:

()∑ ∑
= = ∂

∂
⋅−=

∂
∂ PC

p

OUTC

o out

poout
popoout

out W
V

TV
W

F
1 1

,,
,,,2

�

��

 (6)

for each pattern p.

From the first derivative, the second derivative of F with
respect to the weights of the network can be obtained as:

()∑ ∑
= =

Τ













∂
∂⋅−+

∂
∂⋅

∂
∂

=
∂
∂

PC

p

OUTC

o out

poout
popoout

out

poout

out

poout

out

W
VTV

W
V

W
V

W
F

1 1
2
,,

2

,,,
,,,,

2

2

2
�

��

��

(7)

for every pattern p independently.

For input phase pruning of input-side weights, we must
obtain the first and second derivatives of the covariance,
averaged over all patterns:

() ()

∑ ⋅+⋅⋅−=

∑ −⋅−=

=

=

PC

p
popcocandpopcocand

PC

p
popopocandpocand

EVEVPC

EEVVocoCov

1
,,,,,,

1
,,,,,,),(

����

����

() ()∑
=

−⋅′=′
PC

p
popopcocand EEVocovCo

1
,,,,,

���

() ()∑
=

−⋅′′=′′
PC

p
popopcocand EEVocovCo

1
,,,,,

���

 (8)

From these values, the second derivative of G with respect
to the candidate feeding weights is obtained as:

()∑ ∑ ′′⋅+′⋅′=










∂
∂

∂
∂=

∂
∂

= =

ΤOUTC

o

COUTC

co

candcandcand

ocovCoocoCovocovCoocovCo
C

W
G

WW
G

1 1

2

2

,),(),(),(2

(9)

IV. SIMULATIONS

Simulations were performed to assess the potential

advantages of OBD pruning. A technique called early
stopping was employed to determine when to stop pruning.
In this strategy, weights were pruned from the network until
error on a generalization set started to be negatively affected.
One hundred networks were trained on each of two data sets.
There were four different pruning conditions: (1) OBD
pruning of input-side weights at the end of every input phase;
(2) OBD pruning of output weights at the end of training; (3)
a combination of (1) and (2); and (4) no pruning at all. The
various pruning conditions were designed to eliminate
weights after the particular optimization guiding their
fluctuations had reached a final minimum. According to [13]
retraining a highly pruned network may lead to inferior
performance. Because input-side weights are frozen into
place after each input phase, these weights could be pruned
while learning without breaking this requirement. Output-
side weights, however, are retrained throughout learning, and
could only be pruned at the end of learning to maintain the
requirement. In this way, no weights were ever retrained
after pruning. This extra requirement also solves a
performance disadvantage found when pruning networks that
are still in a local minimum [14]. As an implementation
strategy, pruned weights were set to a value of zero, which is
mathematically equivalent to eliminating their connection.

A. DataSets

The two datasets employed for simulations were taken
from the PROBEN1 repository [15], available from
ftp://ftp.ira.uka.de. The datasets represent realistic tasks and
contain real world data. The glass database was comprised
of 9 attributes, 7 outputs, and a total of 214 patterns. The
diabetes database was comprised of 8 attributes, 1 output,
and 768 patterns. Both were classification problems with no
missing values. Input data for both databases was
represented as continuous values, and a standard Z-score
transformation was applied on each value:

z
x

i
i=

− µ
σ

 (10)

where µ is the average and σ is the standard deviation. Z
scores standardization brings back raw scores to a
distribution of µ=0 and σ=1. The resulting z scores served as
input to the networks. Each data set was divided into three
parts, and included a train set, a 10-fold cross-validation test
set, and an independent test set representing 10% of the total
data set. The independent test set was employed for early
stopping, and the cross-validation subset was used to test
networks after pruning was applied.

B. Results

A summary of results over the two databases is presented
in Table 1. For all comparisons of results, one-way
ANOVAs were employed, with a minimal accuracy criterion
of α ≤ 0.01. The goal of this test was to determine if the
differences found between the various conditions of pruning
are statistically reliable and denote a real impact of pruning.
When required, post-hoc comparisons were performed using
the Scheffé technique.

TABLE 1

PERFORMANCE OF PRUNED NETWORKS

Note. Best results in each condition are underlined. Performance
measures marked by an asterisk involve pruning. Novel error testing was
used in early stopping and was not performed for the condition where no
pruning was applied. ns = not significant.

1) Accuracy of generalization on cross-validation test set:

ANOVA results showed no significant differences for cross-
validation generalization (F(3, 386) = 2.06, p > 0.105). This
result could be attributed to high variance in the group of

networks. The same results apply to the diabetes database
(F(3, 386) = 29.84, p > 0.045). We note, however, that in
both databases results pointed in the same direction:
combined input and output pruning lead to the best
generalization.

2) Accuracy of generalization on novel data: ANOVA

did reveal differences for novel generalization (F(2, 297) =
132.21, p < 0.0005). Scheffé comparisons yielded
significant differences between each of the pruning
conditions. Input and output pruning had the least error,
followed by input pruning, and then output pruning. The
same precise pattern of results held for the diabetes database
(F(2, 297) = 27.22, p < 0.0005).

3) Number of pruned connections: For the diabetes

database, a total number of 35 output weights were present in
the initial networks. The total number of hidden units was of
25, which was the maximum allowable. The total number of
input-side weights in our networks reached 525. When
considering the weights that could be pruned, the percentage
of weights pruned was 43.34% in the combined input and
output pruning condition, 44.02% in the input pruning
condition, and 0.02% in the output pruning condition. For
the second database containing the glass problem, a total
number of 36 output weights were present in the initial
networks. The total number of hidden nodes grew to 25,
which again was the maximum allowable. The total number
of input-side weights reached 245. The percentage of
weights pruned was 74.09% in the combined input and
output pruning condition, 78.23% in the input pruning
condition, and 0.36% in the output pruning condition.

For the glass problem, ANOVA revealed group differences
between the 3 pruning conditions in the average number of
pruned connections (F(2, 27) = 790.39, p < 0.0005). Scheffé
comparisons revealed less pruning for the output
condition than in the other two conditions where input phase
pruning was present. No significant difference was found
between these latter conditions. The same pattern of results
was obtained for the diabetes problem (F(2, 27) = 197.23, p
< 0.0005).

4) Number of epochs required for training: For the glass

database, ANOVA revealed differences in the number of
epochs necessary to train the networks across all four
conditions (F(3, 396) = 482.65, p < 0.0005). Scheffé
comparisons revealed that input pruning reduced the number
of epochs when compared to the other three conditions. No
significant differences were found anywhere else. For the
diabetes database, significant group differences were found
(F(3, 396) = 916.57, p < 0.0005). Scheffé comparisons
revealed that input and output pruning, as well as input
pruning, required less epochs than output pruning and no
pruning. In sum, pruning, particularly input pruning, can
reduce training time.

V. DISCUSSION

The current study is the first to demonstrate how to adapt
the OBD pruning technique to a CC constructive neural
network. Because CC uses two distinct optimization
techniques at different times, OBD was adapted to a dual-
phase pruning. Input-side weights were pruned at the end of
each input phase, while output weights were pruned at the
end of training. Advantages of using this dual-phase OBD to
prune CC networks were demonstrated on two real-world
tasks taken from the PROBEN1 benchmarks. Results show
that the new technique was efficient in reducing network size
by pruning almost half of the connections. Pruning also led
to better performance on generalizing to unseen data
independent of the cross-validation sets. These results
replicated those of a number of other studies on using OBD
with Backprop networks [1].

One issue of concern was whether pruning would prolong
training. Input-side pruning actually reduced training times
in both the glass and diabetes database. The goal of hidden
units is to specialize in capturing specific areas of the error
surface. By pruning input-side weights, it is possible that we
have found a way to avoid over-specialization of those
hidden units in solving various regions of a target problem,
and encourage more general solvers. In any case, input
pruning improved generalization over the entire train set. In
turn, improving the fit of weights to an entire set instead of
local regions lower the overall error, and thus reduce the
number of epochs necessary to reach a solution.

 OBD pruned significantly more input-side weights than
output weights, and so was more responsible for improving
generalization and reducing training epochs. One possible
reason for this phase difference is that, by assumption, CC
networks tend to recruit hidden units that effectively reduce
overall error. Thus, in the final solution of the network, all
hidden units are expected to contribute to error reduction.
Because pruning output weights would eliminate the number
of hidden units affecting the global error, it is kept minimal.
This finding supports the assumption about hidden unit
contribution to overall error. An alternative explanation is
also possible. Weights that are trained over a longer period
of time tend to distribute their representation more evenly
across all activation pathways. In this way, by retraining
output weights for many phases before pruning, knowledge
of the target task becomes widely distributed. By this
process, each output weight thus becomes important in
learning the target task and cannot be removed without some
consequences to the accuracy of learning and generalization.
Input-side weights, on the other hand, get pruned at the end
of a single input phase, which has a maximum of 100 epochs.
In this way, input-side weights don’t get a chance to fully
distribute their knowledge across weights, leaving some
weights with a much smaller role than others in
approximating the objective function. Despite the fact that
input-side pruning was more effective in reducing the size of
the networks, tests on both cross-validation and novel test

sets revealed that a combination of both input and output
weight pruning was necessary to achieve the best novel
generalization. This means that both input-side and output-
side weights can be responsible for overfitting the data, and
should be considered for pruning.

Information in a neural network is often said to be
distributed across it’s weights. By pruning weights,
however, it is essential to assume that information is not
completely distributed, in which case all weights would
contribute to reducing the global error, and no pruning would
be possible. By pruning almost half of the input-side weights
of our networks, we were able to show that information was
in fact not optimally distributed. In fact, the essential of the
information of our networks was contained in 50% of input-
side weights plus 99% of the output weights.

Our current results shows that OBD is a promising
technique for pruning CC networks. Using early stopping,
we pruned a fixed number of weights and tested the network
using an independent test set. If error raised on the test set,
those weights were restored back. If error lowered, more
pruning was performed. One possibility for future research
is to set a tolerance factor on the decay of performance on the
test set. In other words, if we were willing to tolerate more
error on the test set, we might be able to prune significantly
more weights than in the current study. Pruning might then
become a balanced trade-off between the size of the network
and performance on the independent test set.

Empirical results [5] indicate that determining the size of a
network using OBD creates networks that never reach
acceptable levels of accuracy on some classification
problems. On the other hand, techniques that strictly grow
networks are often criticized for reaching too much depth
and complexity while learning a target task. A technique that
combines both growing and pruning provides a solution to
this problem and counterbalances too much growing with
pruning. The present paper is the first to systematically
demonstrate that growing and pruning can be integrated in
Cascade-correlation networks, and that doing so is more
beneficial than either of these techniques on their own.

AKNOWLEDGMENTS

This research was supported by an FCAR (Québec)
scholarship to J.P.T., a Tomlinson scholarship (McGill
University) to J.P.T., a grant from FCAR (Canada) to T.R.S.,
and a grant from NSERC (Québec) to T.R.S. This paper
benefited from the comments of anonymous reviewers.

REFERENCES

[1] LeCun, Y., Denker, J., & Solla, S. (1990). Optimal Brain Damage.
 In D. Touretzky (ed.), Advances in Neural Information Processing
 Systems, 2, 598-605. San Mateo, CA: Morgan Kaufmann.
[2] Hassibi, B., Stork, D.G. (1993). Second order derivatives for
 network pruning: Optimal Brain Surgeon. Proceedings of Neural
 Information Processing Systems, 5, 164-171.

[3] Mozer, MC & Smolensky, P. (1988). Skeletonization: A technique
 for trimming the fat from a network via relevance assessment.

 Advances in Neural Information Processing Systems, 1. Morgan
 Kaufmann. 107-115.
[4] Reed, R. (1993). Pruning algorithms - a survey. IEEE Transactions
 on Neural Networks 4, 3-16.
[5] Ghosh, J., Tumer, K. (1994). Structural adaptation and
 generalization in supervised feed-forward networks. Neural
 Networks, 1, pp. 431-458.
[6] Fiesler, E. (1994). Comparative bibliography of ontogenic neural
 networks. Proceedings of the International Conference on Artificial
 Neural Networks, ICANN’94. Sorrento, Italy. pp. 793-796.
[7] Fahlman, S.E., Lebiere, C. (1989). The cascade-correlation learning
 architecture. Advances in Neural Information Processing Systems,
 2, 525-532.
[8] Waugh, S.G. (1995) Extending and benchmarking cascade-
 correlation. Ph.D. Thesis. University of Tasmania.
[9] Lahnajarvi, J.T., Lehtokangas, M.I., Saarinen, J.P.P. (2002).
 Evaluation of constructive neural networks with cascaded
 architecture. Neurocomputing, 48, 573-607.
[10] Rivest, F., & Shultz, T.R. (2002). Application of knowledge-based
 cascade-correlation to vowel recognition. IEEE International Joint
 Conference on Neural Networks 2002. pp. 53-58.
[11] Shultz, T. R., & Rivest, F. (2001). Knowledge-based cascade
 correlation: Using knowledge to speed learning. Connection
 Science, 13, 43-72.
[12] Hertz, Krogh, & Palmer (1991). Introduction to the theory of
 neural computation. Addison – Wesley Publ. Co, USA.
[13] Hassibi, B., Stork, D.G., & Wolff, G. (1994) Optimal Brain
 Surgeon: Extensions and performance comparisons. Proceedings of
 Neural Information Processing Systems, VI, pp. 263-270.
[14] Tresp, V., Neuneier, R., & Zimmermann, H.G. (1997). Early Brain
 Damage. Advances in Neural Information Processing Systems, 9.
[15] Prechelt, L. (1994). PROBEN1 - A set of benchmarks and
 benchmarking rules for neural network training algorithms.
 Technical report 21/94, Fakultät für Informatik, Universität
 Karlsruhe.

