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Abstract - An algorithm for performing simultaneous 
growing and pruning of Cascade-correlation (CC) neural 
networks is introduced and tested.  The algorithm adds 
hidden units as in standard CC, and removes 
unimportant connections by using Optimal Brain 
Damage (OBD) in both the input and output phases of 
CC.  To this purpose, OBD was adapted to prune weights 
according to the two separate objective functions that are 
used in CC to train the candidate hidden units and to 
train the network, respectively.  Application of the new 
algorithm to two databases of the PROBEN1 benchmarks 
reveals that this new dual-phase pruning technique is 
effective in significantly reducing the size of CC 
networks, while providing a speed-up in learning times 
and improvements in generalization over novel test sets. 
 

I. INTRODUCTION 
 

Setting the ideal size of a neural network’s topology is a 
major problem in many simulations.  There are potential 
advantages as well as disadvantages to both large and small 
networks.  Large networks may fit a given data set, but often 
generalize poorly.  Too many weights in a network create 
many degrees of freedom, which tends to overfit the data set.  
In overfitting, a network effectively memorizes the noise 
components in the data.  Large networks are also more 
computationally demanding to run, and more difficult to 
analyze.  Smaller networks, on the other hand, can fail to 
learn the data set.  Although these size effects are well 
documented, it is unclear how to find an optimal trade-off 
point between large and small networks.   

In solving the problem of defining an optimal network 
topology, two main suggestions emerge.  First, it is possible 
to decide on a relatively large network and then prune 
superfluous or redundant connections.  Many approaches 
exist for pruning feed-forward neural networks, including 
optimal brain damage (OBD) [1], optimal brain surgeon [2], 
and skeletonization [3].  A review of major pruning 
algorithms is available from [4].  There are some problems 
with the pruning approach, including increases in 
computational cost due to starting with a larger topology than 
necessary, and not being certain that the initial topology is 

big enough.  But most importantly, using pruning techniques 
to determine the ideal size of a network can result in network 
topologies that never reach acceptable levels of accuracy on 
some classification problems [5]. 

The second possibility is to start with a very small network 
and add nodes to grow it as necessary to learn a problem.  A 
partial review of constructive networks is available from [6].  
Cascade-correlation (CC) [7] is a popular example of such an 
algorithm.  This type of network grows as it learns by 
installing fully connected nodes into the network topology.  
One drawback of this solution is the creation of a large 
interconnected system that is very deep in layers.  Typically, 
each new hidden unit in a CC network is installed on a 
separate layer.  The large number of connections may disrupt 
generalization, and increase computational demands.  By 
adding layers of fully connected neurons, many connections 
may become redundant.  In fact, even when pruning a large 
number of weights in a CC network, there is no significant 
reduction in generalization [8].  This perhaps explains the 
tendency of CC networks to overfit the training data [9].  
Finally, CC networks as well as many other growing 
algorithms have the disadvantage of always ending up with 
the same type of architecture.  CC networks do offer a 
solution to defining a network architecture in terms of its 
nodes and layers, but not in terms of its connections.  The 
resulting connection scheme of CC networks is always the 
same, and is therefore not fully adapted to the target problem.  
It is thus important to determine a technique to sort 
connection weights by importance and remove the 
unnecessary ones. 

To our knowledge, integrating connection pruning in the 
learning scheme of a CC network has not being explored.  
Reference [8] is the only known source to report a few 
possibilities for pruning CC networks, but lacks extensive 
empirical testing and development.  In this paper, we first 
describe a generalized framework for CC algorithms.  Then, 
we describe how OBD pruning can be applied to their 
connection weights.  Finally, we provide some empirical 
results based on data from the PROBEN1 repository. 

 
 
 



II. DESCRIPTION OF CC NETWORKS 
 

CC is a constructive algorithm of supervised learning 
where new hidden units are added, layer by layer, to the 
existing network topology based on the requirements of a 
given problem.  A network starts with no hidden units and 
grows by comparing a number of candidate  units  in  parallel  
and recruiting the best candidate into the network.   In  order  

 
 

 
 
 

Fig. 1. Architecture of a CC network with 2 hidden layers. 
 
to both grow and learn, CC networks alternate between two 
phases, namely input and output.  In output phase, a network 
learns by adjusting output weights (see Figure 1) to minimize 
error at the output level: 
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where o is an output node, p is a pattern, PC is the pattern 
count, OUTC is the output count, 

�

Vout
OUTC∈ ℜ is a vector 

of network outputs, and 
�

T OUTC∈ ℜ is a target activation 
column vector. 

In input phase, a new candidate unit gets recruited in the 
network.  To determine which of a number of candidates gets 
installed, the input-side weights feeding those candidates are 
trained in order to maximize G, a measure of covariance 
between the network’s training error and the output of 
candidates: 
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unit c, COUTC is the candidate output count, 

�

E OUTC∈ ℜ is 
an error column vector equal to 

� �

V Tout − , 

and
�

Vcand
COUTC∈ ℜ is a candidate activation column 

vector.  In this phase, the covariance of each candidate’s 
output is compared with the network’s training error and a 
winner-take-all scheme is applied where the candidate with 
the highest covariation is installed in the network, and all 
other candidates are discarded until another unit is required.  
We redefined part of the objective function G in input phase 
to include a Frobenius norm in its calculation.  By squaring 
the covariance, the Frobenius norm is an alternative to 
computing the absolute value of the covariances as in classic 
CCs.  Squaring the covariance has the advantage of a 
continuously differentiable objective function over every 
output of the network and a given candidate [10].   

Once a candidate is installed, its input-side weights are 
frozen in place to preserve the unit’s feature detection 
abilities.  CC networks typically add a new hidden layer 
every time a candidate unit gets recruited.  The new 
candidate is fed by all previous units, and feeds the output 
layer with feed-forward connections.   

Networks are constrained to always start and end in output 
phase.  Three criteria govern phase switching, namely (1) 
performance is within some predefined range of error for F 
or covariance for G; (2) a limit of epochs has been reached; 
(3) or improvement of the objective function F or G has 
stagnated for a certain number of epochs [11]. 

The output value of a CC network can be obtained by: 
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where INTCINC

outW ×ℜ∈  is a weight row vector feeding the 
output layer, 

�

V INTC
int ∈ ℜ  is an internal activation column 

vector, 
�

vfout
INC OUTC= ℜ ℜ  is an output layer 

activation function (column vector), and INC is the output 
layer input count. Because each weight vector is used only in 

the ith input of the output layer function, let’s look at the 
derivative of a network with respect to each weight vector 
separately and each output separately:  
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The second order derivative with respect to its weights can 

be obtained as: 
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for each weight vector and output separately.  These values 
will become useful in the following section for pruning 
calculations.   

 
III. OPTIMAL BRAIN DAMAGE 

 
There are a variety of methods available for pruning nodes 

and connections in neural networks, ranging from 
computationally expensive ones to much simpler ones.  The 
simplest approach is undoubtedly to base pruning on the 
absolute magnitude of weight values, and to prune weights 
with values close to zero.  The problem with this technique is 
that it often leads to elimination of the wrong weights [12].  
In fact, small weights that are near zero may be important in 
reducing error.  More sophisticated measures try to capture 
the precise impact that a given node or weight has on the 
training error or generalization capabilities of a network. 
Skeletonization [3], for instance, is a method that involves 
removing nodes that have the least effect on reducing output 
error.  OBD [1], which is explored here, is another example 
of this technique.  OBD removes weights that have the least 
effect on training error based on a diagonal assumption of the 
Hessian matrix, which contains all the partial second 
derivatives of weights with respect to the objective function 
of a network.  In OBD, this matrix is assumed to be diagonal, 
which means that each row can be estimated by it’s 
corresponding diagonal entry, and that all other weights on 
either side of the diagonal are assumed to be near zero, and 
thus of negligible value. 

OBD is a technique designed to prune unnecessary or 
redundant connections from a network.  OBD uses 
information-theoretic ideas to remove unimportant weights 
by comparing the saliency of each weight and eliminating the 
ones with the lowest saliency.  The measure of saliency is 
typically calculated as a second order derivative of error of a 
network with respect to each of its weights.  Saliency 
indicates the sensitivity of the network to removal of that 
connection.  In order to use saliency to prune CC networks, 
we must redefine this last calculation.  For CC networks in 
output phase, this objective function will be F, the 

minimization of error.  However, for CC networks in input 
phase, this objective function will be G, the maximization of 
covariance between candidate output and network error.  
Redefining OBD pruning in this way enables input-side 
weight pruning in input phase and output weight pruning in 
output phase because those are the weights affected by the 
objective function in their respective phases. 

Two main calculations are necessary in order to perform 
OBD weight pruning in both input and output phases.  First, 
we obtain the second order derivative of the F objective 
function (minimization of sum squared error) with respect to 
each separate output weight in a network.  Second, we 
compute the second order derivative of the G objective 
function (maximization of covariance) with respect to each 
separate input side weights in a network. The first derivative 
of F is obtained from the networks as: 
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for each pattern p. 

From the first derivative, the second derivative of F with 
respect to the weights of the network can be obtained as: 
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for every pattern p independently. 

For input phase pruning of input-side weights, we must 
obtain the first and second derivatives of the covariance, 
averaged over all patterns: 
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From these values, the second derivative of G with respect 
to the candidate feeding weights is obtained as: 
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IV. SIMULATIONS 

 
Simulations were performed to assess the potential 

advantages of OBD pruning.  A technique called early 
stopping was employed to determine when to stop pruning.  
In this strategy, weights were pruned from the network until 
error on a generalization set started to be negatively affected.  
One hundred networks were trained on each of two data sets.  
There were four different pruning conditions: (1) OBD 
pruning of input-side weights at the end of every input phase; 
(2) OBD pruning of output weights at the end of training; (3) 
a combination of (1) and (2); and (4) no pruning at all.  The 
various pruning conditions were designed to eliminate 
weights after the particular optimization guiding their 
fluctuations had reached a final minimum.  According to [13] 
retraining a highly pruned network may lead to inferior 
performance.  Because input-side weights are frozen into 
place after each input phase, these weights could be pruned 
while learning without breaking this requirement.  Output-
side weights, however, are retrained throughout learning, and 
could only be pruned at the end of learning to maintain the 
requirement.  In this way, no weights were ever retrained 
after pruning.  This extra requirement also solves a 
performance disadvantage found when pruning networks that 
are still in a local minimum [14].  As an implementation 
strategy, pruned weights were set to a value of zero, which is 
mathematically equivalent to eliminating their connection. 
 
A.  DataSets 
 

The two datasets employed for simulations were taken 
from the PROBEN1 repository [15], available from 
ftp://ftp.ira.uka.de.  The datasets represent realistic tasks and 
contain real world data.  The glass database was comprised 
of 9 attributes, 7 outputs, and a total of 214 patterns.  The 
diabetes database was comprised of 8 attributes, 1 output, 
and 768 patterns.  Both were classification problems with no 
missing values.  Input data for both databases was 
represented as continuous values, and a standard Z-score 
transformation was applied on each value: 
 

z
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where µ is the average and σ is the standard deviation.  Z 
scores standardization brings back raw scores to a 
distribution of µ=0 and σ=1.  The resulting z scores served as 
input to the networks.  Each data set was divided into three 
parts, and included a train set, a 10-fold cross-validation test 
set, and an independent test set representing 10% of the total 
data set.  The independent test set was employed for early 
stopping, and the cross-validation subset was used to test 
networks after pruning was applied. 
 
B.  Results 
 

A summary of results over the two databases is presented 
in Table 1.  For all comparisons of results, one-way 
ANOVAs were employed, with a minimal accuracy criterion 
of α ≤ 0.01.  The goal of this test was to determine if the 
differences found between the various conditions of pruning 
are statistically reliable and denote a real impact of pruning.  
When required, post-hoc comparisons were performed using 
the Scheffé technique. 

 
TABLE 1 

PERFORMANCE OF PRUNED NETWORKS 

 
 

Note.  Best results in each condition are underlined.  Performance 
measures marked by an asterisk involve pruning.  Novel error testing was 
used in early stopping and was not performed for the condition where no 
pruning was applied.  ns = not significant.  

 
1)  Accuracy of generalization on cross-validation test set:  

ANOVA results showed no significant differences for cross-
validation generalization (F(3, 386) = 2.06, p > 0.105).  This 
result could be attributed to high variance in the group of 



networks.  The same results apply to the diabetes database 
(F(3, 386) = 29.84, p > 0.045).  We note, however, that in 
both databases results pointed in the same direction: 
combined input and output pruning lead to the best 
generalization. 

 
2)  Accuracy of generalization on novel data:   ANOVA 

did reveal differences for novel generalization (F(2, 297) = 
132.21, p < 0.0005).  Scheffé comparisons yielded 
significant differences between each of the pruning 
conditions.  Input and output pruning had the least error, 
followed by input pruning, and then output pruning.  The 
same precise pattern of results held for the diabetes database 
(F(2, 297) = 27.22, p < 0.0005).   

 
3)  Number of pruned connections:  For the diabetes 

database, a total number of 35 output weights were present in 
the initial networks.  The total number of hidden units was of 
25, which was the maximum allowable.  The total number of 
input-side weights in our networks reached 525.  When 
considering the weights that could be pruned, the percentage 
of weights pruned was 43.34% in the combined input and 
output pruning condition, 44.02% in the input pruning 
condition, and 0.02% in the output pruning condition.  For 
the second database containing the glass problem, a total 
number of 36 output weights were  present in the initial 
networks.  The total number of hidden nodes grew to 25, 
which again was the maximum allowable.  The total number 
of input-side weights reached 245.  The percentage of 
weights pruned was 74.09% in the combined input and 
output pruning condition, 78.23% in the input pruning 
condition, and 0.36% in the output pruning condition. 

For the glass problem, ANOVA revealed group differences 
between the 3 pruning conditions in the average number of 
pruned connections (F(2, 27) = 790.39, p < 0.0005).  Scheffé 
comparisons revealed less  pruning  for  the  output  
condition than in the other two conditions where input phase 
pruning was present.  No  significant  difference  was  found  
between these latter conditions.  The same pattern of results 
was obtained for the diabetes problem (F(2, 27) = 197.23, p 
< 0.0005). 

  
4)  Number of epochs required for training:  For the glass 

database, ANOVA revealed differences in the number of 
epochs necessary to train the networks across all four 
conditions (F(3, 396) = 482.65, p < 0.0005).  Scheffé 
comparisons revealed that input pruning reduced the number 
of epochs when compared to the other three conditions.  No 
significant differences were found anywhere else.  For the 
diabetes database, significant group differences were found 
(F(3, 396) = 916.57, p < 0.0005).  Scheffé comparisons 
revealed that input and output pruning, as well as input 
pruning, required less epochs than output pruning and no 
pruning.  In sum, pruning, particularly input pruning, can 
reduce training time.   
 

V. DISCUSSION  
 

The current study is the first to demonstrate how to adapt 
the OBD pruning technique to a CC constructive neural 
network.  Because CC uses two distinct optimization 
techniques at different times, OBD was adapted to a dual-
phase pruning.  Input-side weights were pruned at the end of 
each input phase, while output weights were pruned at the 
end of training.  Advantages of using this dual-phase OBD to 
prune CC networks were demonstrated on two real-world 
tasks taken from the PROBEN1 benchmarks.  Results show 
that the new technique was efficient in reducing network size 
by pruning almost half of the connections.  Pruning also led 
to better performance on generalizing to unseen data 
independent of the cross-validation sets.   These results 
replicated those of a number of other studies on using OBD 
with Backprop networks [1].   

One issue of concern was whether pruning would prolong 
training.  Input-side pruning actually reduced training times 
in both the glass and diabetes database.   The goal of hidden 
units is to specialize in capturing specific areas of the error 
surface.  By pruning input-side weights, it is possible that we 
have found a way to avoid over-specialization of those 
hidden units in solving various regions of a target problem, 
and encourage more general solvers.  In any case, input 
pruning improved generalization over the entire train set.  In 
turn, improving the fit of weights to an entire set instead of 
local regions lower the overall error, and thus reduce the 
number of epochs necessary to reach a solution.  

  OBD pruned significantly more input-side weights than 
output weights, and so was more responsible for improving 
generalization and reducing training epochs.  One possible 
reason for this phase difference is that, by assumption, CC 
networks tend to recruit hidden units that effectively reduce 
overall error.  Thus, in the final solution of the network, all 
hidden units are expected to contribute to error reduction.  
Because pruning output weights would eliminate the number 
of hidden units affecting the global error, it is kept minimal.  
This finding supports the assumption about hidden unit 
contribution to overall error.  An alternative explanation is 
also possible.  Weights that are trained over a longer period 
of time tend to distribute their representation more evenly 
across all activation pathways.  In this way, by retraining 
output weights for many phases before pruning, knowledge 
of the target task becomes widely distributed.  By this 
process, each output weight thus becomes important in 
learning the target task and cannot be removed without some 
consequences to the accuracy of learning and generalization.  
Input-side weights, on the other hand, get pruned at the end 
of a single input phase, which has a maximum of 100 epochs.  
In this way, input-side weights don’t get a chance to fully 
distribute their knowledge across weights, leaving some 
weights with a much smaller role than others in 
approximating the objective function.  Despite the fact that 
input-side pruning was more effective in reducing the size of 
the networks, tests on both cross-validation and novel test 



sets revealed that a combination of both input and output 
weight pruning was necessary to achieve the best novel 
generalization.  This means that both input-side and output-
side weights can be responsible for overfitting the data, and 
should be considered for pruning. 

Information in a neural network is often said to be 
distributed across it’s weights.  By pruning weights, 
however, it is essential to assume that information is not 
completely distributed, in which case all weights would 
contribute to reducing the global error, and no pruning would 
be possible.  By pruning almost half of the input-side weights 
of our networks, we were able to show that information was 
in fact not optimally distributed.  In fact, the essential of the 
information of our networks was contained in 50% of input-
side weights plus 99% of the output weights.  

Our current results shows that OBD is a promising 
technique for pruning CC networks.  Using early stopping, 
we pruned a fixed number of weights and tested the network 
using an independent test set.  If error raised on the test set, 
those weights were restored back.  If error lowered, more 
pruning was performed.  One possibility for future research 
is to set a tolerance factor on the decay of performance on the 
test set.  In other words, if we were willing to tolerate more 
error on the test set, we might be able to prune significantly 
more weights than in the current study.  Pruning might then 
become a balanced trade-off between the size of the network 
and performance on the independent test set. 

Empirical results [5] indicate that determining the size of a 
network using OBD creates networks that never reach 
acceptable levels of accuracy on some classification 
problems.  On the other hand, techniques that strictly grow 
networks are often criticized for reaching too much depth 
and complexity while learning a target task.  A technique that 
combines both growing and pruning provides a solution to 
this problem and counterbalances too much growing with 
pruning.  The present paper is the first to systematically 
demonstrate that growing and pruning can be integrated in 
Cascade-correlation networks, and that doing so is more 
beneficial than either of these techniques on their own. 
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