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Connectionist simulations of children’s acquisition of distance (d), time (1), and ve-
locity (v) concepts using a generative algorithm—cascade-correlation—are reported.
Rules that correlated most highly with network responses during training were con-
sistent with the developmental course of children’s concepts. Networks integrated the
defining dimensions of the concepts first by identity rules (e.g., v= d), then additive
rules (e.g., v=d—),and finally multiplicative rules (e.g., v=d+ ). Theresults are dis-
cussed in terms of similarity to children’s development, the contribution of
connectionism to the study of cognitive development, contrasts with alternative mod-

els, and directions for future research.

Children’s understanding of distance, time, and velocity concepts has been of inter-
est to researchers ever since Piaget (1946/1969, 1946/1970) published two vol-
umes describing different stages in their development, Although different
representations and processes have been proposed since Piaget’s work, the basic
idea that children’s knowledge is characterized as a progression through increas-
ingly complex stages has endured (e.g., Acredolo, Adams, & Schmid, 1984;
Crépault, 1978; Siegler & Richards, 1979; Wilkening, 1981). Unfortunately, until

" recently, cognitive development researchers have lacked the tools needed not only

to describe knowledge representations of possible stages but also to explain their
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emergence. However, this situation has changed during the last decade with the use
of connectionist models to describe developmental regularities (Bates & Elman,
1993; Elman et al., 1996; Plunkett & Sinha, 1992).

In this article, connectionist methodology is used to investigate the develop-
ment of distance, time, and velocity concepts. It is argued that the domain-general
constraints of cascade-correlation—the connectionist architecture used (Fahlman
& Lebiere, 1990)—and the domain-specific constraints of the learning environ-
ment not only suggest knowledge representations different from those previously
proposed but also demonstrate how a progression through qualitatively different
knowledge structures is possible.

The development of distance, time, and velocity concepts is of interest for
two main reasons. First, on any given day, a child experiences many moving ob-
jects: animate or inanimate, self- or other-initiated, and self- or other-affected. In
all these movements, information conceming the distance, time, and velocity of
the movement is perceptually available. The sheer number and quality of experi-
ences a child has with these concepts suggest that their development may play
an important role in a more general area of cognition—compensation develop-
ment. During compensation development, children acquire the ability to inte-
grate physical dimensions to predict some potential outcome (Kerkman &
Wright, 1988). A number of tasks have been used to investigate this ability. All
involve differences, rates, ratios, proportions, or other muitidimensional interac-
tions among physical dimensions. Examples include (a) the balance scale task
(e.g., Inhelder & Piaget, 1958; McClelland, 1989; Newell, 1990; Schmidt &
Ling, 1996; Shultz & Schmidt, 1991; Siegler, 1976, 1981; Wilkening & Ander-
son, 1982, 1991), (b) area judgment tasks (e.g., N. H. Anderson & Cuneo, 1977;
Avons & Thomas, 1990; Lohaus & Trautner, 1989; Wilkening, 1980), and (c)
volume judgment tasks (e.g., N. H. Anderson & Cuneo, 1977; Halford, Brown,
& Thompson, 1986; Wilkening, 1980).

Second, the relation among the three concepts has a reversible structure in that
each concept can be defined by the other two. In classical physics, distance (d) is
defined as d = time (f) x velocity (v), time as t=d + v, and velocity as v=d + {.
Thus, a child can think about distance in terms of time and velocity, time in terms
of distance and velocity, or velocity in terms of distance and time. For example,
suppose a child normally walks to school in 10 min. The child might wonder alter-
natively about how close to school he or she would be after only walking for 5 min,
how long it takes to run to school, or how fast he or she would have to ride his or
her bike to get to school in 2 min. Moreover, understanding the relations between
the variables requires both direct and inverse functional reasoning, that is, less
time (velocity) implies less distance but more velocity (time). For example, if the
child walks to a park that is closer than the school, it will take less time. On the
other hand, it takes less time to run to the park than to walk to it. Thus, understand-
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ing distance, time, and velocity requires knowledge of how each is related to the
other two.
The first two sections of this article provide a review of relevant psychological

- work and a discussion of connectionism and development, respectively. The sec-

ond section also describes the cascade-correlation algorithm. The remaining sec-
tions are concerned with the method, results, and discussion of this modeling
effort. To our knowledge, no other computational models exist, connectionist or
otherwise, of this important and interesting domain.

LITERATURE REVIEW OF DISTANCE, TIME, AND
VELOCITY ACQUISITION

Early Research

Piaget (1946/1969, 1964) began investigating children’s concepts of distance,
time, and velocity after Albert Einstein inquired about the relation between time
and velocity in children’s thinking. Einstein wanted to know if one concept was
more primitive or if one depended on the other. Given that Newtonian mechanics
defines velocity in terms of time and space, whereas relativity theory postulates that
time and space are relative to velocity, the source of Einstein’s interest is evident.
Piaget concluded that children’s earliest intuitions were more akin to relativity the-
ory in that the concept of velocity exists independent of notions of duration and dis-
tance. In contrast, time is dependent on velocity throughout development (Piaget,
1946/1969). ;

More specifically, Piaget (1946/1969, 1946/1970, 1964, 1970/1971; see also
Flavell, 1963) determined that mature concepts of distance, time, and velocity de-
velop through four stages: (a) intuitive notions, (b) intermediate concepts, (c) con-
crete operational understanding, and (d) a shift from qualitative to quantitative
conceptualization. The intuitive notions of the concepts were said to emerge at4 to
5 years of age and were thought to be undifferentiated. For example, when children
are presented with two mechanical snails that start and stop moving at the same
time but travel at different speeds, they choose the snail that travels the least dis-
tance as having stopped first. Moreover, the faster moving snail is judged to take
more time, In this sense, time is said to be undifferentiated from distance and ve-
locity. Thus, the goal of development is to construct differentiated concepts. Once
this occurs, children are able to consider the proportion of distance to time to pre-
dict velocity (i.e., v=d + f), for example.

Since Piaget’s investigations, research examining the interrelation of the three
concepts has been rare. Most has looked at the intradevelopment of time (for a re-
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view, see Friedman, 1978, 1990), although some has looked at the
interdevelopment of time and velocity (e.g., Weinreb & Brainerd, 1975). Even
fewer studies (e.g., Crépault, 1977, 1979, 1981; Montangero, 1977, 1979) have in-
vestigated the interdevelopment of all three concepts. One exception, a rigorous
experiment by Siegler and Richards (1979), looked at both the intra- and
interdevelopment of the three concepts. However, Siegler and Richards were con-
cemed with when the concepts became differentiated and not when children could
integrate the dimensions to predict an outcome.

Levin and her collaborators (e.g., Levin & Gilat, 1983; Levin, Gilat, &
Zelniker, 1980; Levin, Israeli, & Darom, 1978) conducted a series of experiments
that raised questions about Piaget’s conclusions and methodology. For example,
Levin (1977) argued that in a typical Piagetian task in which children are presented
with two moving objects, distance and velocity cues interfere with children’s un-
derstanding of time. Moreover, Levin (1979) showed that the interference is not
due to the fact that they are logically related to time. Cues unrelated to time (e.g.,
the brightness of a lamp) showed similar interference effects.

Investigating the Interrelation of the Concepts

An exception to the lack of a thorough investigation of the interrelation of the three
concepts is work from Wilkening (1981), to which we now turn. Wilkening suc-
ceeded in developing three tasks in which mastery involved the quantitative inte-
gration of two concepts to predict the magnitude of the third. Moreover, rather than
testing the ability of children to ignore the defining dimensions, Wilkening’s tasks
require an inference based on the defining dimensions. Because such inferences are
essential to demonstrating knowledge of the relations specified by the distance,
time, and velocity equations, Wilkening’s tasks serve as the basis for our simula-
tions and are discussed in some detail.

Wilkening’s tasks were conceptualized within the Information Integration The-
ory framework (N. H. Anderson, 1974, 1991). In brief, the theory posits that chil-
dren use cognitive algebraic models to integrate graded inputs of physical stimuli.
It has been used to explain a diverse range of developmental phenomena, including
probability judgments (e.g., Acredolo, O’Conner, Banks, & Horobin, 1989), area
judgments (e.g., N. H. Anderson & Cuneo, 1977), and performance on the balance
scale task (Wilkening & Anderson, 1982). In general, development is described as
a progression from identity (centration) to either adding, subtracting, or averaging
models to multiplying or dividing models, with a transition stage in which neither
type of model entirely explains performance.

Wilkening’s tasks involve presenting children with information about the de-
fining dimensions and asking them to predict the magnitude of the concept. For ex-
ample, in a distance task, children were shown an apparatus that had, at one end of
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a footbridge, a dog and several animals that were said to be frightened of the dog.
The children were told that the animals would run along the bridge as soon as the
dog began to bark and would stop when the barking ceased. The task involved de-
termining how far each animal would run. Thus, the children were given the char-
acteristic velocity of the animals and the time they ran (the duration of barking)
and asked to infer the distance they would run.

Wilkening studied three age groups: 5-year-olds, 10-year-olds, and adults. To
assess performance, Wilkening used functional measurement (N. H. Anderson,
1974), a technique that employs graphical and statistical analyses to assess partici-
pants’ responses. This analysis revealed the following: (a) In the distance task, all
age groups used the correct multiplication rule, d = ¢ x v; (b) in a time task,
10-year-olds and adults employed the correct division rule, t = d + v, whereas
5-year-olds used a subtraction rule, = d— v; (c) in a velocity task, the two older age
groups used a subtraction rule, v=d -, and the 5-year-olds used an identity rule, v
= d. Wilkening concluded that young children did have the ability to integrate
these dimensions. However, he was unwilling to make comparative claims about
the developmental rates of the three concepts because it appeared that there were
differing memory demands across the three tasks. For example, in the distance
task, but not in the velocity task, participants of all age groups were able to use an
eye-movement strategy in which they appeared to “follow” the imaginary animal
as it ran across the footbridge.

In a follow-up study, Wilkening (1982) attempted to increase the memory de-
mands of the distance task by presenting time (barking) before velocity informa-
tion (animal identity) and lessen the memory demands of the velocity task by
visually presenting the time information. The modifications partially supported
his hypothesis, in that 5-year-olds were observed to use an additive rule (d =+
v) in the distance task. However, the 'results for the velocity task remained
unchanged. ;

As Wilkening (1982) acknowledged, his experiments left open the question of
whether adult participants were integrating distance and time information accord-
ing to the normative multiplicative rule when making velocity judgments. One
possibility is that participants were unable to take advantage of the visually pre-
sented time information. Another possibility, as noted by Wilkening (1981), is that
unlike in the distance and time tasks, the response scale in the velocity task was not
objectively linear. To indicate their velocity judgment, participants chose which of
seven animals was capable of running the given distance in the given time.
Wilkening argued that there was some evidence that the response scale was loga-
rithmic. As such, performance consistent with dividing distance and time informa-
tion would have yielded parallel functional measurement graphs and, thus, been
interpreted as evidence for integration based on subtraction. Therefore, it remains
to be seen whether adults’ inability to integrate time and distance information
multiplicatively is intrinsic or a reflection of task demands.
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COGNITIVE DEVELOPMENT WITHIN A
CONNECTIONIST FRAMEWORK

A number of researchers (e.g., Elman, 1993; Elman et al., 1996; McClelland, 1989;
Rumelhart & McClelland, 1986; Schyns, 1991; Shultz, Schmidt, Buckingham, &
Mareschal, 1995) have begun to use connectionist models to investigate cognitive
development. Part of the appeal of connectionism is the use of brain-inspired com-
putation. Connectionist models consist of networks of simple processing units that
send inhibitory or excitatory signals to each other via weighted connections. In the
models relevant to this discussion, learning occurs by adjusting the weights of the
connections between an input layer, in which stimulus information is encoded, and
an output layer, in which the response is made. Two general classes of networks in-
clude static networks that have a constant topology (e.g., Rumelhart, Hinton, &
Williams, 1986) and generative networks that grow in size as learning progresses
(for areview of generative algorithms, see Alpaydin, 1991). From a developmental
point of view, generative models can be viewed as taking the brain-style computa-
tion metaphor one step further to include the addition of new connections among
units as an important part of development. Indeed, within the field of neuroscience,
synaptogenesis and neurogenesis have been suggested as neural bases of develop-
ment and learning (Gould, Reeves, Graziano, & Gross, 1999; Greenough, Black, &
Wallace, 1987; Quartz & Sejnowski, 1997).

In addition to offering new insight into some old problems, connectionism also
addresses some developmental issues that either had been overlooked or ignored.
As early as 1969, Flavell and Wohlwill argued that an account of cognitive devel-
opment must concern itself with both the formal and functional aspects of develop-
ment. In other words: (a) What knowledge structures develop? and (b) How does
developmental transition occur? Research concerning what structures develop
flourished, but by the mid-1980s relatively little work had been conducted in the
area of transition mechanisms (Sternberg, 1984). Bates and Elman (1993) sug-
gested that this was partly due to the widely accepted computer metaphor of cogni-
tive development. In brief, symbolic computational assumptions—such as discrete
representations (i.e., symbols), rules to manipulate symbols, a viéw of learning as
programming, and the relative unimportance of possible implementation con-
straints (i.., functionalism)—fostered a paradigm that considered mechanisms of
change as somewhat unimportant. Conversely, the basic assumptions of
connectionism (i.e., distributed representations, graded knowledge in the form of
weighted connections, learning characterized as structural change, and consider-
ation of implementation constraints) offered a new approach to study not only
what develops but how it develops (for similar points of view, see Churchland,
1990; Plunkett & Sinha, 1992).

Piaget believed that stage transitions resulted from emergent structures medi-
ated by adaptive accommodation and assimilation. However, despite his efforts,
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the mechanism that caused transitions remained vague (Bates & Elman, 1993).
Recently, a number of authors have suggested that connectionism not only pro-
vides a precise account of transition but also new interpretations of assimilation
and accommodation (e.g., Bates & Elman, 1993; Plunkett & Sinha, 1992). For
static networks, researchers suggest that gradual and continuous weight changes
result in stagelike performance (Plunkett:& Sinha, 1992). McClelland (1989) ar-
gued that accommodation occurs when weights are updated during learning, thus
modifying the structure of knowledge. Assimilation occurs when generalization to
a new instance or input does not result in any weight change. Generative architec-
tures provide a second potential transition mechanism—the recruitment of new
units that increase the computational complexity of the network (Mareschal &
Shultz, 1996; Shultz et al., 1995). Accommodation occurs as new units are added,
providing a network with qualitatively different representational power. Weight
changes reflect what could be termed assimilative learning, that is, leamning with-
out major structural change. More recently, Shultz (1994) suggested that one gen-
erative connectionist architecture, cascade-correlation (Fahlman & Lebiere,
1990), can be interpreted as engaging in a type of representational redescription
similar to that proposed by Karmiloff-Smith (1992).

The Cascade-Correlation Algorithm

Cascade-correlation is a generative learning algorithm in which the network topol-
ogy is created dynamically by the addition of required hidden units as training pro-
gresses. Figure la illustrates the initial topology of a network with three input units
and one output unit. The network begins as a simple perceptron with direct connec-
tions from the input-to-output layer. There is no intermediary hidden unit layer at
this point. There are three input units to code a stimulus and an obligatory bias unit.

@ O ® O © O

FIGURE1 Architecture at beginning (a), after one hidden unit is added (b), and after a second
hidden unit is added (c). Solid and dashed lines indicate frozen and trainable connections, re-
spectively. B, I, H, and O refer to bias, input, hidden, and output unit, respectively.
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The bias unit always has an activation of one and provides leamable thresholds for
all units (except input units). Figures 1b and Ic illustrate the network structure fol-
lowing the addition of one and two hidden units, respectively.

Training consists of a series of two-phase training cycles—each cycle in-
volves.“epochs” of training in which an epoch entails a single presentation of all
training patterns. During an output training phase, weights from input units and
existing hidden units to the output layer are adjusted in an attempt to reduce the
error between the actual output activations computed by the network and the tar-
get (desired) output activations. The output training phase continues until either
(a) error has been reduced to some preestablished criterion (in which case “vic-
tory” is declared and training is terminated), (b) error can no longer be signifi-
cantly reduced, or (c) some maximum number of epochs is reached. When either
of the latter two conditions is met, an input training phase begins. Input training
is used to recruit (add) a hidden unit into the network. At the start of an input
phase, a pool of candidate hidden units (default value of eight units) have con-
nections from all input units (including the bias) and any existing hidden units.
At this point, candidate hidden units are not connected to output units. The algo-
rithm then adjusts the weights into these candidates to maximize the correlation
between activations of candidate hidden units and error at the output units.
Weight adjustment continues until either the correlations can no longer be sig-
nificantly changed or some maximum number of epochs is reached. When this
occurs, the highest correlating candidate hidden unit is installed into the network
by connecting it to the output units, its input-side weights are frozen (i.e., these
weights do not undergo any further training), and a new output training phase
begins. (For more detailed treatments of cascade-correlation learning, see
Fahlman, 1988; Fahlman & Lebiere, 1990; Hoehfeld & Fahlman, 1991; Shultz
et al., 1995; Yang & Honavar, 1998.)

THIS STUDY

In this study, we train cascade-correlation networks in a task environment analo-
gous to the one used in Wilkening’s experiments. The networks have to predict, as
output, the value of one dimension (e.g., velocity) given information about the
other dimensions (e.g., distance and time). We chose this task environment because
itaddresses the original question of interest: What do children know about the inter-
relation of distance, time, and velocity?

There are a number of questions we hope to answer with our modeling effort.
Within a general computer modeling framework, we can ask if the developmental
course of the three concepts is similar when task demands are held constant. Recall
that one of the difficulties of interpreting Wilkening's (1981, 1982) results within
and across concepts was that task demands may not have been equivalent in terms

.
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i
of memory requirements and response scales. This could explain why children and
adults can make time inferences but not velocity inferences using a normative rule.
The use of computer simulation allows us to ensure that both the memory demands
and the response scales are equivalent across these two inference tasks.

Within a connectionist framework, wei can address the following questions.
Can networks that represent and process information using weighted connec-
tions among simple units account for knowledge representations previously
characterized by cognitive algebra? Moreover, if networks are capable of such
representations, will they initially perform as if using identity rules (e.g., v = d),
progress to additive rules (e.g., d = ¢ + v), and finally to multiplicative rules
(e.g., t=d + v) as they gain experience with the environment? In other words, do
networks go through the same developmental course as do children? If networks
successfully develop, what aspect of the cascade-correlation algorithm enables
transition from one representation to another? Answering these questions could
begin to provide a mechanistic account of the development of distance, time,
and velocity concepts.

We chose the cascade-correlation algorithm to train the networks for a num-
ber of reasons. In general, it seems appropriate to use a feedforward supervised
learning algorithm given the abundance of experiences children have with mov-
ing objects in which perceptual information can be used not only as input but
also as target feedback. For example, imagine a child watching cars traveling
down a street. The distance traveled, time taken, and speed of the cars are all
perceptually available. When learning how time and speed relate to distance, the
child can use the actual distance traveled as a feedback target. In networks, error
is computed as the discrepancy between expectations (actual outputs) and ob-
served outcomes (target outputs). Such motion information could be placed in
alternative frameworks, such as auto-associator networks, but we favor our
feedforward scheme because of its greater capacity to abstract the actual under-
lying nonlinear functions by means of hidden unit recruitment. Auto-associator
networks, for example, have quite limited capacity in terms of both the number
and type of patterns they can learn, and they cannot abstract nonlinear relations
(Hertz, Krogh, & Palmer, 1991). ,

Moreover, cascade-correlation already has proven useful in understanding a
number of cognitive developmental phenomena, including children’s perfor-
mance on the balance scale task (Shultz, Mareschal, & Schmidt, 1994; Shultz &
Schmidt, 1991), the acquisition of personal pronouns (Shultz, Buckingham, &
Oshima-Takane, 1993), seriation (Mareschal & Shultz, 1993), conservation
(Shultz, 1998), and discrimination shift learning (Sirois & Shultz, 1998). We felt
that networks that can increase their nonlinear representational power by recruit-
ing hidden units would provide insight into how children progress from simple
centration (identity) rules to more complex additive rules to normative multiplica-

tive rules in the domain of distance, time, and velocity development.
}
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METHOD
Networks

The initial network topology consisted of three input banks, one each for distance,
time, and velocity information, connected to a single linear output unit that pro-
duces the sum of all weighted input it receives. The number of units per input bank
depends on the type of encoding. Five types of input encoding commonly found in
the connectionist literature were used to determine the effect of input encoding on
performance and the overall robustness of the results. These included three distrib-
uted types of encoding: mercury (e.g., Harnad, Hanson, & Lubin, 1991), thermom-
eter (e.g., J. A. Anderson, 1990), and gaussian (e.g., Lacouture & Marley, 1991);
one local encoding, nth (e.g., McClelland, 1989); and one “partially distributed”
encoding, integer (e.g., Shultz & Schmidt, 1991). Two variants of integer encod-
ing, integer-context and distributed-integer, also were investigated.

In distributed representations, more than one unit is used to represent any one
input value, and the same unit is involved in the representation of more than one in-
put value. In mercury coding, the first » units corresponding to the integer n have
an activation of 1, and all other units have an activation of zero. The total number
of units used is equal to the maximum input value. In thermometer coding, the nth,
nth+ 1, and nth + 2 units have an activation of 1, and all other units have an activa-
tion of zero. Thus, the total number of units is two more than the maximum input
value. The gaussian coding used is the same as thermometer coding except that the
nth + 1 unit has an activation of 3.

In local representations, each unit is used excluslvely to represent a given input
value. For example, in nth coding, for any input value n, the nth unit has an activa-
tion of 1, and all other units have an activation of zero. As with mercury coding, the
total number of units is equal to the maximum input value used.

Partially distributed representations combine both local and distributed proper-
ties. Forexample, in integer coding, only one unitis used per input group, but the unit
can be used to represent more than one input value by assigning the integer value of
the dimension. Distributed-integer coding is an extension of integer coding that uses
two units per input group. It is a type of interpolation encoding (Ballard, 1987) in
which the activations of the two units are mapped in opposition to each other. In our
implementation, the activation on the first unit is simply half the input value. Thus,
for integer input values ranging from 1 to 5, the unit’s activation would be 0.5, 1.0,
1.5,2.0,and 2.5, respectively. In contrast, for the same range of integer input values
(1-5), the second unit’s activation would be 2.5,2.0, 1.5, 1.0, and 0.5, respectively.
Note that for any input value, the sum of total activation across the two units is 3.
Finally, integer-context coding is the same as integer with the addition of three con-
text units, one representing each type of inference problem. The appropriate context
unitreceives aninput value of 1, and the other two units receive a value of zero. Thus,

DISTANCE, TIME, AND VELOCITY 315

the three input banks are encoded using partially distributed representations,
whereas the context is encoded using local representations.

As mentioned, the input banks were connected to a linear output unit. We chose
this type of output unit because it is the most direct way of producing quantitative
outputs similar to the responses made by participants in Wilkening’s experi
ments.! Any hidden units added to the network during training had a sigmoid acti-
vation function ranging from —0.5 to +0.5. This S-shaped function enables nonlin-
ear computation because incoming activations that sum to produce a value in the
middle range of the function are inflated or suppressed relative to the maximum
and minimum values, respectively, whereas extreme values level off.

Training Patterns

Training patterns consist of input values and a target, or output value. Input values
are used to encode the event (e.g., the distance traveled and the amount of time it
took), and the output value is the outcome (e.g., the velocity). There were three
classes of inference patterns: distance, time, and velocity. The distance class, for
example, were those patterns in which distance was to be inferred, given time and
velocity information as input.

The input values of the two known d1mens1ons were the integers from 1 to 5,
whereas the input value of the dimension to be inferred had a value of zero to indi-
cate that the magnitude was unknown.2 Thus, for any given input pattern, one input
group would be all zeros, whereas the other two groups had dimensional values be-
tween 1 and 5. An example of each of the three types of input patterns is illustrated
in Table 1 using mercury encoding. All combinations of the defining dimension
values (1-5) were combined as input patterns, for a total of 25 distance, 25 time,
and 25 velocity training patterns, in which distance, time, and velocity were to be

10ther encodings, such as those used for the mput representation, would require decisions concern-
ing what would be a sufficient implementation to capture output responses and what auxiliary proce-
dures would be used to convert unit activations into magnitude values that could be compared to
Wilkening’s response scales. Ultimately, these decisions would be arbitrary. For example, in terms of
implementation, if we had chosen nth encoding, we would have to decide the level of preciseness we re-
quired. Would we use 10 units to represent the first decimal place or would 5 units, each corresponding
to successive intervals of 0.2, suffice? Would we want to represent more than one decimat place? No
matter how we chose to implement the response scale, we would have to decide how to interpret the acti-
vation patterns produced by the network. For example, we would have to choose what activation would
be sufficient for a unit to be considered “on,” how to resolve conflicts when two units were on, what it
meant if no units were turned on, and so forth.

2Because an input’s contribution to the network’s response is determined by multiplying its activation
by the connection weights to any hidden and output units in the network, an input value of zero removes
any influence it might have on the response. Thus, conceptually speaking, an input of zero does not imply
that the magnitude of the dimension is zero but rather that there is no input from this dimension.
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TABLE 1
Example Input of Distance, Time, and Velocity Inferences for Mercury Networks
Input Group
Inference Distance Time Velocity
Distance 00000 11100 11111
Time 11100 00000 11111
Velocity 11100 11111 00000

Note. In these examples, the two known dimensions receive values of 3 and 5. The dimension to be
inferred has an input value of 0.

inferred, respectively. Target output values were calculated using the three Newto-
nian equations (d=¢ x v, t=d + v, and v=d + £). In addition, distance target values,
which would vary between 5 and 25, were scaled by dividing by 5, so that the
range would be consistent with that of the time and velocity inference patterns
" (which vary from 1 to 5).

Procedure

Twenty networks per input encoding type were trained. For each network, training
continued until the actual output activation produced in response to each training
pattern was within score-threshold (0.1) of the target activation. Each epoch of
training involved the presentation of all 75 training patterns (25 distance, 25 time,
and 25 velocity patterns) followed by weight adjustments. Testing was conducted
once at the beginning and ending of output training phases as well as every five ep-
ochs during these phases. Because output activations do not change during input
. training, testing during the input phase is redundant, as the results are the same as in
the last epoch of the output training phase.

At each testing epoch, output activations, connection weights, and the sum of
squared error were recorded for the entire training set (75 patterns) and individu-
ally per pattern type (distance, time, or velocity). In addition, the total number of
hidden units recruited by the network as well as the epoch at which they were in-
stalled into the network were recorded. '

To investigate the generalization of network performance, five additional networks
per encoding condition were trained on 57 randomly selected patterns (19 distance,
time, and velocity patterns, respectively). The remaining 18 patterns (6 distance, time,
and velocity patterns, respectively) were used to test for generalization.

Across all simulations, Fahlman’s default values were used for all cascade-cor-
relation parameters except that score-threshold (the amount that an actual output
can deviate from its desired output) was lowered to 0.1, which is more appropriate
for linear outputs.
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Treatment of Output

The focus of interest was determining what rules best captured the overall perfor-
mance of a network at a given testing epoch. Because highly accurate computation
was not demanded of the human participants in Wilkening’s work, an attempt to re-
flect this was made by obtaining a Pearson product-moment correlation coefficient
of the relatedness of output values predicted by possible rules with the actual output
of the network. ‘

The set of possible rules included all rules observed by Wilkening (1981, 1982)
as well as others derived from Information Integration Theory. For distance infer-
ences, output values were calculated according to the following three classes of
rules: (a) two identity rules, in which the outcome was determined solely by the
time dimension, d= ¢, or the velocity dimension, d = v; (b) three additive rules, d =
t+v,d=t-v,and d=v—t; and (c) three multiplicative rules, d = t x v (the correct
Newtonian rule), d = ¢ + v, and d = v + £. Rules analogous to the distance inference
rules were used to assess time and velocity inferences.

RESULTS

1

Observed Stages

To determine the developmental course of a network, we plotted the 72 values asso-
ciated with each rule as training progressed. Because this type of plot offers a de-
tailed, quantitative view of the dynamic nature of the networks’ development, an
example, derived from a single network in the nth encoding condition, is shown in
Figure 2. However, to illustrate the general development of the networks, it is
clearer to simply plot the distance, time, and velocity rules that were both the best
predictors of a network’s performance and that accounted for a significant amount
of the variance, 72 > .25, df = 24, p < .01, Therefore, in Figure 3, we present such
plots for one typical network in each input encoding condition. These networks
were chosen as illustrative examples of general trends considering the progression
of stages, the mean onset and lengths of stages, and when hidden unit recruitment
occurred. Note that the network from the nth encoding condition depicted in Fig-
ures 2 and 3a is the same network to enable a comparison of the two plotting
schemes.’

In general, most networks exhibited developmental sequences similar to those
observed by Wilkening (1981, 1982), that is, for networks in the nth, mercury,

3A preliminary report of the performance of networks with nth unit coding appears in Buckingham
and Shultz (1994).
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FIGURE2 Amount of variance accounted for (+2) in one nth network’s responses to (a) dis-
tance, (b) time, and (c) velocity inference pattems by the set of possible rules. Only rules ac-
counting for a significant amount of variance, 7 > .25, df= 24, p < .01, at some point in training
are shown. Gaps between data points correspond to hidden unit training, During this period, net-
work output does not change and, thus, is not recorded.

thermometer, and gaussian encoding conditions (Figures 3a, 3b, 3c, and 3d), the
following sequence was observed: (a) onset of time and velocity identity stages (¢
=d and v=d), followed by (b) additive stages of all three concepts (d=t+v, t=d—
v, and v=d—{), then (c) multiplicative stages of time and velocity (t=d + vand v=
d + 1), and finally (d) the multiplicative stage of distance (d =t x v). A similar se-
quence was found in the performance of the integer-context and distributed-inte-
ger networks (Figures 3e, 3f), the difference being that the distance additive stage
started earlier in training. Only integer networks (Figure 3g) demonstrated a mark-
edly different developmental course. Details of the development of each inference
type are provided subsequently.
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Distance inferences. All networks, regardless of input encoding technique,
exhibited the same developmental course on distance inferences as the one ob-
served by Wilkening (1982), that is, networks progressed from an additive stage (d
= t+ v) to a multiplicative stage (d=t x v). There were some differences in terms of
when the stages began and the amount of variance accounted for across conditions.
In the integer-context, distributed-integer, and integer conditions, the additive
stage began early in training, typically prior to the recruitment of a hidden unit. At
onset, the additive rule accounted for more than 95% of the variance in the net-
work’s performance. In the other conditions, the onset of the additive stage oc-
curred only after a hidden unit had been recruited and, at onset, the additive rule
accounted for 60% to 71% of the variance. After a second hidden unit was re-
cruited, the additive rule typically accounted for more than 90% of the variance in
the networks’ responses. Across all conditions, the multiplicative stage began after
two to four hidden units had been added to the network. At onset, the multiplicative
rule accounted for at least 92% of the variance in the networks’ responses. Even-
tually, nearly all the variance was accounted for. The mean number of hidden units
recruited prior to stage onset, the epoch at which the stage began, the r? associated
with the distance rules at onset, and the maximum r?2 attained by the rule defining
the stage are reported in Table 2.

Occasionally, one of the possible distance rules (usually either d=¢ord=v) ac-
counted for a significant amount of variance for one or two epochs at the beginning
of training. For other networks (see Figures 3b and 3f), this period was marked by a
vacillation between one or more rules. Finally, for some networks, one of the iden-
tity rules accounted for a significant amount of variance at the epoch just prior to
the onset of the additive stage. Most of the networks that demonstrated these pat-
terns were in the mercury, integer-context, and distributed-integer conditions.
However, once the additive stage began, they developed as the other networks.
Given the very brief appearance of these precocious rules, it is unclear what impor-
tance to give them. Moreover, for the majority of networks (58%, including the
mercury, integer-context, and distributed-integer conditions; 83% excluding
them), the onset of the additive stage was the first epoch at which any of the possi-
ble distance rules accounted for a significant (p < .01) amount of the variance in the
networks’ responses to the distance patterns. For all networks, the dominance by
the additive rule continued until the onset of the multiplicative stage.

Time inferences.  As can be seen in Figure 3, all networks (excluding those in
the integer condition) followed a developmental course on time inferences similar to
Wilkening’s (1981) participants, progressing from an additive stage (t =d—-v) to a
multiplicative stage (£ = d + v). Network performance primarily differed in that net-
works first progressed through an identity stage (¢ = d), during which a maximum of
more than 90% of the variance in the networks’ responses to time problems was ac-
counted for. The identity stage occurred prior to the recruitment of a hidden unit. The
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TABLE 2
Mean Number of Hidden Units, Epochs of Training, and Variance Accounted for in Network
Output at Onset of Distance Stages and Maximum Variance Accounted for During Stages

d=t+vy ¢ d=txv
Onset . Onset

Encoding Hidden Epoch r*  Maxr® Hidden  Epoch 7 Max
Nth

M 1.00 7250 0.71 0.94 3.10 25540 092  0.9991

SD 0.00 376 0.07 0.05 0.91 76.78  0.05  0.0003
Mercury

M 1.00 82.70 0.60 0.87 2.70 28885 086 0.9990

SD 0.00 6.04 0.09 0.07 0.73 86.08 0.09 0.0004
Thermometer

M 1.00 67.80 0.60 0.96 3.40 28660 094  0.9991

SD 0.00 442 0.10 0.04 0.68 5745 0.03  0.0002
Gaussian

M 1.00 66.85 0.70 0.96 3.40 27210 094  0.9992

SD 0.00 387 0.08 0.04 0.75 65.17 003 0.0004
Integer

M 0.00 475 098 1.00 355 34400 095 0.9992

SD 0.00 197 003 0.00 0.94 10440 001  0.0004
Integer-context

M 0.15 2175 096 1.00 3.60 40830 095 0.9990

SD 0.37 2725 0.05 0.00 0.94 109.02 001  0.0003
Distributed-integer

M 0.05 16.00 0.95 1.00 245 20675 095 0.9989

SD 0.22 11.77 0.05 0.00 0.69 56.04 0.01 0.0004

Note. n=20 forall network types. d=distance; £=time; v= velocity; max = maximum. All r? values
are based on positive correlations.

additive and multiplicative stages typically began after the recruitment of the firstand
second hidden unit, respectively. At the onset of the additive stage, more than 74% of
the variance in the network’s responses to the time problems was accounted for by the
t=d-vrule. At the onset of the multiplicative stage, the =d + vrule accounted for at
least 76% of the variance, on average. By the end of training, nearly all the variance
was accounted for. The mean number of hidden units recruited prior to stage onset,
the epoch at which the stage began, the r2 associated with the time rules at onset, and
the maximum 72 attained by the rule defining the stage are reported in Table 3.

As with distance inferences, brief appearances of other time rules occurred
prior to the onset of the first stage. Typically, there were one or two testing epochs
prior to the identity stage in which the ¢ = d + v rule accounted for a significant
amount of variance (see Figure 3¢). This type of performance was mostly confined
to the mercury and integer-context networks. Moreover, once the identity stage be-
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TABLE 3
lean Number of Hidden Units, Epochs of Training, and Variance Accounted for in Network Output at
Onset of Time Stages and Maximum Variance Accounted for During Stages

t=d

t=d-v t=d+v

Onset Onset Onset
wcoding Epoch r* Maxr* Epoch P  Maxr* Hidden Epoch P Max?
h
M 475 062 093 6950 0.77 081 195 15125 0.84 0.9995
SD 197 0.17 0.01 6.02 005 0.05 0.22 18.15 0.05 0.0002
ercury
M 900 067 093 8220 075 086 200 19925 0.88 0.9992
SD © 417 018 0.02 581 005 0.04 0.00 17.73  0.02 0.0004
ermometer
M 525 077 092 6830 074 0.84 200 15815 0.88 0.9993
SD 112 0.13 0.1 348 004 0.05 0.00 8.89 0.02 0.0003
wssian .
M 475 067 092 6810 0.76 082 200 150.15 0.88 0.9991
SD L12 0.14 001 4.14 005 0.05 0.00 881 0.02 0.0004
teger-context
M 1400 091 099 8140 081 0383 1.70 17050 0.77 0.9993
SD 620 0.05 001 869 003 005 073 86.78 0.07 0.0003
stributed-integer
M 625 097 100 6510 085 0.87 215 17020 0.76 0.9992
SD 275 004 0.00 6.66 002 0.05 0.59 55.16 0.10 0.0003

Note. n=20 for all network types. d = distance; ¢ = time; v = velocity; max = maximum, No hidden units were
sruited prior to the onset of the identity stage (¢ = d). All networks recruited one hidden unit prior to the onset of the

ditive stage (# = d — v). All  values are based on positive correlations.

gan, these networks developed as in the other conditions. Across the nth, ther-
mometer, gaussian, and distributed-integer conditions, for 90% of the networks,
the only rules that were the best significant predictors of time inferences as the net-
works developed were the t=d, t = d—v, and t = d + v rules, in that order. Note that
this was also true for 30% of mercury and integer-context networks.

The developmental course of integer networks (Figure 3g) involved only two
stages—an additive stage prior to the recruitment of a hidden unit, followed by the
multiplicative stage after the recruitment of the first hidden unit. The additive stage
was characterized by a different rule (¢=d+ v). Onaverage, the additive stage began
at 4.75 epochs (SD = 1.97), with the additive rule accounting for 97.95% (SD =

2.85%) of the variance. On average, the multiplicative stage began at 64.35 epochs

(SD =9.65), with the multiplicative rule accounting for 62.88% (SD = 9.65%).

Velocity inferences. Ninety-nine of all 100 networks (excluding the integer
condition) followed a progression from an identity stage (v=d), to an additive stage
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(v=d - 1), and then to the multiplicative stage (v = d + #). This is similar to
Wilkening’s (1981, 1982) results, with the exception that the networks attained the
final multiplicative stage. The additive and multiplicative stages typically began
after the recruitment of the first and second hidden unit, respectively. At onset, the
identity rule accounted for more than 60% of the variance and quickly began to ac-
count for more than 90% of the variance. The additive rule accounted for at least
67% of the variance at onset of the additive stage, and it later accounted for more
than 80% of the variance. Finally, at the onset of the multiplicative stage, the v=d -
t rule accounted for more than 75% of the variance, on average. By the end of train-
ing, nearly all the variance was accounted for. The mean number of hidden units re-
cruited prior to stage onset, the epoch at which the stage began, the r2 associated
with the velocity rules at onset, and the maximum 72 attained by the rule defining the
stage are reported in Table 4.

. TABLE 4
Mean Number of Hidden Units, Epochs of Training, and Variance Accounted for in Network Output at
Onset of Velocity Stages and Maximum Variance Accounted for During Stages

v=d v=d-t v=d+t
Onset Onset Onset

Encoding Epoch 7  Maxr® Epoch  Maxr” Hidden Epoch r  Maxr’
Nth

M 500 0.63 0.93 69.50 ; 0.77 0.82 2.00 15595 0.85 0.9993

SD 162 017 0.01 552 0.02 0.04 0.00 6.89 0.05 0.0003
Mercury

M 725 0.66 0.93 8220 0.76 0.87 2.00 198.25 0.88 _ 0.9991

SD 343 017 0.02 590 005 004 0.00 17.08 0.03 0.0005
Thermometer i

M 4.00 0.70 0.92 68.05 - 0.74 0.82 2.00 157.90 0.88 0.9993

SD 205 0.17 0.01 439 0.04 0.05 0.00 9.03 0.03 0.0003
Gaussian

M 475 062 092 6760 074 0.82 210 15745 0.88 0.9992

SD 112 0.13 0.01 419 . 005 0.06 0.31 2721 0.04 0.0003
Integer-context

M 1375 090 099 8142 0.80 082 1.65 168.10 0.76 0.9994

SD 723 004 0.0t 893 003 004 0.67 86.69 0.06 0.0003
Distributed-integer :

M 650 097 1.00 65.10' 0.85 0.87 220 17490 0.76 0.9991

SD 28 004 000 6.66- 002 0.05 0.52 51.05 0.09 0.0004

Note. n=20forall network types. One integer-context network skipped the additive stage. d = distance; = time;
v = velocity; max = maximum. No hidden units were recruited prior to the onset of the identity stage (v = d). All
networks recruited one hidden unit prior to the onset of the additive stage (v =d - ¢). All / values are based on
positive correlations.
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As was the case with respect to distance and time inferences, the earliest veloc-
ity inferences made by mercury and integer-context networks were sometimes
best predicted by a rule other than the identity rule. Typically, the v=d+ ¢ rule ac-
counted for a significant amount of variance for two testing epochs prior to the on-
set of the identity stage. Across the nth, thermometer, gaussian, and
distributed-integer conditions, for 90% of the networks, the only rules that were
the best significant predictors of time inferences as the networks developed were
the v=d, v=d—t, dand v=d + t rules, respectively. Note that this was also true for
40% of mercury and integer-context networks.

As with time inferences, integer networks did not first progress through an
identity stage but through an additive stage (v=d + f) prior to hidden unit recruit-
ment. Then, after the first hidden unit was installed, they attained the normative
multiplicative stage. On average, the additive stage began at 4.50 epochs (SD =
2.24) and accounted for 96.31% (SD = 3.92%) of the variance. The multiplicative
stage began at 75.13 epochs (SD = 13.87) and accounted for 63.31% (SD = 7.66%)
of the variance, on average.

Error Reduction

The mean amount of error at the beginning and ending of the identity, additive, and
multiplicative stages is shown in Figures 4, 5, and 6, respectively. Error was mea-
sured as the sum of squared differences between target and actual output across pat-
terns. Each stage was associated with successive error reduction. Approximately
20% to 35% of the error that existed at the onset of the time and velocity identity
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FIGURE4 Mean error at the beginning and end of time and velocity identity stages. Error bars
represent standard error of the mean. ‘
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FIGURE5 Mean erroratthe beginning and end of distance, time, and velocity additive stages.
Error bars represent standard error of the mean.

stages was reduced over the identity stages. Between 25% and 50% of the error was
reduced over the time (f=d —v) and velocity (v=d—f) additive stages, except in the
case of integer-context and distributed-integer networks, in which about 5% of the
error was reduced. For integer networks, error reduction over the time (t=d+ v) and
velocity (v=d+ f) additive stages was roughly 15%. Approximately 70% to 90% of
the error that existed at the onset of the distance additive stage was reduced by the
end of the stage across all networks. Finally, more than 98% of the error that existed
at the beginning of the multiplicative stages was reduced by the end of training.
Thus, learning was continuous across the stages in all developmental sequences.

Hidden Unit Recruitment and Stage Onset

As can be seen in Figure 3, transition from identity to additive and additive to multi-
plicative stages typically occurred quickly after the recruitment of a hidden unit.
So-called Hinton diagrams were drawn (Figures 7 and 8) to understand the nature
of the relation of hidden unit recruitment to stage onset.

In Hinton diagrams, the magnitude and sign of weights from sending units (input
and hidden) to receiving units (hidden and output) are indicated by the size and color
(white for positive and black for negative) of squares drawn in arow for each receiv-
ing unit. The numbers above the squares indicate the sending unit. For integerand in-
teger-context networks, Squares 1,2, and 3 represent the weights from the distance,
time, and velocity input units, respectively. For integer-context networks, Squares
4, 5, and 6 represent the context units. For distributed-integer networks, Squares
1-2, 3-4, and 5-6 represent the weights from the distance, time, and velocity input
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represent the weights from the distance, time, and velocity input groups, respec-
tively. Finally, for thermometer and gaussian networks, Squares 1-7, 8-14, and
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FIGURE 8 Hinton diagrams showing relative size (square size) and direction (white = posi-
tive; black = negative) of weights from input layer to hidden units and output unit for (a, c) inte-
ger and (b, d) integer-context encoding.

unit is activated by the presentation of a distance inference pattern, information
from the time and velocity input groups augments each other because the direction
of their weights are the same. Conversely, because the distance weights have op-
posite signs from the time and velocity weights, when the hidden unit is activated
by the presentation of a time or velocity inference pattern, input from one input
group counters the effects of input from the other, and vice versa. Thus, the addi-
tive rule d = ¢ + v stems from the summing effects of input from time and velocity
input groups caused by same-sign weights to the hidden unit. Alternatively, the ad-
ditive rules #=d - vand v=d - t stem from summing opposite-sign weights of time
and velocity input groups and distance input groups.

Unfortunately, a clear pattern did not emerge with respect to transition to the
multiplicative stages of time and velocity. However, for integer and integer-context
networks, a consistent pattern was observed for the transition to the distance multi-
plicative stage. For 73% of the networks, the multiplicative stage only emerged after
ahidden unit was recruited that received opposite-sign weights from time and veloc-
ity input groups, Hinton diagrams of two networks using integer and integer-context
encoding are presented in Figure 8. As can be seen in Figures 8a and 8b, the second
hidden unit has opposite-sign weights (Squares 2 and 3). The multiplicative stage
was subsequently observed. For the networks depicted in Figures 8c and 8d, the
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multiplicative stage was observed after the installation of the third and fourth hidden
units, respectively. Again, it was at this point that the opposite-sign weights for time
and velocity input groups were first used by a hidden unit.

[

Generalization

The sum of squared error for the 57 training (19 distance, 19 time, and 19 velocity)
and 18 testing (6 distance, 6 time, and 6 velocity) patterns was recorded across ep-
ochs for the five networks per encoding condition that were run to test generaliza-
tion. The respective error scores were then scaled by dividing by the total number of
patterns in the training and testing sets to obtain a mean sum of squared error. Plots
of the mean sum of squared error over training and testing patterns by epoch of typi-
cal individual networks are illustrated in Figure 9. To choose representative net-
works, the absolute difference between test and training error at each testing epoch
was calculated for a given network. The mean absolute difference across epochs
was then obtained for each network. The networks plotted are those with the me-
dian score.

In general, the curve of the test errors mimics the curve of the training errors,
suggesting that the networks, regardless of input encoding type, are generalizing
what has been learned from the training patterns to the testing patterns. One excep-
tion, regarding nth unit coding, can be seen in Figure 9a. Although the curve of the
testing error mirrors that of the training error up to approximately 225 epochs, the
two error curves then diverge. This may be the result of overtraining in networks
with nth encoding.

Another test of generalization would be to determine which rule accounted for
the most variance in the networks’ responses to the testing patterns. Unfortunately,
due to the limited number of total patterns, the size of the testing set was con-
strained. Given that there were only six distance, time, and velocity testing pat-
terns, accurate assessment of the correlation between various rules and the outputs
generated by the testing patterns was not possible for the test patterns. Therefore,
as an alternative, rule assessment was conducted using the entire set of patterns
(i.e., training and testing patterns).

In general, training on a subset of the entire set of patterns appears to have very
little effect on the progression of stages. Specifically, 34 of the 35 networks fol-
lowed the same distance progression from the additive stage (d= ¢+ v) to the multi-
plicative stage (d =t x v). Four of the networks regressed briefly to the additive
stage after attaining the multiplicative stage. One network in the gaussian condi-
tion attained only the additive stage.

Twenty of 29 networks (excluding integer) followed the typical time and veloc-
ity progression from identity stages (t=d and v=d), to additive stages (= d—vand
v=d~f), and then to multiplicative stages (t=d + vand v=d + f). Of the remaining
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networks, five (one gaussian, two mercury, and two thermometer networks) dif-
fered only in that they skipped either the time or velocity additive stage, and one
distributed-integer skipped the time identity stage. For the majority of the 30 net-
works, the multiplicative stage was stable, continuing until the end of training.
However, seven networks regressed to either one or both additive stages after the
multiplicative stage. For three of these networks, the regression was brief. For
three networks, the regression was permanent. Finally, the progression of the inte-
ger networks differed in the same manner as it did for integer networks that were
trained on all patterns. All five networks progressed from the additive stage de-
fined by ¢ = d + v to the correct multiplicative stage. All but one progressed from
the additive stage defined by v=d + ¢ to the correct multiplicative stage.

DISCUSSION

Stages in Development

In general, the stages that characterized network performance and the order in
which the stages emerged were consistent with those observed in children and
adults (Wilkening, 1981, 1982). The first distance stage to emerge was typically de-
fined by the additive rule d = ¢ + v. Networks then progressed to performance char-
acterized by the normative multiplicative rule d=¢ x v. With respect to Wilkening’s
results, this developmental sequence is identical to the one found in the follow-up
study (Wilkening, 1982) in which memory demands of the distance task were in-
creased to prevent young children from using an eye-movement strategy.

The developmental course of time and velocity demonstrated by networks was
also comparable with Wilkening’s observations. Early performance was charac-
terized by identity rules (¢ = d and v = d) in which networks behaved as if time and
velocity inferences were based solely on distance information. Although
5-year-olds in Wilkening’s studies were not classified as using the time identity
rule, they were found to use the velocity identity rule. Later in training, additive
stages (¢=d—vand v=d—f) emerged in which networks behaved as if time (veloc-
ity) inferences were based on subtracting distance information from velocity
(time) information. The same time and velocity additive stages were observed by
Wilkening (1981). Finally, networks attained multiplicative stages ({=d ~ vand v
= d + f). Adult participants in both Wilkening’s (1981) original study and the fol-
low-up study (Wilkening, 1982), in which he attempted to decrease the memory
demands of the velocity task, were found to use the normative rule for time but not
for velocity. Thus, in general, networks progressed through the same distance,
time, and velocity stages as those observed by Wilkening, with the exception of an
early time identity stage and the attainment of a velocity multiplicative stage.
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Only integer networks progressed through a qualitatively different develop-
ment marked by early time and velocity additive stages (t=d+vandv=d+/{) in-
stead of identity stages, skipping the usual additive stages and, thus, earlier
attainment of the time and velocity multiplicative stages compared to the other net-
work types. Why did the performance of networks using integer coding differ? In
contrast to other types of networks, both integer and integer-context networks be-
gin training with full-blown knowledge of the ordinal relations of the input, that is,
even with initially random weights, an input of 4, for example, has exactly twice
the influence (positive or negative) on the outcome than an input of 2.5 Although
both integer and integer-context networks use the same representation for dimen-
sional values, integer-context networks converge more slowly on normative per-
formance and do so after developing in a psychologically realistic manner. The
fact that context units give rise to slower convergence may seem counterintuitive.
However, when a network begins training, it has to learn not only that the context
units provide contextual information but also how to use this information. The rel-
atively slower convergence and realistic development of integer-context networks
may be connected. An analogous finding was reported by Schmidt and Shultz
(1992) concemning the performance of back-propagation networks on balance
scale problems. They argued that any training manipulations that slowed conver-
gence increased the psychological realism of network performance.

Taken together, psychologically realistic performance was demonstrated by
networks that either had to construct, to some extent, numerical scales of the input
dimensions or, in the case in which the scales were provided, had to contend with
additional information that slowed convergence on the normative rules. Although
what kind of scaling children initially use in distance, time, and velocity integra-
tion remains an open question at this point, the similarity of the results across net-
work types attests to their robustness and strengthens our conclusions.

Domain-General and Domain-Specific Constraints

Because we were able to control the task demands of the leaming environment, the
simulations show more developmental consistency across concepts than did

SAllinput coding schemes provide number cardinality, either by using different units to represent dif-
ferent input values—as in nth, mercury, thermometer, and gaussian encodings—or by assigning differ-
ent activations on the same unit, as in integer, integer-context, and distributed-integer encoding. When
different units are used to represent unique input values, the networks must learn the ordinal relations by
adjusting the initial random weights accordingly. When the input values are distributed, the networks
will have ordinal knowledge at the beginning of training, For distributed-integer coding, this knowledge
most likely will be based on an interval scale. Thus, distributed-integer networks are likely to begin
training knowing that an input of 4, for example, has greater influence (positive or negative) than an in-
put of 2 but not that it has twice the influence.
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Wilkening’s results. Identity, additive, and multiplicative stages emerge as a result
of the interaction between domain-general constraints of cascade-correlation and
domain-specific constraints of the task at hand. Domain-general constraints are
those that are common in all cascade-correlation models. Examples include the
summing of input values, the adjustment of connection strengths to reduce error be-
tween target and actual output, and the recruitment of hidden units. Domain-spe-
cific constraints are those that are unique to the current simulations. Examples
include the type and manner of input and output encoding and the regularities in the
training patterns.

Identity stages emerge due to a combination of the limited processing ability
of the initial perceptron architecture (a domain-general constraint) and the fact
that the network is performing all three inference tasks (a domain-specific con-
straint). A network without hidden units (i.e., a perceptron) cannot resolve the
error associated with the relations that exist between distance, time, and veloc-
ity. Given that time and velocity are both directly related to distance but in-
versely related to each other, one set of input-to-output weights cannot capture
all these relations. On the other hand, because distance is directly related to both
time and velocity, input-to-output weights are sufficient to capture both direct
functional relations.® As such, identity rules (¢ = d and v = d) arise from the net-
works’ ability to represent the direct relation between distance and time and dis-
tance and velocity but not the inverse relation between time and velocity. This is
consonant with evidence that children understand the direct relations before the
inverse relations (Acredolo et al., 1984). Note that if networks were trained only
on the velocity task, only one relation would exist per input (direct for distance;
inverse for time). In that case, there would be no reason to expect identity
stages. In all likelihood, the initial perceptron architecture would be capable of
additive stages. ‘

Thus, our simulations offer a unique explanation of identity stages based on the
reversible structure of the concepts and the functional relations between the di-
mensions, that is, young children may use identity rules because they understand
that each concept is related to the other two but cannot successfully represent all
the relations that exist between the concepts. In other words, their reliance on dis-
tance when inferring how fast an object traveled does not simply reflect a lack of

¢If we had used three different output units, one each for distance, time, and velocity integration, the
networks would be faced with a task different from.that of these networks. Networks with three output
units would begin with a priori knowledge that time, for example, can have arelation to the outcome of a
distance integration different from that of a velocity integration. Thus, the task would be to find the ap-
propriate weights that capture the different relations. In our networks, the task also includes discovering
that time can have a different relation to distance than it does to velocity. Which assumption is correct
with respect to children is an open question at this point. Our simulations show that this a priori knowl-
edge is not required.
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understanding of how time relates to velocity. Instead, it reflects a realization that
changes in time affect the outcome differently depending on whether distance or
velocity inferences are being made. However, they lack the ability to represent
time successfully in both a direct functional relation (as is needed for distance in-
ferences) and an inverse functional relation (as is needed for velocity inferences).
The fundamental point is that even young children may not approach distance,
time, and velocity problems as a set of unrelated tasks, but, rather, what they know
about one problem influences how they perform on another.’

How do networks overcome identity stages? After the first hidden unit is in-
stalled, simplistic encodings of both the direct and inverse relations of time and ve-
locity are possible. Analysis of relative size and sign of weights from input units to
the first hidden unit revealed that weights from the time and velocity input banks
were of the same sign and opposite in sign to weights from the distance input bank.
Therefore, when a distance pattern was presented, time and velocity input aug-
mented each other, giving rise to inferences that correlated best with the additive
rule d = ¢t + v. When a time (velocity) pattern was presented, distance input was
counteracted by velocity (time) input, giving rise to time (velocity) inferences that
correlated best with the subtraction rule ¢ = d— v (or v=d—¢). Thus, the recruitment
of a hidden unit enables two different relations between the time (velocity) input
bank and the output depending on whether a distance or velocity (time) problem is
being presented.

The additive stages of all three concepts eventually were replaced by multipli-
cative stages. Because of network complexities, Hinton analysis of the second and
third hidden units were less revealing. However, given the relatively abrupt transi-
tion after the installation of these hidden units to multiplicative stages, the need for
increased nonlinearity seems evident. Typically, the time and velocity stage
emerged first, followed by the distance multiplicative stage. One reason why the
distance additive stage may have lasted longer than either the time or velocity ad-
ditive stages was that a larger proportion of error was reduced during the distance
additive stage than during either of the other two. This, in turn, delayed the onset of
the distance multiplicative stage. In other words, the distance additive rule pro-
vides a good approximation for distance inferences. It may be that, for people, use
of an additive rule persists as a heuristic approach that is generally good enough.

Our implementation assumes that children do not begin thinking about distance, time, and velocity
as different integration tasks but rather as different instances involving integration based on the same
physical dimensions. Given this conceptual framework, it is incorrect to think of the output unit as some
sortof composite concept of distance, time, and velocity. The output is a measure of the magnitude of the
integration that was performed. A network’s conceptual knowledge of distance, time, and velocity re-
sides in the connections (input-to-output and, in the case in which hidden units have been recruited, in-
put-to-hidden and hidden-to-output connections).

DISTANCE, TIME, AND VELOCITY 335

A Connectionist Perspective of Structures and Change

Our simulations suggest that developmental transitions in children result from in-
cremental learning and increases in nonlinear representational abilities. These are
implemented in cascade-correlation networks by weight adjustment and hidden
unit recruitment, respectively. Although increasingly complex rules can character-
ize the various stages of distance, time, and velocity development, from our
connectionist perspective, the rules are emergent epi-phenomena rather than com-
putational mechanisms, as in the symbolic rule-based approach.

There are several key features that characterize the knowledge structures we are
proposing: (a) Representation and processing are based on graded stimulus input
from all relevant dimensions throughout development, (b) developmental transi-
tion is brought on by qualitative changes in representation, and (c) understanding
the reversible nature of the three concepts is an emergent property of the represen-
tational system. We deal with each of these considerations in turn.

‘Representation and processing. Young children’s behavior on compen-
sation tasks often appears to be based on a single dimension (Siegler, 1981). Be-
cause rule-based representations typically do not rely on graded stimulus input, it
often has been assumed that the earliest representations do not include all the per-
ceptually available dimensions. For example, Siegler (1976) proposed a series of
binary decision rules to account for children’s performance on the balance scale.
The first rule does not include distance information but uses only weight informa-
tion. More recently, Schmidt and Ling (1996) biased their rule learning model to
process weight before distance information. However, there is a difficulty with as-
suming that certain information is ignored. How can the ignored dimension become
relevant if it is ignored? _

Connectionist researchers have taken a different approach. Rather than tempo-
rarily omitting one dimension, they have assumed that the underlying representa-
tions include graded connections from all the relevant dimensions but that either
the learning environment (e.g., McClelland, 1989; Shultz et al., 1994) or the initial
connections of the network (Shultz et al., 1995) limit the influence of one dimen-
sion in favor of another dimension.

In this study, the domain-specific constraint of having one unified representa-
tion of all three concepts was a sufficient constraint to capture, for example, early
velocity identity rule use by children. There was no need to specify a priori that the
representations involve only distance or that distance was somehow more salient
than time information. Distance and time information was always included in the
form of graded stimulus input. Furthermore, in this case, there was no need to bias
either the learning environment or the connection weights.

The inclusion of both defining dimensions as input to the earliest representa-
tions is not necessarily at odds with the cognitive algebra proposed by Wilkening
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(1981) because information integration theory also postulates graded inputs.
Therefore, the velocity identity rule, for example, can be viewed as a special form
of the general additive rule in which the subjective value of the time stimulus infor-
mation is at or near zero.

The assessment methodology used by Wilkening and the one used in the pres-
ent simulations may not be sufficiently fine-tuned to capture the subtle effect of
time information on early velocity inferences. There is evidence that young chil-
dren represent and process time information when making velocity inferences
when metric responses are not required. Acredolo et al. (1984) asked children to
imagine that two animals had fled a farmer’s field in a scenario similar to
Wilkening’s. However, rather than requiring a metric response, the children were
asked to judge the likelihood of possible outcomes. Although Acredolo et al. did
not discuss their results in terms of the velocity identity rule, the pattern of re-
sponses across problems can be interpreted as providing evidence for its use in all
but one case. When children were told the two animals ran the same distance but
one ran for more time, the most frequent error was to say that the one that ran for
more time ran faster. '

The structures that we propose are similar to those suggested by Wilkening in
another respect. Both allow for nonnormative integration. Whereas Piaget be-
lieved children only integrated the dimensions at the age of mastery and, thus, only
allowed for correct integration, Wilkening’s research revealed that nonnormative
integration (i.e., d=t+v, t=d - v, and v=d — t) occurred earlier in development.
As with the use of identity rules, nonnormative integration was an emergent prop-
erty of networks’ representations. It is not clear how symbolic rule-based ap-
proaches would account for the development of these nonnormative rules. Simply
stipulating that they occur would fail to show how and why they would arise. Cap-
turing the development of nonnormative rules would pose an interesting challenge
to rule-based modelers.

However, the two types of structures are clearly different. Although networks
were capable of achieving knowledge states that have been assumed to be repre-
sented by algebraic rules (i.e., identity, additive, and multiplicative rules), the pro-
cessing underlying performance is different. During identity stages, simple
summation of the graded stimulus input enabled performance consistent with
identity rule use. Later, an additional process that passed the summed input
through an activation function enabled performance that could be characterized by
additive and multiplicative integration. Both processes allowed networks to per-
form “as if” following algebraic rules. This also may be the case for participants in
Wilkening’s experiments. For example, it seems unlikely that the 5-year-olds in
Wilkening’s (1981) experiment knew that distance inferences are based on multi-
plying time and velocity information. Wilkening himself has discussed the “as if”
nature of the integration, that is, children perform as if they were multiplying the
dimensions.
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Developmental change. What causes developmental change? In terms of
the network performance reported here, the answer is clear—weight adjustment
and hidden unit recruitment. In this study, weight adjustment seemed generally im-
portant for within-stage change, whereas hidden unit recruitment was primarily in-
volved in transitions between qualitatively different stages in performance.

The large reduction of error within stages suggests that, although network per-
formance was stagelike in that long periods of training resulted in the same classi-
fication of responses, learning was continuous during each stage. The conception
of a stage as a dynamic rather than a static period seems problematic for rule-based
approaches that do not rely on graded input. For example, if a child has an explicit
rule for making time inferences that involves focusing on distance information
alone, it is unclear how improvement beyond the correct application of the rule
within a stage might occur, that is, once the child can apply the rule correctly, there
would be no more improvement. Thus, the child’s accuracy would level off until
the onset of a new stage. In contrast, error, reduction across, say, the velocity iden-
tity stage demonstrated by the networks suggests that improvements in the accu-
racy of velocity inferences may occur even though the responses remain
characterized by the velocity identity rule.

The progression from identity to additive and then multiplicative stages repre-
sents qualitative restructuring of knowledge representations. The involvement of
hidden unit recruitment in this type of change is clear. Transition from the identity
to additive stages of time and velocity followed the recruitment of the first hidden
unit. Similarly, transition to the time and velocity multiplicative stages followed
the recruitment of the second unit. Finally, transition from the distance additive
stage to the multiplicative stage typically followed the recruitment of either the
third or fourth hidden unit.

Some researchers have argued that weight adjustment alone is capable of stage
transition (McClelland, 1989; Plunkett & Sinha, 1992). However, recent attempts
to model distance, time, and velocity development with static back-propagation
networks failed to capture the entire developmental course. Using a variety of ar-
chitectures and learning parameter values, Buckingham and Shultz (1996) were
unable to find a suitable static model. Simulations were run using four differen-
tially powerful architectures: one hidden layer with one, two, or three hidden units;
and two hidden layers with two hidden units in each layer. In each architectural
condition, three levels of learning rate and momentum were investigated. The in-
put and output representations were the same as for the nth networks reported in
this article, as was the training corpus. Static back-propagation networks were ei-
ther too weak, capturing only early stages, or too powerful, skipping the intermedi-
ate additive stages. Therefore, growth in computational power is necessary to
capture the full range of stages.

Researchers working within the framework of information integration theory
have had difficulty formulating a precise mechanism that would account for these
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changes. In contrast, the use of cascade-correlation provides a mechanistic ac-
count of transition—weight adjustment and hidden unit recruitment. But what
does this tell us about changes in the developing child? Our models are not pro-
posed as neural models, although they are based on principles generally consistent
with brain functioning. Rather, they are meant to determine what constraints, both
domain-general and -specific, are sufficient for explaining the regularities that oc-
cur during development. Qur view is that the mechanisms of cascade-correlation
correspond to analogous mechanisms available to children. Weight adjustment
can be viewed as a quantitative process that involves differential weighting of in-
formation to increase the similarity between the actual outcome and that expected
by the child. In contrast, hidden unit recruitment is analogous to a qualitative re-
structuring of knowledge based on what is currently known about the problem at
hand and consideration of the nature of one’s current errors. As discussed earlier,
these mechanisms of change can be mapped onto existing psychological con-
structs, such as Piaget’s notions of assimilation and accommodation or
Karmiloff-Smith’s (1992) representational redescription. Alternatively, the model
can be interpreted on its own and used as a tool for guiding thinking about various
developmental phenomena. The mapping naturally will get more detailed as re-
search progresses. It is profoundly difficult to identify all the features of detailed
knowledge representation and processing in children. That is what makes model-
ing so appealing—you can at least explore detailed theoretical commitments in
one domain (i.e., in the model).

Reversibility as an emergent property. Imagine a child watching a car
travel down a street and wondering about how long it will take to get to the end of
the block traveling at its current speed. Now imagine that the same child watches a
second car traveling down the street to the end of the block taking 5 sec and then
wondering how fast it would have to travel to get there in 3 sec. It seems reasonable
to assume that although the first instance involves a time inference and the second
involves a velocity inference, the distance that both cars traveled (to the end of the
block) is represented as the same physical dimension, not only in terms of magni-
tude but in terms of the concept of distance.

In our simulations, this assumption was implemented as the domain-specific
constraint of having one unified representation for drawing inferences about all
three concepts. An interesting ramification of this constraint is that it allows for
knowledge of the reversible nature of the concepts to become an emergent prop-
erty of the representational system, Although most theorists, at least implicitly, as-
sume that mastery of distance, time, and velocity integration involves an
understanding of the reversible nature of the problem (why else would one test
children’s understanding on all three tasks?), how this occurs has not been explic-
itly addressed. The unified representation we propose suggests that what children

I

P
¥

DISTANCE, TIME, AND VELOCITY 339

know about time as it relates to distance and velocity influences what they know
about distance as it relates to time and velocity, and so forth.

Empirical Predictions

In addition to covering and explaining existing phenomena, our modeling efforts
are geared to providing empirical predictions. Perhaps the most important insight to
be gained from our models is that what children know about one concept may influ-
ence how they think about the others. In particular, knowledge of how two concepts
are related may influence and be influenced by knowledge of how to integrate these
concepts to predict a third.

The simulations suggest that when all else is held constant, identity, additive,
and multiplicative stages across concepts emerge at similar times, reflecting the
processing capacities of the computational system and the constraints of the task
environment. In light of this, the simulations make a number of predictions. First,
the model predicts an initial identity stage in which time is judged as proportional
to distance. Note that children have been found to judge time solely on the basis of
distance information in choice task experiments (e.g., Acredolo & Schmid, 1981;
Piaget, 1946/1969, 1946/1970). Although findings from choice task experiments
do not provide validity for our quantitative inference model, they do show that
children sometimes base time judgments solely on distance information.

Second, the model predicts the attainment of a terminal multiplicative stage in
which velocity is correctly inferred as the ratio of distance to time. Recall that
Wilkening’s experiment left open the question of whether adults were using the
normative multiplicative or additive rule. We believe the inability of Wilkening’s
adult participants to integrate time and distance information correctly was due ei-
ther to extra memory demands or an inappropriate response scale, as Wilkening
suspected.

Third, the model suggests parallel development of velocity and time inferences.
For example, given that young children were found to make time inferences in an
additive manner (Wilkening, 1981, 1982), the simulations predict that same-age
children also should integrate distance and time information additively when mak-
ing velocity inferences. Again this prediction is not at odds with Wilkening’s
(1981) hypothesis that his velocity task may have been more difficult than his time
task. However, it does suggest that his manipulation (Wilkening, 1982) to lessen
the memory demands of the velocity task;may have been ineffectual.

Fourth, the model predicts relatively late acquisition of the final stage in which
distance is the product of velocity and time. If the three tasks were more equiva-
lent, the distance multiplicative stage would emerge after the time and velocity
multiplicative stages. Because Wilkening did not study 10-year-olds’ performance
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when an eye-movement strategy was not possible, it would be necessary to reex-
amine 10-year-olds under this condition.?

The simulations also provide us with two predictions that are unrelated to the is-
sue of the equality of tasks demands. First, recall that neither of the identity rules (d
=t or d = v) nor the additive rule (d = ¢ + v) captured the initial performance of the
networks on distance inferences. As implied, this was likely because the relation of
time and velocity input to output error was obscure. It seems reasonable to predict
that if the relation of time (velocity) to distance inferences was made more salient,
then both networks and children would perform as if using the identity rule, d=¢(d
=v). Perceptual salience has been proposed as a possible explanation of children’s
poor performance on time problems (Levin et al., 1980). Thus, it is possible that
salience plays arole in distance inferences as well. Second, on a more general note,
the simulations suggest that viewing stages as static rather than dynamic periods in
development is incorrect. Within stages, we would expect to observe steadily im-
proving performance in terms of increasingly precise inferences that need not be
characterized by the normative rules of distance, time, and velocity integration.

CONCLUSIONS

We have argued that the stage progressions observed in network performance re-
sult from the domain-general constraints inherent in a generative algorithm and the
domain-specific constraint of having one network perform all three related tasks.
The main theoretical implications are that children may process distance, time, and
velocity information in parallel using a domain-general learning algorithm that al-
lows for increased complexity in knowledge representations as the child’s capacity
for problem solving increases. The domain-specific constraint of making infer-
ences on the three problem types determines the type and progression of knowledge
representations. Early identity rules may result from an inability to conceptualize
both the direct and inverse relations of time and velocity rather than from the child
ignoring time or velocity information. Increases in the child’s capacity may enable
simplistic additive representations and then more complex multiplicative
representations.

The child is considered as an active participant in his or her environment in that
he or she is learning from experience continually. However, learning itself may not
always be sufficient for qualitative changes in the knowledge representations. Of-
ten, such changes require increases in processing capacity.

$These four predictions are currently being investigated by the authors using an experimental design
that minimizes the differences in task demands by using similar response scales and stimulus presenta-
tion methods across the distance, time, and velocity tasks.
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The success of these simulations in capturing the development of distance,
time, and velocity integration rules is encouraging because it suggests that other
findings of researchers working within the framework of information integration
(N. H. Anderson, 1974) also may be captured by connectionist simulations. In gen-
eral, developmental transitions from simpler additive rules to more complex multi-
plicative integration rules have been observed in children’s performance on a
number of other compensation tasks. The advantage of connectionist simulations
is that they provide both precise knowledge representation of integration rules and
a mephanistic account of how and why development proceeds from simpler to
more complex integration rules. ‘

Within the study of cognitive developmental phenomena, this research extends
the applicability of cascade-correlation to the acquisition of distance, time, and ve-
locity concepts. A number of insights and predictions have come from this work,
supporting cascade-correlation as a promising tool of investigation into cognitive
development. ;
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