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Abstract 
 

A constraint satisfaction network model simulated 
cognitive dissonance data from the insufficient 
justification and free choice paradigms. The networks 
captured the psychological regularities in both 
paradigms. In the case of free choice, the model fit 
the human data better than did cognitive dissonance 
theory.  
 
 

Cognitive Dissonance 
 
Cognitive dissonance theory (Festinger, 1957) has 
been a pillar of social psychology for some 30 years. 
The theory holds that dissonance is a psychological 
state of tension which people are motivated to reduce. 
Two cognitions are dissonant when, considered by 
themselves, one of them follows from the obverse of 
the other. The amount of dissonance is a function of 
the ratio of dissonant to consonant relations, with 
each relation weighted by its importance. Dissonance 
can be reduced by decreasing the number and/or the 
importance of the dissonant relations, or by 
increasing the number and/or the importance of 
consonant relations. How dissonance gets reduced 
depends on the resistance to change of the relevant 
cognitions, with less resistant cognitions being more 
likely to change. Resistance derives from the extent 
to which change would produce new dissonance, the 
degree to which the cognition is anchored in reality, 
and the difficulty of changing those aspects of reality.  

Festinger (1957) used dissonance theory to account 
for a number of existing psychological phenomena, 
including the evaluation of choices, attitude change 
following attitude-relevant actions, and responses to 
the disconfirmation of beliefs. It has since been 
successfully applied in a wide variety of both 
predictive and postdictive contexts.  

 
 

Consonance Model 
 
In this paper, we present a computational model of 
cognitive dissonance. The model is based on the idea 
that dissonance reduction is a constraint satisfaction 
problem. Such problems are solved by the 
simultaneous satisfaction of many soft constraints 
which can vary in their relative importance. In this 
framework, beliefs are represented as units in a 
network and implications among the beliefs are 
represented as connections among the units. The 
units can be variously active and the connections 
(weights)  
can vary in strength. Hopfield (1982, 1984) has 
worked out the mathematics for solving such 
constraint satisfaction problems in parallel networks.  

Hopfield networks are capable of simulating a 
variety of psychological phenomena, including belief 
revision, explanation, schema completion, analogical 
reasoning, and content-addressable memories 
(Holyoak  & Thagard, 1989; Rumelhart, Smolensky, 
McClelland, & Hinton, 1986; Thagard, 1989). Unless 
used to model memory, these networks are generally 
considered ephemeral in the sense that they are 
created on line to deal with some particular task, 
although the creative process is not usually modeled. 
Hopfield networks function by reducing energy 
(equivalently, maximizing goodness) subject to the 
constraints supplied by the connections and any 
external input. Our Consonance Model for reducing 
cognitive dissonance is a Hopfield network lacking 
some of the parameters of other Hopfield networks 
and introducing some special parameters of its own. 

Maximizing the consonance (goodness) of any pair 
of connected units depends on the sign of the 
connection between them. Assume an activation 
range of 0 to 1. If connected by a positive weight, 
both units should be active in order to maximize 
consonance. With a negative weight, consonance is 
maximized when both units are not active, that is, 
when both are inactive or only one is active. 
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Activations change over time cycles so as to satisfy 
weight constraints and maximize consonance. 

More formally, the consonance contributed by a 
particular unit i is  

∑=
j

jiiji aawconsonance  (1) 

where wij is the weight between units i and j, ai is the 
activation of unit i, and aj is the activation of unit j.  

The overall consonance in the network is the sum 
of the values given by (1) over all units in the 
network 

∑∑=
i j

jiijo aawconsonance  (2)  

Activation spreads over time cycles by two simple 
update rules: 

 
 ai(t+1) = ai(t) + neti (ceiling - ai(t))  
 when neti >= 0 (3) 
 
 ai(t+1) = ai(t) + neti (ai(t) - floor) 
 when neti < 0 (4) 
 

where ai(t+1) is the activation of unit i at time t + 1, 
ai(t) is the activation of unit i at time t, ceiling is the 
maximal level of activation, floor is the minimal 
activation, and neti is the net input to unit i, defined 
as  

 





= ∑

j
jijii awresistnet  (5) 

The parameter resisti is a measure of the resistance 
of unit i to having its activation changed. The larger 
the value of the resistance multiplier, the less the 
resistance to change. The default values for floor and 
ceiling are 0 and 1, respectively. 

At each time cycle, n units are randomly selected 
and updated according to rules (3) and (4). By 
default, n is the number of units in the network.  

A few additional parameters concerning the 
construction of the networks are described later in the 
context of particular simulations.  

 
 

Simulations 
 
With more than 1000 published entries in the 
cognitive dissonance literature, there is considerable 
choice in deciding what to simulate. Here we present 
two of our current simulations, one representing each 
of two of the major paradigms in dissonance theory: 
insufficient justification and free choice. 
 
 

 
Insufficient Justification 
 
The insufficient justification paradigm deals with 
situations in which subjects engage in some counter-
attitudinal action with rather little justification. 
Dissonance theory predicts that the less the 
justification for the behavior, the greater the 
dissonance and, at least when it is difficult to retract 
one's action, the more people will be motivated to 
change their attitudes so as to provide additional 
justification for their action.  

Several different types of experiments have been 
developed to test these insufficient justification 
predictions (e.g., Aronson & Carlsmith, 1963; 
Aronson & Mills, 1959; Festinger & Carlsmith, 
1959). In the present paper we simulate one of the 
best studied and most robust of these. 

In one of the seminal studies within this paradigm, 
nursery school children were forbidden to play with a 
desirable toy under either mild or severe threat 
(Aronson & Carlsmith, 1963). Both of these threats 
were sufficient to prevent the children from playing 
with the desirable toy during a play period in which 
the experimenter was absent from the room. In 
subsequent ratings, the children derogated the 
forbidden toy more under mild threat than severe 
threat. The theoretical explanation is that the children 
committed themselves to the dissonant behavior of 
not playing with the desirable toy. Since dissonance 
increases with the fewer cognitions that support the 
behavior, there was more dissonance in the mild 
threat condition than in the severe threat condition. 
Because the counter-attitudinal behavior could not be 
retracted, dissonance was reduced by derogating the 
forbidden toy. The greater the dissonance, the greater 
the derogation. 

Alternative explanations of these findings included 
the notion that severe threat focused more attention 
on the toy or made it seem more desirable and the 
idea that the experimenter was more likeable or more 
credible in the mild threat condition. To rule out such 
alternatives, Freedman (1965) added surveillance 
conditions to the experiment in which the 
experimenter stayed in the room while the child 
played. In the surveillance conditions, the same 
threats were used but temptation, and thus 
dissonance, was lowered by the experimenter's 
continued presence. Actual play with the previously 
forbidden toy five weeks later indicated greater 
derogation in the mild than in the severe conditions 
only when there was no surveillance, thus supporting 
the dissonance explanation against the alternatives.  

Our simulation focused on the Freedman (1965) 
experiment. The constraint satisfaction network for 
the non-surveillance conditions of this simulation is 
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presented in Figure 1. Because unit activations have a 
floor of 0, two units are used to encode each 
dimension of interest: toy evaluation, threat, and play 
with toy. In each pair of units, the unit coded + 
represents the positive end of the dimension and the 
unit coded - represents the negative end of the 
dimension. The units in each pair are connected by a 
negative weight so that only one of them is active at a 
time. In these network diagrams, negative weights are 
symbolized by dashed lines and positive weights by 
solid lines. Each pair of units is surrounded by an 
ellipse to convey idea that they refer to opposite ends 
of the same dimension.  

 
 

Figure 1. Network for Freedman simulation, 
non-surveillance condition. 

 
 

Connections across different dimensions (ellipses) 
reflect assumed psychological implications among 
the beliefs. For simplification, we connect positive 
units only to other positive units and negative units 
only to other negative units across dimensions. For 
the Freedman simulation, there were positive 
connections between toy evaluation and play (the 
better liked the toy, the more it would be played 
with), positive connections between toy evaluation 
and threat (the better liked the toy, the more threat 
would be required to prevent play), and negative 
connections between play and threat (the bigger the 
threat, the less the toy would be played with). 

Resistance of units to activation change is 
portrayed by the thickness of the ellipse. Resistance 
values for a particular boundary thickness are 
presented in parentheses in Figure 1: 0.70 for toy 
evaluation (low resistance) vs. 0.01 for the other two 
beliefs (high resistance). These resistance values are 
based on the assumption that, whereas play and threat 
are relatively fixed, evaluation of the toy should be 
allowed to vary. In a more complete model, 
resistance might be implemented by constraining 
connections to many other beliefs. For simplification, 

this can be accomplished with an explicit resistance 
parameter.  

Initial activations provided to units are indicated in 
Figure 1 by pointers coming from outside the units. 
The toy is given a moderately positive evaluation 
(0.5) to reflect its desirability, play is given a 
moderately negative (-0.5) evaluation because it was 
not done, and the amount of threat is either 0.5 or 0.1 
to represent the two severity conditions.  

A cap parameter, when set to a high negative 
proportion, prevents activations from growing to the 
ceiling of 1.0. Our default setting for cap is -0.8. 
Mathematically, cap is the value of the connection 
between each unit and itself, wii.1 Hopfield (1982, 
1984) had assumed that such self-connections are 0. 
Allowing self-connections to be other than 0 
produces additional spurious states in the 
neighborhood of a desired attractor, thus increasing 
the variability of solutions (Hertz, Krogh, & Palmer, 
1991). We use cap to enforce the psychologically 
realistic assumption that the events in most 
dissonance experiments are not of major importance 
to the subjects. Therefore, activations should not 
reach maximal values.  

The wrange parameter represents the range of 
positive weights below 1 and negative weights above 
-1. We employ a default value of 0.2 for wrange. The 
weights are not identical across networks, but rather 
are mainly positive or mainly negative within this 
specified range. Again, the purpose is to introduce 
some degree of psychological realism. Such variation 
is not necessary to qualitatively capture the predicted 
dissonance phenomena. This randomization of 
weights violates the symmetry assumed by Hopfield 
(1982, 1984), in that wij <> wji. He reported that 
violations of the symmetry assumption increased 
memory errors and instability in network solutions. 
Such results may correspond to psychological 
variation.  

Use of the cap and wrange parameters effectively 
nullifies the mathematical guarantee that these nets 
will maximize consonance. It is our view that 
psychological plausibility should outweigh 
guaranteed maxima in the context of simulating 
human data.  

The rand% parameter was defined by default as 
wrange/2. It represents a random percentage added to 
or subtracted from the initial values of activations, 
resistances, and caps. This too was for psychological 
realism; presumably not everyone has precisely the 
same parameter values.  

For the surveillance condition, there was no 
connection between toy evaluation and play, 

                                                 
1Thanks to Denis Mareschal for this suggestion. 
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represented by weights of 0. No matter how much 
you like toy, you won't be tempted to play with it as 
long as the experimenter is present. The impact of 
both threats was scaled up by a multiplier in the spirit 
of update rule (3): new_threat = old_threat + (0.5 * (1 
- old_threat)). This made the value of threat 0.75 in 
the severe/surveillance condition and 0.55 in the 
mild/surveillance condition. This reflects the idea that 
surveillance enhances the value of both threats, but in 
accordance with the way that activations change. 

As a simulation begins, activations of units are 
updated in a random, asynchronous fashion. On each 
time cycle, n units are randomly selected and updated 
using rules (3) and (4). By default, n is the number of 
units in the network, 6 in this  simulation. Updating 
continued for 20 cycles because asymptotes were 
reached well within that period. We ran 10 networks 
in each condition.  

Mean evaluation of the toy after cycle 20 is shown 
in Figure 2. This was computed as the difference 
between activation of the positive unit and the 
negative unit. As in Freedman (1965), there was an 
interaction between surveillance and severity of 
threat, F(1, 36) = 169.02, p < .001. There was more 
derogation in the mild than in the severe condition, 
but this effect was much larger without surveillance.  
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Figure 2. Results for Freedman simulation. 
 
 
Free Choice 
 
Another major paradigm in cognitive dissonance 
concerns free choice. Choosing between alternatives 
creates cognitive dissonance due to the fact that the 
chosen alternative is never perfect and the rejected 
alternative often has desirable aspects which are 

foregone when a final choice is made. Dissonance 
can be reduced either by making the chosen object 
more desirable or by making the rejected object less 
desirable. Thus, dissonance reduction further 
separates the alternative choices in desirability. The 
magnitude of dissonance is greater the closer the 
alternatives are in desirability, and hence the more 
difficult the choice between them is, before the 
choice is made.  

The classic free choice experiment asked female 
university students to rate eight small appliances 
(Brehm,  1956). They were then given a difficult 
choice, between two objects that they had rated high, 
or an easy choice, between one object they had rated 
high and one they had rated low. Then the objects 
were rated again. Degree of separation was measured 
by subtracting the second rating from the first rating 
for each object. Although the dissonance theory 
prediction was for greater separation in the difficult 
choice condition than in the easy choice condition, 
most of the actual separation obtained was due to a 
relatively large decrease in the value of the rejected 
alternative in the difficult choice condition.   

The network for simulating the Brehm experiment 
is portrayed in Figure 3. There were pairs of units to 
represent each of the three critical dimensions: 
chosen alternative, rejected alternative, and decision. 
There were positive weights between chosen and 
decision, and negative weights between rejected and 
decision. The initial activations were 0.5 for chosen, 
0.4 for rejected difficult, 0.1 for rejected easy, and 
0.7 for decision. There was high resistance for the 
decision and low resistance for evaluation of the two 
alternatives, with the default values of 0.01 and 0.7, 
respectively. Other parameter settings were the same 
as in the Freedman simulation. 
 
 

 
Figure 3. Network for Brehm simulation. 

 
 

The mean difference scores (re-evaluation - initial 
evaluation) are plotted in Figure 4. Each evaluation 
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was computed as the difference in activation between 
the positive and negative units. Evaluation of the 
chosen object increased and evaluation of the rejected 
object decreased in both conditions. The amount of 
change was greater in the difficult condition, as 
predicted by dissonance theory, F(1, 18) = 57.70, p < 
.001. Notice that most of the change in the difficult 
condition is due to a decrease in evaluation of the 
rejected alternative. This outcome fits Brehm's (1956) 
results more precisely than does dissonance theory, 
which predicts only a larger separation of the 
alternatives following a difficult choice than 
following an easy choice.  
 
 

Discussion 
 

The simulation results matched the psychological 
findings and, in the case of free choice, provided 
even better coverage of the psychological data than 
did dissonance theory. In the free choice simulation, 
the locus of most of the action was in the re-
evaluation of the rejected alternative in the difficult 
condition. This was indeed what Brehm (1956) 
found, although he did not comment on the 
discrepancy from strict dissonance theory 
predictions.  
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 Figure 4. Results for Brehm simulation. 
 
 

We have found similar instances of the constraint 
satisfaction model fitting psychological data from 
other dissonance experiments better than dissonance 
theory does. These superior fits derive from the 
capacity of constraint satisfaction models to deal with 

variables other than those unique to dissonance 
theory and the increased precision that is inherent to 
computational formulations. 

The present simulations were conducted with a 
minimum of parameter adjustment. Network weights 
were positive, negative, or zero; resistance was high 
or low; and initial levels of activation were either 
high or low. Additional experimentation revealed that 
these effects were robust against parameter variation, 
and that the default parameter settings were 
applicable to a variety of other dissonance 
simulations.  

The present simulations began with some units 
having initial, non-zero activation values. More 
conventionally, constraint satisfaction programs start 
all units at zero activation and provide some units 
with external inputs. Activations then gradually build 
up from zero as a function of both external input and 
internal network input. This conventional scheme did 
not seem appropriate for cognitive dissonance 
phenomena because it yielded results indicating a 
gradual increase in consonance, but no dissonance. 
To ensure that the networks modeled dissonance, we 
initialized some unit activations in conformity with 
procedures in the psychological experiments.  

Although connection weight values can be learned 
for constraint satisfaction models (e.g., Anderson & 
Mozer, 1981), there was no such learning in the 
present simulations. This reflects the fact that the 
typical dissonance experiment is not an occasion for 
learning. Instead, acculturated, experienced subjects 
enter a situation in which they commit themselves to 
some behavior under the influence of a few salient, 
experimentally engineered cognitions. These 
cognitions, the behavioral commitment, and existing 
knowledge act as constraints on the subject's 
subsequent re-evaluations. Thus, the typical 
dissonance experiment capitalizes on past learning, 
but does not involve much in the way of new 
learning. The principal thing a subject in a dissonance 
experiment might learn is how he or she feels about 
something. 

Indeed, there is a sense in which cognitive 
dissonance phenomena are antithetical to learning 
phenomena. In both contexts, subjects behave in a 
way that is less than ideal. In some cases, subjects are 
able to learn to change their behavior to improve their 
payoff. But that avenue is closed in dissonance 
experiments by the fact that subjects remain 
committed to their behavior. Reduction of cognitive 
dissonance by re-evaluation is an exercise in coping 
with behavior that cannot be undone.  

Cognitive dissonance phenomena have 
traditionally been considered as distinct from less 
counter-intuitive psychological phenomena. But since 
constraint satisfaction models also account for a wide 
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variety of other phenomena, there is considerable 
scope for novel theoretical unification. 

Cognitive dissonance theory is but one of a number 
of theories in social psychology emphasizing that 
people try to achieve consistency among cognitions 
(Abelson, Aronson, McGuire, Newcombe, 
Rosenberg, & Tannenbaum, 1968; Abelson & 
Rosenberg, 1958; Heider, 1958). Although these 
consistency theories have enjoyed considerable 
success as verbal formulations, the underlying 
reasoning mechanisms for establishing consistency 
have not been precisely specified. It may be that 
connectionist constraint satisfaction models could 
serve as a general modeling technique and 
explanatory device in these areas (cf. Holyoak & 
Spellman, 1991). 
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