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Abstract 

Previous research has indicated that breaking a task into 
subtasks can both facilitate and interfere with learning in 
neural networks.  Although these results appear to be 
contradictory, they actually reflect some underlying principles 
governing learning in neural networks.  Using the cascade-
correlation learning algorithm, we devised a concept learning 
task that would let us specify the conditions under which 
subtasking would  facilitate or interfere with learning. The 
results indicated that subtasking facilitated learning when the 
initial subtask involved learning a function compatible with 
that characterizing the rest of the task, and inhibited learning 
when the initial subtask involved a function incompatible 
with the rest of the task.  These results were then discussed 
with regard to their implications for understanding the effect 
of knowledge on concept learning.   

Introduction 
One of the most effective ways to improve learning in 
neural networks is to structure the way the training patterns 
are presented.  Rather than including all of the patterns in 
each training epoch, learning is often faster and more 
efficient when training patterns are divided into subsets 
representing different parts of the overall task.  In recent 
years, the use of structured training regimens has assumed 
two complementary forms.  Performance on a complex task 
can be improved by first training separate networks to do 
different parts of the task, and then combining the various 
subnetworks to produce a structure that can do the entire 
task (Pratt, Mostow, & Kamm, 1991; Waibel, Sawai, & 
Shikano,1989).  Alternatively, complex problems can be 
learned more quickly if a network's training set is divided 
into a series of increasingly difficult subtasks that are 
learned sequentially (Cottrell & Tsung, 1993; Elman, 1989, 
1991a; Fahlman, 1991).  Moreover, the effect of subtasking 
can even be accomplished with a constant training set, 
provided that the processing capacity of a network is 
increased during the course of learning (Elman, 1991b).    

In contrast to these findings, however, there is also 
evidence that not all problems are learned better when they 
are broken down into smaller parts.  Incrementally 
increasing the size of the training set in an eight-bit parity 
problem does not improve learning, and it may even make it  

more difficult (Harris, 1991).  There is also evidence that 
networks can learn a given task better when they learn 
simultaneously several related tasks (Caruana, 1992).   

Although these two sets of findings appear to be 
contradictory because they show that training with 
subtasking both facilitates and interferes with learning, 
Elman (1993) has argued that such effects actually illustrate 
some fundamental properties about how learning occurs in 
connectionist models.  Neural networks are commonly 
viewed as function approximators that are trying to discover 
the function that underlies a given set of training patterns. 
Because learning algorithms are statistically driven, they are 
highly sensitive to statistics of the training set.  Given these 
assumptions, Elman argued that one of the main reasons that 
learning is difficult is that a particular set of training 
patterns often has a number of different regularities, and it is 
not always clear which regularity a network will extract.  By 
reducing the size of the training set, a training regimen that 
uses subtasking can make it easier to identify some of the 
regularites in the data, and so learning might be faster.  
However, a reduced training set can also cause problems 
because when statistics are computed on subsets of a total 
set of patterns, there is a danger that they may not provide a 
good estimate of the population statistics.  In this case, when 
the size of the pattern set is increased, regularities that 
appeared in the smaller pattern sets may no longer apply, 
resulting in interference.  (For related ideas, see Harris, 
1991, p. 15-16; Rosenberg and Sejnowski, 1986, p. 84-85).    

Although Elman (1993) was able to explain how 
subtasking can both facilitate and interfere with learning, he 
did not provide any criteria for predicting which effect will 
occur on a particular task.  For example, it is not clear why 
subtasking improved performance on Elman's (1991b) task, 
but failed to improve learning on Harris' (1991) task.                                             
In addition, it is useful to note that the simulations (Elman, 
1991b) used to develop these ideas are somewhat artificial 
because they cannot be related to a specific psychological 
task.  In spite of the fact that they were intended to model 
the kind of learning that occurs in language acquisition, 
each training set contained 10,000 sentences, which far 
exceeds the processing capacity of an adult or a child.  
Moreover, the network's task was to predict the next word in 
a sentence, something that would not ordinarily absorb 
human listeners.  Given these considerations, we decided to 
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use a simpler and more psychologically plausible task to 
identify some principles that can predict how different tasks 
are learned under different training regimens. 

Analyzing Training Regimens in a Concept Learning 
Task 

Because neural nets learn to approximate functions, we 
hypothesized that the opposing effects associated with 
subtasking can be understood in terms of function 
compatibility.  If the function learned on an early task is 
compatible with the function to be learned later, the new 
learning will be facilitated.  In contrast, if the function 
learned on an early task is incompatible with the function to 
be learned later, the new learning will be inhibited.  

To test this hypothesis, we used a concept learning task 
originally developed by Whitman and Garner (1963).  
Although the experiments they carried out were motivated 
by a very different set of research questions, the specific 
stimuli that they used provided a straight-forward way of 
analyzing how function compatibility is manifested in 
differernt training regimens.   

 The training patterns that we used in our simulations are 
diagrammed in Table 1, which is adapted from a set of 
visual stimuli shown in Garner (1974, p. 83).  Each pattern 
was comprised of four binary dimensions, and the total set 
of sixteen patterns was used to define two different 
classification tasks.  In each task, patterns 1-8 were the 
positive instances of the category and patterns 9-16 were the 
negative instances of the category. 

Although both classification tasks used each of the 
sixteen patterns once, they differed with regard to the 
statistical relations between the component dimensions.  
The task on the left has a simple correlational structure 
because the two categories of patterns can be distinguished 
from each other with regard to the correlation between 
dimensions one and four.  In category S the values on these 
dimensions always disagree, whereas in category ~S the 
values on these dimensions always agree.  In contrast, the 
task on the right has a complex correlational structure 
because there is no overall relationship between any of the 
four dimensions in either category C or category ~C.   

 Table 1 also illustrates that each task can be divided into 
two distinct subtasks, as shown by the dotted line.  In the 
first subtask, patterns 1-4 were positive instances of the                                                         
category and patterns 9-12 were negative instances of the 
category.  In the second subtask, patterns 5-8 were positive 

instances of the category and patterns 13-16 were negative 
instances of the category.  An examination of the statistical 
relations in each subtask suggests that the relative difficulty 
of learning each concept may change when the patterns are 
presented in terms of subtasks.   

For the task with a simple correlational structure, 
dimensions one and four are correlated in the same way in 
each of the subtasks, but dimensions two and three are also 
correlated in each subtask, albeit in different ways.  In the 
first subtask, dimensions two and three agree in category S 
and disagree in category ~S, whereas in the second subtask, 
dimensions two and three disagree in category S and agree 
in category ~S.  As noted by Elman (1993), because there is 
more than one regularity in each subtask, it is not clear 
which one will be learned at any given time.  Some 
networks might focus on dimensions two and three in the 
first subtask, thereby learning a function that is incompatible 
with the function they need to learn for the entire task.  We 
therefore predicted that when networks are trained on the 
simple correlational structure in terms of subtasks, it would 
be harder to learn the classification relative to an 
unstructured training regimen.   

For the task with a complex correlational structure, in 
spite of the fact that there are no simple correlations 
between any of the dimensions, within each subtask there 
are two different correlations that interact with each other.  
In category C, dimensions one and four have a correlation 
that is opposite in sign to that between dimensions two and 
three.  If the values on dimensions one and four disagree, 
then the values on dimenions two and three agree, as in the 
first subtask.  But, if the values on dimensions one and four 
agree, then the values on dimension two and three disagree, 
as in the second subtask.  In category ~C, these relations are 
reversed, so that dimensions one and four have the same 
correlation as dimensions two and three.  If the values on 
dimensions one and four disagree, then so do the values on 
dimensions two and three, as in the first subtask.  If the 
values on dimensions one and four agree, then so do the 
values on dimensions two and three, as in the second 
subtask.  Given these relationships, the function necessary 
for learning the first subtask in the complex concept is quite 
compatible with that necessary for the entire task.  Namely, 
dimensions one and four have correlations opposite to 
dimensions two and three in one category and identical 
correlations in the other category.  Because the function     

Table 1:  Binary coding scheme for concept learning tasks containing a simple correlational structure (left) and a complex 
correlational structure (right). 

 
 S  ~ S    C  ~ C  
p1 1 0 0 0  1 0 1 1 p9  p1 1 0 0 0  1 0 1 0 p9 
p2 1 1 1 0  1 1 0 1 p10  p2 1 1 1 0  1 1 0 0 p10 
p3 0  0 0 1  0 0 1 0 p11  p3 0 0 0 1  0 0 1 1 p11 
p4 0 1 1 1  0 1 0 0 p12  p4 0 1 1 1  0 1 0 1 p12 
p5 1 0 1 0  1 0 0 1 p13  p5 1 0 1 1  1 0 0 1 p13 
p6 1 1 0 0  1 1 1 1 p14  p6 1 1 0 1  1 1 1 1 p14 
p7 0 0 1 1  0 0 0 0 p15  p7 0 0 1 0  0 0 0 0 p15 
p8 0 1 0 1  0 1 1 0 p16  p8 0 1 0 0  0 1 1 0 p16 
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learned in the first subtask is likely to be compatible with 
that required for the rest of the task, we predicted that  
subtasking would be superior to an unstructured training 
regimen on the complex task.  

In summary, these considerations led us to the following 
prediction:  When subtasking exploits function 
compatibility it will be superior to unstructured training, 
but, when subtasking promotes function incompatibility it 
will be inferior to unstructured training. 

Simulations 
To test these predictions, we used Fahlman and Lebiere's 
(1990) cascade-correlation learning algorithm (CC) because 
it has certain design features that are particularly relevant 
for understanding facilitation and interference effects that 
occur during learning.  CC is a generative algorithm that 
starts out with a minimal typology, consisting of an input 
layer that is fully connected to an output layer.  To solve a 
problem, it first tries to reduce the error between the 
observed and desired activation across the output units by 
modifying the weights between the input and output units.  
If it fails to reduce this error within an acceptable criterion, 
it then recruits a hidden unit from a pool of candidates that 
are connected only to the input units.  The weights from the 
input units to the candidate hidden units are then trained so 
as to maximize the correlation between each candidate 
hidden unit's activation and the residual error at the output 
units.  When these correlations reach asymptote, the input 
weights leading to best candidate hidden unit are frozen, this 
hidden unit is connected to the output units, and the network 
reverts back to error minimization by modifying the weights 
connected to the output units.  The process of recruiting 
additional hidden units is then repeated as needed.  (For 
more detailed discussions about the CC architecture, see 
Fahlman & Lebiere, 1990; Shultz, Schmidt, Buckingham, & 
Mareschal, 1995).   

Because the weights from the input units to each hidden 
unit are fixed when each hidden unit is added to the 
network, knowledge acquired during the course of learning 
is more likely to be preserved during subsequent learning, 
and so its effects will be more salient than with other 
algorithms.  This design feature makes CC more resistant to 
retroactive interference than backpropogation (Tetewsky, 
Shultz, & Buckingham, 1995) .  

The tasks were presented in the same way that they 
appear in Table 1, with two exceptions. (1) The 
dichotomous coding in the input patterns was represented in 
terms of 1 and -1, rather than 1 and 0, to speed up learning.1  
(2) When subtasking was used, after a network had been 
trained sequentially on subtask 1 and subtask 2, it was then 
trained on the total set of patterns associated with the 
classification (i.e., subtask 1 + subtask 2).  This third phase 
of training provided a way to determine the extent to which 
the function that had been approximated from the subtasks 
was compatible with the function in the overall task.  After a 
network learned the second subtask it would have learned 
all 16 training patterns.  However, if the function the 
network learned to approximate was different from the 
function contained in the overall task, then the network 

would require additional training in this third phase of 
learning.  Furthermore, if the number of epochs needed in 
the third phase of training was less than the number of 
epochs needed to learn the task when the patterns were 
presented all-at-once, there would be evidence for function 
compatibility; if the number of epochs needed in the third 
phase of training was greater than the number of epochs 
needed during all-at-once presentation, there would be 
evidence for function incompatibility. 

The simulations were carried out as a 2 x 2 factorial 
design, in which there were two types of conceptual 
structures (simple and complex) crossed with two types of 
training regimens (all-at-once presentation and subtasking).  
The primary dependent variable was the number of training 
epochs needed to learn a particular concept.  Training was 
stopped when all of the output values for the patterns in a 
given training set fell within 40% of their desired values 
(i.e., the value of the score-threshold parameter was 0.4).    
Fifty networks were run in each of the four conditions of the 
design and the results were averaged across networks.      

Results 

The total number of training epochs required for each of the 
four conditions specified in the 2 x 2 design are shown in 
Figure 1.  Note that in assessing overall performance, 
numbers of training epochs required in each phase of 
subtasking were summed to get the total epochs for learning 
the entire task.   

Although there was no overall difference between the two 
training regimens (128 vs. 133 epochs), F (1, 196) = .955, p 
= .33, there was a main effect of task structure (191 vs 70), 
F (1, 196) = 668, p < .001, such that the complex structure 
was harder to learn than the simple structure.  Of more 
importance, however, is the fact that the interaction between 
task structure and training regimen was highly significant, F 
(1,196) = 44.9, p < .001.  Paired contrasts on the means 
confirmed that it was easier to learn the complex structure 
under subtasking (177 vs 204 epochs), F (1,196) = 16.4, p < 
.001, and it was harder to learn the simple structure under 
subtasking (88 vs. 52 epochs), F (1,196) = 29.5, p < .001.  

An examination of the frequency distributions for the 
total number of epochs needed in each of the four conditions 
provided some interesting qualifications.  When the patterns 
were presented all-at-once during training, the distributions 
for the simple and complex structures tended to be normal.  
However, when the patterns were presented in subtasks, the 
simple and complex structures produced distinctly bimodal 
distributions.  For the simple structure, 25 of the networks 
were in the range of 42-55 epochs, and 25 were in the range 
of 113-142.  For the complex structure, 39 were in the range 
of 132-167, and 11 were in the range of 216-333.  Because 
these subgroups fell on either side of the overall mean for 
the respective concept structures, for purposes of 
convenience they will be referred to as the easy and hard 
versions of subtasking for each structure.        

---------------------------------------   
1This point was suggested to us by Yasser Hashmi. 
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Figure 1. Mean number of epochs needed to learn two concepts under two training regimens.  Error bars represent standard 
errors of the mean.   

The two alternative forms of subtasking for a task with a 
simple structure are shown in Table 2, broken down 
according to the number of epochs needed in each of the 
three phases of learning.  In the hard version of subtasking, 
subtask 1 required an average of 51 epochs to be learned, 
whereas subtask 2 only required 12 epochs.  This difference 
was significant, F (1, 48) = 1727, p < .001, and it suggested 
that the knowledge the networks had acquired from subtask 
1 facilitated their ability to learn subtask 2.  But in spite of 
this facilitation, even though the networks had learned to 
classify all 16 patterns correctly after completing the first 
two phases of learning, they apparently did not possess the 
knowledge embodied in the overall task, because the 
number of training epochs required in phase 3 was clearly 
different from zero.  In fact, phase 3 training required more 
epochs than were needed to learn the simple task during all-
at-once presention (63 vs. 52, t (73) = 11.3, p < .001) 
providing evidence for function incompatibility.  Thus, as a 
result of learning sequentially subtasks 1 and 2, networks 
experienced proactive interference in learning the entire set 
of patterns.  In contrast to these findings, however, for the 
easy version of subtasking, it appears that these networks 
learned to approximate the correct function in subtask 1, so 
that there was perfect transfer across the next two phases of 
learning (i.e., no training epochs were required to learn 
either subtask 2 or the entire set of patterns.)      

Table 2. Mean number of epochs needed in the easy and 
hard versions of subtasking on a simple structure.  Numbers 

in parentheses are standard errors of the mean.   

 Easy (n=25) Hard (n=25) 
Subtask 1 50 (0.7) 51 (0.6) 
Subtask 2 0 (0.0)  12 (0.6) 
Subtasks 1&2 0 (0.0) 63 (0.9) 
 
The two alternative forms of subtasking for a task with a 

complex structure are shown in Table 3.  In the easy version 
of subtasking, subtask 1 required 50 epochs to be learned 

whereas subtask 2 only required 11.  Once again, this 
difference was significant, F (1, 76) = 1634, p < .001, and it 
suggested that the knowledge the networks had acquired 
from subtask 1 facilitated their ability to learn subtask 2.  
But, in contrast to the hard version of the simple structure, 
the number of epochs required in phase 3 training was less 
than the number of epochs required to learn the complex 
structure when it was presented all-at-once (92 vs. 204, t 
(87) = 32.5, p < .001), providing evidence for function 
compatibility. Thus, the knowledge that developed as a 
result of learning sequentially subtasks 1 and 2, facilitated 
learning the entire set of patterns.  However, in the hard 
version of subtasking, in spite of the fact that subtasks 1 and 
2 followed the same trend as in the easy version, the number 
of epochs needed in phase 3 training did not differ from the 
number of epochs required to learn the comp lex structure 
when it was presented all-at-once (202 vs 204, t (59) = .268, 
p > .05.).  This result therefore implied that these networks 
had essentially learned the same function that occurs when 
the training set is unstructured.  This particular finding is 
noteworthy because given the nature of the training patterns, 
there is no a priori reason to expect that subtasking on the 
complex structure would produce two different kinds of 
solutions.  One possible way to interpret this result is by 
examining the number of hidden units that were recruited by 
the two kinds of networks.  In the easy version of 
subtasking, networks recruited one hidden unit in both 
phase 1 and phase 3, whereas in the hard version, networks 
recruited one hidden unit in phase 1 and at least two hidden 
units in phase 3.   Because most of the networks that learned 
the complex task under an unstructured training regimen 
required two hidden units, there is reason to believe that in 
the hard version of subtasking, networks were somehow 
ignoring the information from the hidden unit recruited in 
phase 1, and learning the task as if the training set was 
unstructured.  However, this conclusion, as well as the other 
inferences that we made about the relative difficulty of 
learning the different correlational structures under the 
different training regimens, can only be confirmed by more 
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detailed analyses of network knowledge representations and 
the corresponding functions the networks learned to 
approximate.     

Table 3. Number of epochs needed in the easy and hard 
versions of subtasking on a complex structure.  Numbers in 

parentheses are standard errors of the mean.   

 Easy (n=39) Hard (n=11) 
Subtask 1 50 (0.6) 51 (1.3) 
Subtask 2 11 (0.4)  9 (0.5) 

Subtasks 1&2 92 (1.1) 202 (8.9) 
  

Discussion 

These simulations were carried out to determine the 
conditions under which subtasking will either improve or 
impair learning in neural networks, relative to unstructured, 
all-at-once training regimens.  The results indicated that 
when a network extracts a function that is compatible with 
later learning, subtasking will facilitate learning, whereas 
when a network extracts a function that is incompatible with 
later learning, subtasking will interfere with learning.  

In evaluating these results it is important to note that in 
general, there is no a priori reason to expect that certain 
kinds of tasks will always be learned better under 
subtasking, whereas other kinds of tasks will always be 
learned better under unstructured training regimens.  
Depending on the way the subtasks are formed, it is possible 
that subtasking could improve performance on the simple 
correlational structure and impair performance on the 
complex structure.  As a practical matter, it is therefore 
necessary to devise a training regimen that is appropriate for 
a given task.  In terms of the present findings, it would 
therefore be useful to form other types of subtasks for each 
structure and examine the extent to which the general notion 
of function compatibility can account for the resulting 
outcomes.    

Finally, these simulations have some important 
implications with regard to understanding the effects of 
knowledge on learning.  Previous psychological research in 
this area has primarily been concerned with showing how 
existing knowledge structures can reverse the difficulty of 
learning various formal category structures (Pazzani, 1991; 
Wattenmaker, Dewey, Murphy, & Medin, 1986; Waldmann 
& Holyoak, 1989.)  Although these findings are impressive, 
they are also somewhat limited because they do not show 
how the critical knowledge that produced the reversal was 
itself acquired.  The present experiment is therefore 
noteworthy because it shows how knowledge, which is 
acquired during the course of learning, can affect the 
acquisition of new knowledge. Hence, these results can be 
viewed as a way of bridging the gap between formal models 
of categorization, which try to describe specific learning 
algorithms, and knowledge-based approaches, which are 
concerned with how concept learning is influenced by 
existing knowledge.  Most connectionist models of human 
learning have learned from initially random weights.  
Although such results may provide important existence 
proofs, they are generally unrealistic as models for human 
learning, which ordinarily occurs from a base of initial 

knowledge.  Research on subtasking illustrates the potential 
importance of prior knowledge in learning.        
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