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Abstract 

Computational learning rules considered to be biologically realistic are not only rare but are also 
known to be seriously underpowered in the sense that they cannot, by themselves, implement the 
learning that humans and other mammals are capable of. We show mathematically that the 
computationally-powerful learning rules used in the cascade-correlation family of algorithms can 
be rewritten in a form that is a small extension of the Hebb rule, which is widely regarded as 
being biologically realistic. This suggests a way in which computationally-sufficient learning 
rules could be implemented in real neurons.  

Introduction 

There is a fundamental dilemma in the computational modeling of the mechanisms of learning, 
stemming from an apparent incompatibility of biological realism and computational sufficiency. 
Essentially, the learning rules that are known to be biologically realistic are, by themselves, 
insufficiently powerful to simulate the learning that humans and other animals are capable of. The 
purpose of the work reported here is to help resolve this dilemma by showing that some powerful 
learning rules for artificial neural networks can be rewritten as simple extensions of a learning 
rule that is considered to be biologically realistic. In doing this, we explicitly lay out the 
computations in these learning rules in terms of a set of simple, biologically-realistic neural 
building blocks.  

A Biologically-realistic but Computationally-limited Learning Rule 

There is one learning rule that most neuroscientists consider to be biologically realistic. This is 
known as the Hebb rule because it was proposed in verbal form by Hebb (1949) in speculations 
about how learning might occur in the brain. “When an axon of cell A is near enough to cell B 
and repeatedly or persistently takes part in firing it, some growth process or metabolic change 
takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased” 
(Hebb, 1949, p. 62).  

In neural-network terms, this can be interpreted as strengthening the connection between two 
units whenever they are simultaneously active. A simple, but more general, formalization of this 
idea is given in equation 1, which covers both negative and positive activation ranges and also 
decrements in connection strength. Hebb’s verbal formulation dealt only with positive activations 
and increments in connection strength. Equation 1 says to adjust a weight between two units in 
proportion to the product of their simultaneous activations x and y, scaled by α, a learning-rate 
parameter.  



 

 

 

ijji yxw α=∆ ,  (1) 

Perhaps the first convincing neuroscientific support for Hebbian learning came from a 
demonstration that electrical stimulation of presynaptic neurons facilitated synaptic transmission 
(Bliss & Lømø, 1973). This long-term potentiation (LTP) of synaptic efficiency has since been 
demonstrated in many brain regions of many species. Nearly synchronous firing of pre- and 
postsynaptic neurons is required for LTP to occur (Kelso, Ganong, & Brown, 1986; Sastry, Goh, 
& Auyeung., 1986).  

The Hebb rule has not fared nearly as well in the computational world. Computational research 
with artificial neural networks has established that successful Hebbian learning is restricted to 
learning orthogonal and linearly-separable patterns (McClelland & Rumelhart, 1988). Yet 
humans and many other species routinely learn non-linearly-separable functions, even those with 
non-orthogonal patterns (Shultz, 2003). Exclusive-or is a simple, well-known problem that is not 
linearly separable, but is readily learnable. For example, a child may learn that an allowable 
desert consists of either pie or cake, but not both. As for orthogonality, many ordinary concepts 
have correlated features, and thus are not composed of orthogonal examples. For example, the 
feature has wings is correlated with the feature flies in human concepts of birds. Those examples 
that possess wings also tend to fly. But these non-orthogonal features would render the bird 
concept impossible for a simple Hebbian rule to learn. The mechanisms by which brains learn 
non-orthogonal and non-linearly-separable patterns remain unknown.  

Computationally Powerful Learning Rules 

Some of the more powerful learning rules used in artificial neural networks belong to the 
cascade-correlation (CC) family. The progenitor is standard CC, which constructs a feed-forward 
network by recruiting new hidden units as needed, installing each on a distinct layer (Fahlman & 
Lebiere, 1990). Recurrent CC (RCC) uses recurrent weights on hidden units to process serial 
stimuli of indefinite length, such as sentences (Fahlman, 1991). Sibling-descendant CC (SDCC) 
decides whether it is better to install each new hidden unit on the current highest layer (as a 
sibling) or on its own distinct layer (as a descendant) (Baluja & Fahlman, 1994). Knowledge-
based CC (KBCC) evaluates and recruits whole subnetworks as well as single hidden units, thus 
allowing acquired knowledge to guide new learning (Shultz & Rivest, 2001). Rule-based CC 
(RBCC) allows for the injection and possible recruitment of symbolic rules within a KBCC 
framework (Thivierge, Dandurand, & Shultz 2004). Growing and pruning CC (GPCC) prunes 
away the less useful connections from CC networks, thus improving generalization and 
interpretability (Thivierge, Rivest, & Shultz 2003). Constraint-satisfaction CC (CSCC) adds a CS 
network that takes some of its input from the output of a CC network and settles into a stable 
state, implementing simple inference and reaction time (Shultz & Vogel, 2004).  

Like other error-reducing, multi-layered, feed-forward network learning algorithms, those in the 
CC family easily overcome the computational limitations of the Hebb rule. As long as such 
networks adjust connection weights in proportion to a product of pre-synaptic activation and a 
difference between a target and actual post-synaptic activation, they can cope with non-
orthogonal patterns. And as long as they contain hidden units with non-linear activation 
functions, they can learn non-linearly-separable problems (McClelland & Rumelhart, 1988).  

Members of the CC family of algorithms have been used to simulate a wide range of 
psychological phenomena in both cognitive (balance scale, conservation, seriation, concept 
learning, number comparison, shift learning, and integration of velocity, time, and distance cues) 
and linguistic (acquisition of personal pronouns, syntax, syllable boundaries, and word stress) 
domains (Shultz, 2003). These constructive algorithms often prove to be superior to static, feed-
forward network algorithms, which adjust connection weights but do not grow, on criteria such as 



 

 

 

learning success, learning speed, and coverage of psychological phenomena (Shultz, 2005). The 
ability to grow and thus build complex knowledge on top of earlier and simpler knowledge 
appears to be critical to simulation success, particularly for developmental phenomena.  

In the rest of this paper, we reformulate the learning rules in CC algorithms in a biologically 
realistic way using extra units and connections and extended three-way Hebb rules. Our strategy 
differs from the more usual strategy of trying to make the Hebb rule more powerful. Instead we 
start with the more powerful learning rules in CC algorithms and make them more Hebbian. At 
the end of the paper, we consider biological evidence for such extended Hebbian rules.   

All CC algorithms alternate between two learning phases: an output phase in which weights 
entering output units are trained in order to reduce network error, and an input phase in which 
weights entering candidate recruits are trained in order to correlate with network error.  

Output-phase Training in CC Algorithms 

The output phase in CC algorithms minimizes the network error described in equation 2, where 
iy  is activation of the ith output unit, it  is the corresponding target activation value, and p 

indexes over training patterns.  
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The derivative of network error with respect to the weights jiw ,  connecting internal unit jx to 

output iy is given by equation 3. 
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Stochastic gradient descent adjusts weights in proportion to the derivative in equation 3. We now 
reformulate this learning rule in Hebbian terms. Normally CC learns examples with so-called 
batch learning, in which no connection weights are adjusted until all the training patterns have 
been processed. This contrasts with per-pattern learning, in which network weights are adjusted 
after each training pattern is processed. We can transform the batch version of CC into a per-
pattern version using a stochastic derivative, which is the same as equation 3, but without the 
summation.  
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Then we add a new error neuron ie  as shown in Figure 1, which is excited by iy  and inhibited by 

it  such that iii tye −= . If the activation function of iy  is sigmoidal such that ( )iii yyy −=′ 1 , 
then the update rule for weight jiw ,  is given by equation 5, essentially a tri-Hebbian rule.1 
Equation 5 says that weight change between sending unit x and output unit y is proportional to the 
triple product of negative error unit e, the derivative of output unit y, and activation of sending 

                                                 
1 Although it is possible that ( )ii yy −1  could be computed by a neuron’s internal chemistry, we could 

alternatively assume another neuron ( )ii yy −=− 1  that is inhibited by iy  and that connects to iy  such 

that jiiiji xyyew −−=∆ , , making this weight adjustment a quad-Hebbian rule. Still another alternative 
would be a self-inhibitory link from yi to itself. 



 

 

 

unit x. Activation ie  does not directly affect iy  activation, but the internal chemistry around jiw ,  
modulates change of the weight between x and y, as specified in equation 5. 

jiiji xyew ′−=∆ ,  (5) 

 
Figure 1: Output-phase neural representation. Notation as in equations 2-5. 

 

Input-phase Training in CC Algorithms 

The input phase in CC algorithms maximizes a modified correlation between network error and 
candidate-unit activation shown in equation 6, where z  is a candidate unit,2 ie  as before, and p 
indexes over patterns. The values z  and ie  are the mean activations of z and ie  over all 
patterns.  
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i p

ipip eezzg ,  (6) 

The derivative of such correlations with respect to weights jw  connecting internal unit jx to 

candidate z  is given by equation 7, where iσ  is the sign of the correlation between z and ie .  
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The first step in creating a Hebbian version of input-phase training is to allow units to build up 
mean activations of z and ie . Let z  be excited by z  and itself such that zzz )1( γγ −+= as 
shown in the top part of Figure 2. Similarly for error units, iii eee )1( γγ −+=  as shown in the top 
part of Figure 3. Thus z  computes the exponential moving average of the z  values, and if 

P1=γ  for P  patterns, then after processing a batch of patterns, the value of z  oscillates 
around the true (local in time) mean of z .  

                                                 
2 Because candidate units are trained independently and in parallel, there is no need to describe more than 
one candidate unit here. 



 

 

 

 
Figure 2: Exponential moving-average unit ( z ) and deviation-detector unit ( z~ ) for candidate-

unit z.  

 

Other units are needed to track the deviation terms (e.g., how much each value of z deviates from 
the mean of z). Let unit z~  be excited by z  and inhibited by z , such that zzz −=~ as in the 
lower part of Figure 2. Similarly, ie~  is excited by ie  and inhibited by ie , such that iii eee −=~ , 
as shown in the lower part of Figure 3.  

 

Figure 3: Exponential moving-average unit ( ie ) and deviation-detector unit ( ie~ ) for error-unit ei.  

 

We also need to compute correlations between the deviation terms. Let ic  be a correlation-
detector unit for z~  and ie~  such that ii ezc ~~=  ( )( )ii eezz −−= , as shown in Figure 4. Then let 

ic  be the exponential moving average of ic  such that after several batches of training, its value 
oscillates near the true correlation (divided by P ). Finally, let unit a  be excited by ie~  and ic  
(assuming that ic  has a magnitude-independent connection) to get a partial derivative of 



 

 

 

correlation ( )∑=
i

ii ecsigna ~  ( )∑ −=
i

iii eeσ , as shown in Figure 5. Then the weight-

adjustment rule for input-phase training can be described, shown in Figure 6, in tri-Hebbian form 
in terms of the following modifications of equation 7. As with input-phase training, we transform 
the batch version of CC into a per-pattern version using a stochastic derivative, which eliminates 
summation over patterns. Equation 8 indicates that weight change between internal unit x and 
candidate unit z is proportional to the triple product of a (the partial derivative of the correlation 
between candidate activation and error), z’ (the derivative of activation of the candidate unit), and 
x (activation of the sending unit).  
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Figure 4: Correlation units track products of candidate-activation deviations and network-error 

deviations (left), and a moving-average correlation value is computed (right).  

 

 
Figure 5: Unit a computes the partial derivative of correlation. 

 



 

 

 

 
Figure 6: Input-phase neural representation.  

 

Neuroscience Evidence for Three-way Hebbian Rules 

Some evidence for three-way Hebbian rules like these comes from studies of the effects of 
dopamine on synaptic plasticity in corticostriatal circuits that are involved in reinforcement 
learning in rats. Several experiments have produced results consistent with the view that synapses 
in these circuits depend on a conjunction of pre- and post-synaptic activity coupled with 
dopamine-producing neurons (Reynolds & Wickens, 2002; Reynolds, Hyland, & Wickens, 2001). 
A drawing summarizing such synapses, reproduced in Figure 7, inspired our own circuit diagrams 
in Figures 1-6.  

 

 
Figure 7: Afferent connections of a striatal spiny projection neuron. From Reynolds and Wickens 

(2002).  

 

Evidence suggests that induction of Long Term Depression requires a conjunction of presynaptic 
activity, postsynaptic depolarization, and low levels of dopamine. In contrast, reward-related 
burst firing of dopamine neurons releases enough dopamine to activate intracellular cascades 
leading to LTP and reinforcement learning. Importantly, all three parts (presynaptic activity, 
postsynaptic activity, and amount of activity in dopamine neurons) are required to explain the 
experimental results. In some experiments, the dopamine neurons were stimulated with an 
electrode, as shown in Figure 7.  



 

 

 

Conclusions 

There is wide agreement that the Hebb rule is biologically realistic in terms of its compatibility 
with known brain functions. However, the Hebb rule alone is not computationally powerful 
enough to learn the wide range of problems that people and other animals do readily learn. In this 
paper we show that the mathematics of computationally powerful CC learning algorithms used to 
simulate a wide range of human learning phenomena can be rewritten in an extended Hebbian 
form using three units per synapse instead of the usual two units. The main differences between 
these extended rules and the classic Hebbian rule are the extra units and connection weights that 
the extended rules require. Because there is neuroscience evidence for three-way Hebbian 
learning rules, this suggests a way in which the relatively powerful learning rules used in CC 
algorithms could be implemented in real neurons.  
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