
Learning with Both Adequate Computational Power and Biological Realism

François Rivest
Département d’Informatique et de Recherche Opérationnelle

Université de Montréal
CP 6128 succursale Centre Ville, Montréal, QC H3C 3J7, Canada

francois.rivest@mail.mcgill.ca
and

Thomas R. Shultz
Department of Psychology and School of Computer Science

McGill University
1205 Penfield Avenue, Montreal, QC H3A 1B1, Canada

thomas.shultz@mcgill.ca

Abstract

Computational learning rules considered to be biologically realistic are not only rare but are also
known to be seriously underpowered in the sense that they cannot, by themselves, implement the
learning that humans and other mammals are capable of. We show mathematically that the
computationally-powerful learning rules used in the cascade-correlation family of algorithms can
be rewritten in a form that is a small extension of the Hebb rule, which is widely regarded as
being biologically realistic. This suggests a way in which computationally-sufficient learning
rules could be implemented in real neurons.

Introduction

There is a fundamental dilemma in the computational modeling of the mechanisms of learning,
stemming from an apparent incompatibility of biological realism and computational sufficiency.
Essentially, the learning rules that are known to be biologically realistic are, by themselves,
insufficiently powerful to simulate the learning that humans and other animals are capable of. The
purpose of the work reported here is to help resolve this dilemma by showing that some powerful
learning rules for artificial neural networks can be rewritten as simple extensions of a learning
rule that is considered to be biologically realistic. In doing this, we explicitly lay out the
computations in these learning rules in terms of a set of simple, biologically-realistic neural
building blocks.

A Biologically-realistic but Computationally-limited Learning Rule

There is one learning rule that most neuroscientists consider to be biologically realistic. This is
known as the Hebb rule because it was proposed in verbal form by Hebb (1949) in speculations
about how learning might occur in the brain. “When an axon of cell A is near enough to cell B
and repeatedly or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased”
(Hebb, 1949, p. 62).

In neural-network terms, this can be interpreted as strengthening the connection between two
units whenever they are simultaneously active. A simple, but more general, formalization of this
idea is given in equation 1, which covers both negative and positive activation ranges and also
decrements in connection strength. Hebb’s verbal formulation dealt only with positive activations
and increments in connection strength. Equation 1 says to adjust a weight between two units in
proportion to the product of their simultaneous activations x and y, scaled by α, a learning-rate
parameter.

ijji yxw α=∆ , (1)

Perhaps the first convincing neuroscientific support for Hebbian learning came from a
demonstration that electrical stimulation of presynaptic neurons facilitated synaptic transmission
(Bliss & Lømø, 1973). This long-term potentiation (LTP) of synaptic efficiency has since been
demonstrated in many brain regions of many species. Nearly synchronous firing of pre- and
postsynaptic neurons is required for LTP to occur (Kelso, Ganong, & Brown, 1986; Sastry, Goh,
& Auyeung., 1986).

The Hebb rule has not fared nearly as well in the computational world. Computational research
with artificial neural networks has established that successful Hebbian learning is restricted to
learning orthogonal and linearly-separable patterns (McClelland & Rumelhart, 1988). Yet
humans and many other species routinely learn non-linearly-separable functions, even those with
non-orthogonal patterns (Shultz, 2003). Exclusive-or is a simple, well-known problem that is not
linearly separable, but is readily learnable. For example, a child may learn that an allowable
desert consists of either pie or cake, but not both. As for orthogonality, many ordinary concepts
have correlated features, and thus are not composed of orthogonal examples. For example, the
feature has wings is correlated with the feature flies in human concepts of birds. Those examples
that possess wings also tend to fly. But these non-orthogonal features would render the bird
concept impossible for a simple Hebbian rule to learn. The mechanisms by which brains learn
non-orthogonal and non-linearly-separable patterns remain unknown.

Computationally Powerful Learning Rules

Some of the more powerful learning rules used in artificial neural networks belong to the
cascade-correlation (CC) family. The progenitor is standard CC, which constructs a feed-forward
network by recruiting new hidden units as needed, installing each on a distinct layer (Fahlman &
Lebiere, 1990). Recurrent CC (RCC) uses recurrent weights on hidden units to process serial
stimuli of indefinite length, such as sentences (Fahlman, 1991). Sibling-descendant CC (SDCC)
decides whether it is better to install each new hidden unit on the current highest layer (as a
sibling) or on its own distinct layer (as a descendant) (Baluja & Fahlman, 1994). Knowledge-
based CC (KBCC) evaluates and recruits whole subnetworks as well as single hidden units, thus
allowing acquired knowledge to guide new learning (Shultz & Rivest, 2001). Rule-based CC
(RBCC) allows for the injection and possible recruitment of symbolic rules within a KBCC
framework (Thivierge, Dandurand, & Shultz 2004). Growing and pruning CC (GPCC) prunes
away the less useful connections from CC networks, thus improving generalization and
interpretability (Thivierge, Rivest, & Shultz 2003). Constraint-satisfaction CC (CSCC) adds a CS
network that takes some of its input from the output of a CC network and settles into a stable
state, implementing simple inference and reaction time (Shultz & Vogel, 2004).

Like other error-reducing, multi-layered, feed-forward network learning algorithms, those in the
CC family easily overcome the computational limitations of the Hebb rule. As long as such
networks adjust connection weights in proportion to a product of pre-synaptic activation and a
difference between a target and actual post-synaptic activation, they can cope with non-
orthogonal patterns. And as long as they contain hidden units with non-linear activation
functions, they can learn non-linearly-separable problems (McClelland & Rumelhart, 1988).

Members of the CC family of algorithms have been used to simulate a wide range of
psychological phenomena in both cognitive (balance scale, conservation, seriation, concept
learning, number comparison, shift learning, and integration of velocity, time, and distance cues)
and linguistic (acquisition of personal pronouns, syntax, syllable boundaries, and word stress)
domains (Shultz, 2003). These constructive algorithms often prove to be superior to static, feed-
forward network algorithms, which adjust connection weights but do not grow, on criteria such as

learning success, learning speed, and coverage of psychological phenomena (Shultz, 2005). The
ability to grow and thus build complex knowledge on top of earlier and simpler knowledge
appears to be critical to simulation success, particularly for developmental phenomena.

In the rest of this paper, we reformulate the learning rules in CC algorithms in a biologically
realistic way using extra units and connections and extended three-way Hebb rules. Our strategy
differs from the more usual strategy of trying to make the Hebb rule more powerful. Instead we
start with the more powerful learning rules in CC algorithms and make them more Hebbian. At
the end of the paper, we consider biological evidence for such extended Hebbian rules.

All CC algorithms alternate between two learning phases: an output phase in which weights
entering output units are trained in order to reduce network error, and an input phase in which
weights entering candidate recruits are trained in order to correlate with network error.

Output-phase Training in CC Algorithms

The output phase in CC algorithms minimizes the network error described in equation 2, where
iy is activation of the ith output unit, it is the corresponding target activation value, and p

indexes over training patterns.
()∑∑ −=

p i
pipi tyf 2

,, (2)

The derivative of network error with respect to the weights jiw , connecting internal unit jx to

output iy is given by equation 3.

()∑ ′−=
∂
∂

p
pjpipipi

ji

xyty
w
f

,,,,
,

2 (3)

Stochastic gradient descent adjusts weights in proportion to the derivative in equation 3. We now
reformulate this learning rule in Hebbian terms. Normally CC learns examples with so-called
batch learning, in which no connection weights are adjusted until all the training patterns have
been processed. This contrasts with per-pattern learning, in which network weights are adjusted
after each training pattern is processed. We can transform the batch version of CC into a per-
pattern version using a stochastic derivative, which is the same as equation 3, but without the
summation.

() pjpipipi
ji

xyty
w
f

,,,,
,2

1 ′−−=
∂
∂− (4)

Then we add a new error neuron ie as shown in Figure 1, which is excited by iy and inhibited by

it such that iii tye −= . If the activation function of iy is sigmoidal such that ()iii yyy −=′ 1 ,
then the update rule for weight jiw , is given by equation 5, essentially a tri-Hebbian rule.1
Equation 5 says that weight change between sending unit x and output unit y is proportional to the
triple product of negative error unit e, the derivative of output unit y, and activation of sending

1 Although it is possible that ()ii yy −1 could be computed by a neuron’s internal chemistry, we could

alternatively assume another neuron ()ii yy −=− 1 that is inhibited by iy and that connects to iy such

that jiiiji xyyew −−=∆ , , making this weight adjustment a quad-Hebbian rule. Still another alternative
would be a self-inhibitory link from yi to itself.

unit x. Activation ie does not directly affect iy activation, but the internal chemistry around jiw ,
modulates change of the weight between x and y, as specified in equation 5.

jiiji xyew ′−=∆ , (5)

Figure 1: Output-phase neural representation. Notation as in equations 2-5.

Input-phase Training in CC Algorithms

The input phase in CC algorithms maximizes a modified correlation between network error and
candidate-unit activation shown in equation 6, where z is a candidate unit,2 ie as before, and p
indexes over patterns. The values z and ie are the mean activations of z and ie over all
patterns.

()()∑∑ −−=
i p

ipip eezzg , (6)

The derivative of such correlations with respect to weights jw connecting internal unit jx to

candidate z is given by equation 7, where iσ is the sign of the correlation between z and ie .

()∑∑ ′−=
∂
∂

p i
pjppii

j

xzee
w
g

,,σ (7)

The first step in creating a Hebbian version of input-phase training is to allow units to build up
mean activations of z and ie . Let z be excited by z and itself such that zzz)1(γγ −+= as
shown in the top part of Figure 2. Similarly for error units, iii eee)1(γγ −+= as shown in the top
part of Figure 3. Thus z computes the exponential moving average of the z values, and if

P1=γ for P patterns, then after processing a batch of patterns, the value of z oscillates
around the true (local in time) mean of z .

2 Because candidate units are trained independently and in parallel, there is no need to describe more than
one candidate unit here.

Figure 2: Exponential moving-average unit (z) and deviation-detector unit (z~) for candidate-

unit z.

Other units are needed to track the deviation terms (e.g., how much each value of z deviates from
the mean of z). Let unit z~ be excited by z and inhibited by z , such that zzz −=~ as in the
lower part of Figure 2. Similarly, ie~ is excited by ie and inhibited by ie , such that iii eee −=~ ,
as shown in the lower part of Figure 3.

Figure 3: Exponential moving-average unit (ie) and deviation-detector unit (ie~) for error-unit ei.

We also need to compute correlations between the deviation terms. Let ic be a correlation-
detector unit for z~ and ie~ such that ii ezc ~~= ()()ii eezz −−= , as shown in Figure 4. Then let

ic be the exponential moving average of ic such that after several batches of training, its value
oscillates near the true correlation (divided by P). Finally, let unit a be excited by ie~ and ic
(assuming that ic has a magnitude-independent connection) to get a partial derivative of

correlation ()∑=
i

ii ecsigna ~ ()∑ −=
i

iii eeσ , as shown in Figure 5. Then the weight-

adjustment rule for input-phase training can be described, shown in Figure 6, in tri-Hebbian form
in terms of the following modifications of equation 7. As with input-phase training, we transform
the batch version of CC into a per-pattern version using a stochastic derivative, which eliminates
summation over patterns. Equation 8 indicates that weight change between internal unit x and
candidate unit z is proportional to the triple product of a (the partial derivative of the correlation
between candidate activation and error), z’ (the derivative of activation of the candidate unit), and
x (activation of the sending unit).

 ()∑ ′−=
∂
∂

i
pjppii

j

xzee
w
g

,,σ

 pjp xza ,′≈

jj xzaw ′=∆ (8)

Figure 4: Correlation units track products of candidate-activation deviations and network-error

deviations (left), and a moving-average correlation value is computed (right).

Figure 5: Unit a computes the partial derivative of correlation.

Figure 6: Input-phase neural representation.

Neuroscience Evidence for Three-way Hebbian Rules

Some evidence for three-way Hebbian rules like these comes from studies of the effects of
dopamine on synaptic plasticity in corticostriatal circuits that are involved in reinforcement
learning in rats. Several experiments have produced results consistent with the view that synapses
in these circuits depend on a conjunction of pre- and post-synaptic activity coupled with
dopamine-producing neurons (Reynolds & Wickens, 2002; Reynolds, Hyland, & Wickens, 2001).
A drawing summarizing such synapses, reproduced in Figure 7, inspired our own circuit diagrams
in Figures 1-6.

Figure 7: Afferent connections of a striatal spiny projection neuron. From Reynolds and Wickens

(2002).

Evidence suggests that induction of Long Term Depression requires a conjunction of presynaptic
activity, postsynaptic depolarization, and low levels of dopamine. In contrast, reward-related
burst firing of dopamine neurons releases enough dopamine to activate intracellular cascades
leading to LTP and reinforcement learning. Importantly, all three parts (presynaptic activity,
postsynaptic activity, and amount of activity in dopamine neurons) are required to explain the
experimental results. In some experiments, the dopamine neurons were stimulated with an
electrode, as shown in Figure 7.

Conclusions

There is wide agreement that the Hebb rule is biologically realistic in terms of its compatibility
with known brain functions. However, the Hebb rule alone is not computationally powerful
enough to learn the wide range of problems that people and other animals do readily learn. In this
paper we show that the mathematics of computationally powerful CC learning algorithms used to
simulate a wide range of human learning phenomena can be rewritten in an extended Hebbian
form using three units per synapse instead of the usual two units. The main differences between
these extended rules and the classic Hebbian rule are the extra units and connection weights that
the extended rules require. Because there is neuroscience evidence for three-way Hebbian
learning rules, this suggests a way in which the relatively powerful learning rules used in CC
algorithms could be implemented in real neurons.

Acknowledgements

This work was supported by a grant from the Natural Sciences and Engineering Research Council
of Canada to the second author. Thanks to J.-P. Thivierge for the seminal suggestion that Hebbian
learning rules might be able to compute input-phase correlations in CC algorithms and to Marie-
Claire Rivest for drawing Figures 1-6. We are grateful to Yoshio Takane, J.-P. Thivierge, and
Frederic Dandurand for helpful comments on an earlier draft.

Bibliography

Baluja, S., & Fahlman, S. E. (1994). Reducing network depth in the cascade-correlation learning
architecture. Technical Report CMU-CS-94-209, School of Computer Science, Carnegie
Mellon University.

Bliss, T. V. P., & Lømø, T. (1973). Long-lasting potentiation of synaptic transmission in the
dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of
Physiology, 232, 331-356.

Fahlman, S. E. (1991). The recurrent cascade-correlation architecture. Technical Report CMU-
CS-91-100, School of Computer Science, Carnegie Mellon University.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In D. S.
Touretzky (ed.), Advances in neural information processing systems 2 (pp. 524-532). Los
Altos, CA: Morgan Kaufmann.

Hebb, D. O. (1949). The organization of behavior. New York: Wiley.

Kelso, S. R., Ganong, A. H., & Brown, T. H. (1986). Hebbian synapses in hippocampus.
Proceedings of the National Academy of Sciences, 83, 5326-5330.

McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing: A
handbook of models, programs, and exercises. Cambridge, MA: MIT Press.

Reynolds, J. N. J., Hyland, B. I., & Wickens, J. R. (2001). A cellular mechanism of reward-
related learning. Nature, 413, 67–70.

Reynolds, J. N. J., & Wickens, J. R. (2002). Dopamine-dependent plasticity of corticostriatal
synapses. Neural Networks, 15, 507-521.

Sastry, B. R., Goh, J. W., & Auyeung, A. (1986). Associative induction of posttetanic and long-
term potentiation in CA1 neurons of rat hippocampus. Science, 232, 988-990.

Shultz, T. R. (2003). Computational developmental psychology. Cambridge, MA: MIT Press.

Shultz, T. R. (2005, in press). Constructive learning in the modeling of psychological
development. In Y. Munakata & M. H. Johnson (Eds.), Processes of change in brain and
cognitive development: Attention and performance XXI. Oxford: Oxford University Press.

Shultz, T. R., & Rivest, F. (2001). Knowledge-based cascade-correlation: Using knowledge to
speed learning. Connection Science, 13, 43-72.

Shultz, T. R., & Vogel, A. (2004). A connectionist model of the development of transitivity.
Proceedings of the Twenty-sixth Annual Conference of the Cognitive Science Society (pp.
1243-1248). Mahwah, NJ: Erlbaum.

Thivierge, J.-P., Dandurand, F., & Shultz, T.R. (2004). Transferring domain rules in a
constructive network: Introducing RBCC. Proceedings of the IEEE International Joint
Conference on Neural Networks, 1403-1409.

Thivierge, J.-P., Rivest, F., & Shultz, T. R. (2003). A dual-phase technique for pruning
constructive networks. Proceedings of the IEEE International Joint Conference on Neural
Networks 2003, 559-564.

Wickens, J., & Kotter, R. (1995). Cellular models of reinforcement. In J. C. Houk, J. L. Davis, &
D. G. Beiser (Eds.), Models of information processing in the basal ganglia (pp. 187-214).
Cambridge, MA: MIT Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

